
CZECH INSTITUTE OF INFORMATICS
ROBOTICS AND CYBERNETICS

INDUSTRIAL INFORMATICS DEPARTMENT

Combining PREM compilation and ILP
scheduling for high-performance and predictable
MPSoC execution
Joel Matějka, Björn Forsberg, Michal Sojka, Zdeněk Hanzálek, Luca Benini,
and Andrea Marongiu

DOI: https://doi.org/10.1145/3178442.3178444
Cite as: J. Matějka, B. Forsberg, M. Sojka, Z. Hanzálek, L. Benini, and
A. Marongiu. Combining PREM compilation and ILP scheduling for high-
performance and predictable MPSoC execution. In Proceedings of the 9th
International Workshop on Programming Models and Applications for Multicores
and Manycores, PMAM’18, pages 11–20, New York, NY, USA, 2018. ACM

c© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license, see
http://creativecommons.org/licenses/by-nc-nd/4.0/

Combining PREM compilation and ILP scheduling for
high-performance and predictable MPSoC execution
Joel Matějka

Czech Technical University in Prague,
Faculty of Electrical Engineering

Prague, Czech Republic
matejjoe@fel.cvut.cz

Björn Forsberg
ETH Zurich,

Institut für Integrierte Systeme
Zürich, Switzerland
bjoernf@iis.ee.ethz.ch

Michal Sojka
Czech Technical University in Prague,

Czech Institute of Informatics,
Robotics and Cybernetics
Prague, Czech Republic
michal.sojka@cvut.cz

Zdeněk Hanzálek
Czech Technical University in Prague,

Czech Institute of Informatics,
Robotics and Cybernetics
Prague, Czech Republic
zdenek.hanzalek@cvut.cz

Luca Benini
ETH Zurich,

Institut für Integrierte Systeme
Zürich, Switzerland
lbenini@iis.ee.ethz.ch

Andrea Marongiu
University of Bologna

Bologna, Italy
a.marongiu@unibo.it

ABSTRACT
Many applications require both high performance and predictable
timing. High-performance can be provided by COTS Multi-Core
System on Chips (MPSoC), however, as cores in these systems
share the memory bandwidth they are susceptible to interference
from each other, which is a problem for timing predictability. We
achieve predictability on multi-cores by employing the predictable
execution model (PREM), which splits execution into a sequence of
memory and compute phases, and schedules these such that only a
single core is executing a memory phase at a time.

We present a toolchain consisting of a compiler and an Integer
Linear Programming scheduling model. Our compiler uses loop
analysis and tiling to transform application code into PREM com-
pliant binaries. Furthermore, we solve the problem of scheduling
execution on multiple cores while preventing interference of mem-
ory phases.

We evaluate our toolchain on Advanced-Driver-Assistance-Sys-
tems-like scenario containing matrix multiplications and FFT com-
putations on NVIDIA TX1. The results show that our approach
maintains similar average performance and improves variance of
completion times by a factor of 9.

CCS CONCEPTS
•Computer systems organization→Real-time systemarchi-
tecture; • Software and its engineering → Scheduling; Com-
pilers;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PMAM’18, February 24–28, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5645-9/18/02. . . $15.00
https://doi.org/10.1145/3178442.3178444

KEYWORDS
PREM, predictability, LLVM, static scheduling, Integer Linear Pro-
gramming, NVIDIA TX1

ACM Reference Format:
Joel Matějka, Björn Forsberg, Michal Sojka, Zdeněk Hanzálek, Luca Benini,
and Andrea Marongiu. 2018. Combining PREM compilation and ILP sched-
uling for high-performance and predictable MPSoC execution. In PMAM’18:
9th International Workshop on Programming Models and Applications for
Multicores and Manycores, February 24–28, 2018, Vienna, Austria. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3178442.3178444

1 INTRODUCTION
Many real-time applications, such as autonomous cars and Ad-
vanced Driver Assistance Systems (ADAS), require both high
computational performance and predictable timing. Although
commercial-off-the-shelf (COTS) multi-core CPUs offer sufficient
performance, it is difficult to predict task execution times because of
cores competing for shared on-chip and off-chip resources such as
main memory. The pessimism in worst-case execution times makes
integration of complex systems with real-time requirements hardly
feasible. In order to achieve the desired predictability, a predictable
task execution model (PREM [15]) that guarantees freedom from
interference can be employed.

In PREM, application code is executed in sequences of non-
preemptive intervals of two types: predictable or compatible. Pre-
dictable intervals are composed of memory prefetch, compute and
memory write-back phases (in that order). The purpose of the
prefetch phase is to load data needed in the compute phase to
a core-local memory, such as L1 or L2 cache, to ensure that the
compute phase does not compete for memory with other cores.
Compatible intervals are those where the separation of memory
and compute phases is not easily possible, which includes parts of
the application as well as most system calls. The advantage of PREM
is twofold: 1) memory phases have exclusive access to shared mem-
ory, limiting inter-core interference; 2) non-preemptive execution
limits cache-related preemption delays [5].

https://doi.org/10.1145/3178442.3178444
https://doi.org/10.1145/3178442.3178444

Combining PREM compilation and ILP scheduling PMAM’18, February 24–28, 2018, Vienna, Austria

In this paper, we achieve predictable execution with two steps:
i) creation of PREM-compliant code (i.e., a sequence of predictable
and/or compatible intervals); ii) scheduling intervals so as to guar-
antee mutually exclusive access to the main memory.

The creation of PREM-compliant code is a complex task, re-
quiring knowledge of many low-level details. Such a task is better
solved by optimizing compilers than by humans, particularly in the
context of CPU codes, for which a large body of legacy code is in-
volved. While previous research has discussed the desired features
of such a compiler, and state-of-the-art analysis techniques for its
practical design [15], the existing implementations still require the
programmer to deal with low-level details.

In this work we present a compiler, based on the LLVM infras-
tructure [12], for the transformation of legacy CPU codes into
PREM-compatible code. Specifically, this compiler performs several
passes: i) identification of suitable portions of the code for conver-
sion into predictable intervals; ii) splitting of the identified code
into multiple predictable intervals, based on the size of available
core-local memory; iii) generation of code for prefetch and write-
back phases; iv) analysis of data dependencies between the intervals
and their representation in the form of a directed acyclic graph
(DAG), which is one of the inputs to a scheduling tool.

Scheduling memory phases on different cores to avoid mutual
interference can be performed either on-line or off-line. On-line
approaches are popular, because they do not require much a priori
information, but their schedulability analysis (worst-case behavior
analysis) is more challenging. Off-line scheduling is widely used
in safety-critical systems. There, schedulability analysis is trivial,
but schedule synthesis is difficult when the information needed
for the synthesis is not known ahead of time. Fortunately, in many
algorithms used in ADAS applications (e.g., FFT or matrix multipli-
cation), it is known up front which operations need to be performed
and which memory these operations access. For such algorithms,
off-line scheduling approaches can easily find optimal schedules
and provide high confidence in worst-case timing. One reason why
people often prefer on-line approaches is that off-line scheduling
leads to pessimistic results, because of pessimism in estimating
worst-case execution time (WCET). This is, however, not the case
with PREM, where the pessimism caused by unpredictable interfer-
ence is limited, and thus, off-line scheduling can be practical and
beneficial.

The main goal of this paper is to evaluate whether these ex-
pected benefits can be observed on real hardware with real-world
algorithms. To achieve this goal, and as an additional important
contribution of this paper, we present a fully integrated, complete
implementation of PREM for a state-of-the-art embeddedmulti-core
CPU. To the best of our knowledge, this is the first fully functional
PREM implementation targeting COTS systems of this type.

The scheduling tool introduced in this paper generates optimal
schedules of PREM-compliant execution on multi-core CPUs. The
schedule is computed from the information generated by the com-
piler (DAG) and from data obtained by simple single-core profiling
of the generated code. We formulate the scheduling algorithm as
an Integer Linear Programming (ILP) problem. Although this does
not allow solving large-scale problems, the ILP formulation gives
a clear description of the problem in the form of a few equations
and helps to classify the problem. Once we classify the problem,

I2 (mul)

I9
I3 (mul)

I4 (mul)

I5 (mul)

I6 (tran)
I7 (mul)

I8 (mul)

I10 (fft) I11 (ifft)

I12 (srch) I13 (srch) I14 (srch) I15 (srch) I16 (srch)

I1 (tran)

GEMM1 GEMM2

FFT

Tree search

Post

Figure 1: An example ADAS scenario.

it is easier to find related problems and design efficient heuristics
(such as [10]) capable of solving bigger instances. Also, solutions
of the ILP can be used as a reference for comparison with heuristic
algorithms on small instances.

The paper is structured as follows. We introduce our system
model in Section 2. In Section 3, we describe our compiler and its
PREM-related passes. We follow with a description of our schedul-
ing algorithm in Section 4. Section 5 and Section 6 describe imple-
mentation and evaluation both the compiler and the scheduling on
NVIDIA Tegra X1 and Section 8 concludes the paper.

2 SYSTEM MODEL
2.1 Target application template
To demonstrate the approach presented in this paper, we selected a
few algorithms widely used in autonomous driving systems. Our
compiler flow transforms them into PREM-compatible code and
we then created several execution scenarios. One such scenario is
depicted in Figure 1. The first algorithm is general matrix multipli-
cation (GEMM), which is an essential operation in neural networks
during forward propagation. The second algorithm is fast Fourier
transform (FFT) and inverse FFT (iFFT), which can be used in ap-
plications like visual object tracking, signal processing and similar.
The third algorithm in our scenario is a memory intensive computa-
tion, typically encountered in binary search tree or graph traversing
algorithms.

The scenario in Figure 1 comprises two subsequent GEMMs, one
FFT followed by inverse FFT and a sequence of binary tree searches.
The first GEMM is formed by matrix transposition and four inter-
vals of actual multiplication. The second GEMM works on smaller
matrices – it has the transposition and only two multiplication
intervals.

2.2 Target architecture
The target platform of this work is the NVIDIA Tegra TX1 (Figure 2),
a low-cost COTS system-on-chip (SoC) with four CPU cores. Each
core is equipped with a core-local (non-shared) L1 cache memory,
and a shared L2 cache. For hardware with shared cache memories,
we assume that techniques such as cache coloring [13] are used to
emulate cache partitioning. The TX1 employs random cache line
replacement policy, which means that if there are no invalid cache
lines available, a previously loaded cache line will be evicted at
random to make place for new data. Thus, software mechanisms
must be used to invalidate specific cache lines to ensure that loading

PMAM’18, February 24–28, 2018, Vienna, Austria J. Matějka et al.

ARMv8 Core

x4

48k L1I 32k L1D

Shared 2M L2 Cache

Memory Interconnect

MC and DDR Main Memory

GPU

PCIe

USB
...

Figure 2: NVIDIA TX1 block diagram.
of new cache lines does not randomly evict data that is still active
(refer to Section 5.1 for more details). Each core is connected to a
shared memory bus together with other devices such as the GPU.
Solutions to handle interference from GPUs in heterogeneous SoCs
such as the TX1 has been previously proposed in the context of
PREM [8]. The integration of our work with similar approaches is
left for future work.

3 PREM COMPILER
To efficiently and predictably execute applications on the target
platform, the compiler must produce code compliant with PREM.
That is code, which is split into compatible and predictable intervals,
with the latter ones composed of prefetch, compute and write-back
phases. Our compiler, which can be seen as part of our toolchain in
Figure 3, does this automatically, without the need for the program-
mer to specify additional pragmas/hints, beyond what he/she would
use for program parallelization. Then, the compiler can generate a
dependency graph of PREM intervals (similar to Fig. 1), which is
used as an input for our scheduling tool described in Section 4.

3.1 PREM compiler design
We propose the design of a compiler based on the LLVM infrastruc-
ture that converts C/C++ code into PREM compliant code automati-
cally. Figure 3 shows the block diagram of the PREM-related passes
in the proposed compiler.

The compiler can be separated into three parts: Preprocessing,
analysis, and transformation. The preprocessing step performs stan-
dard transformations on the code to ensure that the code is in a
known state before the main passes of the compiler execute. Follow-
ing this, the analysis passes (e.g., loop analysis) extract the required
data from the source code, upon which regions for PREM transfor-
mation can be selected. The main data that needs to be collected
through analysis is the memory footprint which is used to select
suitable PREM regions based on the available local memory. Once
these have been selected, the transformation passes (e.g., outline)
transform the program to conform to the requirements of PREM. In
addition to returning the transformed program, the compiler also
outputs the dependency graph of the PREM intervals, which dictate
in which order the program must execute. This information is used
by the scheduling tool presented in subsequent sections.

3.2 Compiler implementation
The following sections describe in greater detail the operations of
the PREM compiler.

3.2.1 Preprocessing. As outlined in the previous section, the first
step in the PREM compiler is to detect all memory objects that have

code
Input

Profiler

Run

PREMized
code

time

Sched.
tool

Dep.
graph

Hypervisor

Figure 3: Block diagram of the toolchain proposed in this
paper. Gray rounded boxes represent data, white rectangles
are performed operations.

to be prefetched. In the first step, the memory objects are promoted
to global variables to ensure that they are allocated statically or on
the stack. This ensures that the data can be seamlessly prefetched
and used at different points in the program.

3.2.2 Analysis. The most important outcome of the analysis
phase is to identify the portions of the code that are suitable for
transformation into PREM intervals. There are two main require-
ments to such code portions: possibility to place prefetch and write-
back operations such that data is ensured to be locally available
at the point of use. We say that the prefetch point must dominate
all points of use of the data, and the write-back point must post-
dominate all points of use. The second requirement is that the data
used between the prefetch and write-back points must fit into the
local cache memory, as otherwise self-eviction would cause cache
misses and violate the predictability guarantees that PREM strives
to provide.

The LLVM infrastructure provides the concept of regions, which
are defined as single-entry single-exit portions of the code where
the entry node dominates all other nodes in the regions, and the
exit node post-dominates all other nodes in the region. Thus, this
implicitly provides the first requirement of the PREM interval. By
mapping all uses of memory objects to the region in which they
are used, the memory footprint of the region can be calculated and
suitable PREM intervals selected based upon their footprint, as has
been shown in [16].

For sequential code, no further steps are necessary. However, for
places where the load or store happens within a loop, based on an
address which is dependent on the loop iteration, further steps must
be taken to calculate the range of addresses that are accessed. Thus,
for regions that are within loops, scalar evolution analysis [9] can
be employed to detect how variables change during the execution
of the loop, to determine how large the memory footprint of the
region is, based on the values that the loop-dependent addressing
variable can take.

As loop dependent variables may span a wide range of addresses,
it might not be possible to fit the entire iteration space within the
local memory of the system. If this is the case, then the iteration
space must be divided into smaller parts which do. This is achieved

Combining PREM compilation and ILP scheduling PMAM’18, February 24–28, 2018, Vienna, Austria

through tiling [9], in which the iteration space is divided into mul-
tiple smaller parts (see groups of “mul” intervals in Figure 1). By
selecting the amount of iteration that the tile takes, it is possible to
divide a loop into small portions that fit into the local memory to
make these new regions suitable as PREM intervals.

Regions are represented as trees, where the parent region of a
child region encompasses both the child region and the surrounding
code. Once the memory footprint is decided, it is possible to select
PREM intervals by traversing the region tree from the root, selecting
regions that fit in the local memory as PREM interval, such that
every part of the code belongs to exactly one interval.

3.2.3 Transformation. Once PREM intervals have been selected
through one of the two above methods, the transformation takes
place. Thus, the region is outlined into a new function, and the
function is cloned into three copies: one for prefetch, one for com-
pute, and one for writeback, thus matching the PREM phases. These
cloned functions are individually specialized to perform their in-
tended task.

The prefetch function has all non-essential control flow and
instructions removed, i.e., all instructions that are not required
for the calculation of the addresses to load are discarded, includ-
ing branches. The load operations themselves are replaced with
prefetch instructions, and thus the prefetch function has been re-
duced to the minimum required to perform its task. The writeback
function is transformed in the same way, except that cache flush
& invalidate instructions are used in place of prefetches, such that
the specific cache lines that have been loaded are written back to
memory.

The compute function is kept as-is, but is now ensured to hit in
the cache on every access, assuming that the cache replacement
policy did not self-evict any of the prefetched addresses. We exper-
imentally evaluate these effects in Section 6. Methods to prevent
cache conflict misses are left for future work.

Once all the transformations have been applied, a dependency
graph which specifies the correct program order of the PREM in-
tervals is produced, such that this property can be respected by the
scheduler.

4 SCHEDULING
After the code is generated by the compiler, we use the scheduling
algorithm described in this section to optimally schedule parallel
execution of the code on the multi-core target platform. The goal
is to minimize completion time of the last executed interval, while
simultaneously ensuring no interference at memory bus.

4.1 PREM application model
The application transformed into PREM compliant code has fol-
lowing structure. It is a static set of PREM intervals {I1, I2, . . .}
with dependency relations in the form of a directed acyclic graph
(DAG). An example of scenario transformed into PREM compliant
code is in Figure 1. Intervals I9 and I12–I16 are compatible intervals
and the rest consists of predictable intervals. Red rectangles repre-
sent prefetch and write-back phases, white rectangles are compute
phases.

In order to improve flexibility of the scheduling algorithm, we
allow the application to busy wait between the end of a compute

CPU2

MC P W t

C

CPU1

P W

CP W

CP W

CP W

P W

I2

I1 1 2

3 4

d12

d34

TG 1 2
43

MC t

≥ d34
≥ d12

s1 s2

s3 s4

s1 s2s3 s4

1 3 4 2

s1 s2

s3 s4

Resource model and schedulingFinal schedule

PREM intervals Scheduling model

Figure 4: Translation of two PREM intervals into scheduling
model and backwards

phase and start of the follow-up write-back phase (represented by
arrows between compute and write-back phases), so that another
core can complete its memory phase started during the compute
phase of the first core.

For the sake of model simplicity, we consider compatible inter-
vals as memory phases (requiring exclusive memory access). This
approach can make the final schedule more pessimistic because
some compatible intervals can utilize little memory bandwidth and
simultaneous execution of multiple compatible intervals would
not significantly affect their execution times. Alternative approach
would be to allow scheduling of multiple compatible intervals at
the same time. In such a case, the WCET estimation can be more
difficult. We will pursue this approach in our future work.

For each phase of our model, we need to know its WCET. Com-
pared to unrestricted execution models, determining WCET of
PREM compliant code is pretty straightforward as the PREM model
limits possible inter-core interference by ensuring exclusive access
to the sharedmemory in prefetch, write-back and compatible phases
and availability of all required data in local memory in compute
phases. As demonstrated in our experimental evaluation, WCET
times obtained by simple profiling match real execution times with
sufficient accuracy.

4.2 Scheduling Model
To construct optimal application schedule, we execute our sched-
uling algorithm on the scheduling model derived from the PREM
application model described above. We first describe the model
conversion informally and follow with formal description.

We formulate the scheduling problem as a resource-constrained
project scheduling problem (RCPSP) with multi-resource activities.
We use a trivial example in Figure 4 to demonstrate conversion of
a set of PREM intervals into our scheduling model consisting of
activities. We also show how the final schedule is constructed from
RCPSP solution. The example consists of two predictable intervals
(I1 and I2) composed of prefetch (P), compute (C) and write-back
(W) phases, with known execution times. The intervals need two
resources to execute: CPU core with core-local memory and shared
memory controller (MC). CPU core is required by all phases, MC
only by prefetch and write-back phases.

Since PREM intervals are non-preemptive (another interval can-
not be scheduled between start of prefetch and end of write-back
phase) and compute phases do not require any additional resource,

PMAM’18, February 24–28, 2018, Vienna, Austria J. Matějka et al.

we omit the compute phase in our scheduling model, and create
two activities representing prefetch and write-back phases and a
temporal constraint between start times of these activities repre-
senting the total length of the prefetch and compute phases. In our
example, interval I1 is converted into two activities 1 and 2 with
start times s1 and s2 (calculated by the scheduling algorithm) and
temporal constraint d12.

Combination of non-preemptive intervals and symmetric multi-
processor system enables modeling of all CPU cores as one so-called
take-give resource (TG) [10]. The take-give resource may be seen
as a counting semaphore with the capacity equal to a number of
available CPU cores. In contrast to scheduling with classical re-
sources, TG resources do not require the total occupation time (i.e.,
time between take and give operations) to be known in advance.
The up-/down-pointing arrows in circles represent the take/give
operation, which take/give one unit of the TG resource with total
capacity of 2.

Our scheduling algorithm takes the activities as input and pro-
duces the schedule in which all resource requirements and temporal
constraints are met. As our target platform is a symmetric multipro-
cessor system, it is not necessary to assign activities to particular
cores. It is sufficient to determine start times of all prefetch and
write-back phases (or their order). Non-preemptivity of intervals
ensures that the intervals do not migrate to other cores. Obtained
start times are propagated back into the PREM model, and the run-
time scheduler dispatches the intervals to a random free core at
corresponding times. Notice that the write-back phase does not
need to start immediately after the compute phase. A delay may oc-
cur when the memory controller is occupied by an activity executed
on another core (e.g., write-back phase of I1 waits for completion
of the write-back phase of I2 in Figure 4).

We model compatible intervals similarly to predictable intervals
with zero length of compute and write-back phases. Therefore,
compatible interval creates two activities where the length of the
first and the value of the linking temporal constraint is equal to the
length of the interval and the second activity has zero length.

In the following, we describe our model in a more formal way.
From a set of intervals, we create a project consisting of a set of
n + 2 non-preemptive activitiesV = {0, 1, 2, ...,n + 1}. Let pi ∈ R+0
be the execution time (sometimes called also processing time) of
activity i and si ∈ R+0 be the start time of activity i . Activities 0 and
n+1 withp0 = pn+1 = 0 denote “dummy” activities which represent
the project beginning and the project termination, respectively. The
activities correspond to nodes of the directed acyclic graph G =
(V, E) where E is a set of edges representing temporal constraints
between nodes. Each edge ei j ∈ E from node i to node j is labeled
by weight di j ∈ R+0 . The start times of activity i and activity j are
subject to the temporal constraint given by inequality

sj − si ≥ di j ∀ei j ∈ E . (1)

We model multi-core CPU as one take-give resource with ca-
pacity Q ∈ Z+ units (can be extended to multiple resources repre-
senting, e.g. another CPU cluster). Each occupation (i.e., interval
between take and give activities) is linked with two activities, as
indicated by ail ∈ {0, 1}. The ail parameter is equal to one if and
only if occupation i starts its execution at si , the start time of the
activity which takes a take-give resource, and finishes its execution

3

1
5

2

4

6

0
7 8

9 10

11 12
13 14

15 16

17 18

33

19 20 21 22

313029282726252423 32

150

150

150

7820

34

34

34

164p1=29

34 277 34 277

992 0 992 0 992 0 992 0 992 0

16 94
33 169

28 141

59 0

00

Take-give resource requirements: a1,2 = 1, a3,4 = 1, a5,6 = 1, a7,8 = 1, a9,10 = 1, a11,12 = 1,
a13,14 = 1, a15,16 = 1, a17,18 = 1, a19,20 = 1, a21,22 = 1, a23,24 = 1, a25,26 = 1, a27,28 = 1,
a29,30 = 1, a31,32 = 1 and the others ail = 0

0

0

0

d12=62

164
164

164

164

3254

3254

3254

897

150
150

150
34

78

94
94

3360

2699

169
141

59

0

0

01740 1740277

992 992 992 992 9920000

Figure 5: DAG constructed from the scenario in Figure 1

at Cl = sl + pl , completion time of the activity l which gives the
take-give resource back (i.e., releases).

Figure 5 shows a directed acyclic graph (DAG) for the scenario
shown in Figure 1. Each activity is represented by a node labeled
by its id (the value above the node), its execution time pi (the value
below the node). Each edge is labeled by its start-to-start temporal
constraint. All activities are executed on one resource with capacity
one (i.e., a memory controller), and each occupation is executed
on one unit of the take-give resource with capacity of four units
(i.e., CPU cores at our platform). There is one occupation per each
PREM interval given by ail values in the legend of the figure. For
example, a1,2 = 1 indicates that the core is taken at the start of
activity 1 and released at the completion time of activity 2.

A feasible schedule (i.e., all time constraints are met) of this
instance is shown on the Gantt chart in Figure 6. One can check that
all the time constraints are met (e.g., activity 2 is scheduled 61 time
units after the start of activity 1, i.e., the prefetch phase of length 29
and subsequent compute phase of length 33 have enough time to
be executed), the resource constraints are met (e.g., when a activity
requiring MC is executed, then no other activity requiring MC is
scheduled at the same time) and the take-give resource constraints
are met (the occupations do not use more than four CPU cores at
any point in time).

A schedule is given by the activity start times si and variables
˜ziv which denote assignment of occupations to take-give resources.

The assignment z̃iv ∈ {0, 1} is equal to 1 if occupation i is assigned
to unit v of the take-give resource, and 0 otherwise. Consequently,
equation

∑Q
v=1 z̃iv = ail holds for each (i, l) ∈ V2. A schedule

S = (s, z, z̃) is feasible if it satisfies the temporal, resource and
take-give resource constraints.

4.3 ILP formulation
To find an optimal schedule of the above defined scheduling model,
we formulate the scheduling problem as an ILP problem. Figure 7
shows the complete ILP formulation. Let xi j be a binary decision
variable such that xi j = 1 if activity i is followed by j in the schedule
and xi j = 0 if activity j is followed by i . Constraint (3) is a direct
application of the temporal constraint (1) from Section 4.2. Con-
straints (4), (5) correspond to the resource constraints. UB denotes
big positive number (e.g. upper bound of CMAX). When xi j = 0,
constraints (4) and (5) reduce to sj + pj ≤ si , i.e., j is followed by i .

Combining PREM compilation and ILP scheduling PMAM’18, February 24–28, 2018, Vienna, Austria

I1

I2

I3

I4

I5

I6

I7

I8
I9

I10 I11I12 I13

I14 I15 I16

CPU1

CPU2

CPU3

CPU4
MC

Figure 6: Gantt diagram with optimal schedule for the scenario in Figure 1

min sn+1 (2)
subject to:

sj − si ≥ di j , ∀(i , j) ∈ V2 : i , j (3)

si − sj +U B · xi j ≥ pj , ∀(i , j) ∈ V2 : i , j (4)

si − sj +U B · xi j ≤ U B − pi , ∀(i , j) ∈ V2 : i , j (5)

p̃i = sl + pl − si , ∀(i , l) ∈ V2 : ail = 1 (6)

si − sj +U B · x̃i j +U B · ỹi j ≥ p̃j , ∀(i , j) ∈ V2 : i , j (7)

si − sj +U B · x̃i j −U B · ỹi j ≤ U B − p̃i , ∀(i , j) ∈ V2 : i , j (8)

−x̃i j + ỹi j ≤ 0, ∀(i , j) ∈ V2 : i , j (9)
z̃iv + z̃jv − 1 ≤ 1 − ỹi j ,

∀(i , j , l , h) ∈ V4, ∀v ∈ {1, ...,Q } : (10)
i , j , ail · ajh = 1

Q∑
v=1

z̃iv = ail , ∀(i , l) ∈ V2 : ail = 1 (11)

the domains of the input parameters are: di j ∈ R+0 , pi ,U B ∈ R+0 , ail ∈ {0, 1}
the domains of the output variables are: si ∈ [0,U B − pi], z̃iv ∈ {0, 1}
the domains of the internal variables are: p̃i ∈ [0,U B], xi j , x̃i j , ỹi j ∈ {0, 1}

Figure 7: ILP formulation of the problem
When xi j = 1, constraints (4) and (5) reduce to si + pi ≤ sj , i.e., i is
followed by j.

The inequalities (6), (7), (8), (9), (10) and (11) stand for the take-
give resource constraints. The variable x̃i j has the same meaning as
xi j for the resource constraints. The main difference is that p̃i , the
execution time of an occupation, is a variable whilepi , the execution
time of an activity, is a constant. Execution time p̃i , expressed in
equation (6) is given by si , the start time of activity i which takes
the take-give resource and completion time of activity l which
gives back the take-give resource. Since the take-give resource has
several units (i.e., four CPU cores), we need to add binary variable
ỹi j which in combination with x̃i j distinguishes the mutual relation
of occupations i and j . Their relation is expressed by constraints (7)
and (8). There are three feasible combinations:

(1) When x̃i j = 0 and ỹi j = 0, constraints (7) and (8) reduce to
sj + p̃j ≤ si , i.e., j is followed by i .

(2) When x̃i j = 1 and ỹi j = 0, constraints (7) and (8) reduce to
si + p̃i ≤ sj , i.e., i is followed by j.

(3) When x̃i j = 1 and ỹi j = 1, constraints (7) and (8) are elimi-
nated in effect and the occupations i and j must be scheduled
on different units.

(4) Combination x̃i j = 0 and ỹi j = 1 is not feasible due to con-
straint (9).

The number of units is limited using variable z̃iv in constraints
(10) and (11). Constraint (11) states that each occupation i is assigned
to one unit of take-give resource. From constraint (10), it follows

that when two occupations i and j can overlap, i.e., ỹi j = 1 then
the occupations cannot be processed on the same unit v since
z̃iv + z̃jv − 1 ≤ 0.

Finally, the objective function of the ILP model (2) minimizes the
start time of the dummy activity n + 1, i.e., the last activity of the
schedule.

5 IMPLEMENTATION AND LIMITATIONS
We use the LLVM compiler infrastructure [12] for source code
analysis and PREM compliant code generation. The passes are
designed such that they offer modularity and are as independent as
possible, and information is passed between the passes using ad-hoc
metadata. The presented technique poses the following restrictions
to the supported C/C++ codes:

• the code cannot contain any form of recursion,
• all loops have to be bounded by constant value so that scalar
evolution analysis can be used to analyze the loops,

• all variables have to be allocated statically or on the stack,
It has to be stressed that these restrictions are in line with the

requirements of typical coding standards adopted in the automotive
domain, such as the MISRA guidelines [3]. In light of this, these re-
strictions do not impose any severe limitations to real applications.

5.1 Limitations in the current setup
In addition to the previously listed limitations on the supported
codes due to the technique itself, the current implementation has
some further limitations.

Currently, the compiler does not detect and prefetch stack vari-
ables (e.g., spilled registers and function arguments), which implies
that accesses to stack data may still cause cache misses during
the compute phase. However, these accesses only make up a small
portion of the total memory accesses of the program, and their im-
pact on the predictability is thus low, as we show in the empirical
evaluation in the next section.

Even when data is prefetched, the target platform does not guar-
antee that the data will still be available in the cache at the start of
the compute phase, due to the random cache replacement policy
employed. In caches with random replacement policy, the cache
controller randomly selects a candidate cache line and evicts it to
make space for new data when necessary. This strategy breaks the
PREM model because we can not deterministically select which
data will stay in the cache. However, in experiments below, we
show that also random cache replacement policy can be partially
deterministic. When the new data is transferred into the L2 cache,
the controller fills invalidated cache lines first. It is therefore pos-
sible to minimize the risk of evicting active data by ensuring that

PMAM’18, February 24–28, 2018, Vienna, Austria J. Matějka et al.

cache lines that are no longer needed are explicitly evicted from
the cache. Therefore we flush and invalidate the entire cache at the
beginning of the schedule, and subsequently, we flush and invali-
date every cache line used during the execution of PREM intervals
in the respective write-back and compatible phases. Because of the
need to flush every cache line used during computation, data that
are shared between cores are duplicated to ensure that a write-back
phase on one core does not affect any other cores.

The L2 cache to which the prefetches are done is shared between
all cores, which means that, even though the data itself is duplicated,
data accesses of the different cores may still evict each others data if
they map to the same index in the cache. Solutions to this problem
have been proposed in the literature, e.g., through the use of cache
coloring [13], which ensures that only a single core will access each
portion of the shared cache. Currently, such mechanisms have not
been implemented on the target platform, and the compiler treats
the L2 as a private memory. In order to minimize possible evictions
due to accesses frommultiple cores, our compiler only allocates part
of the actual L2 cache capacity. We observe a significant increase of
cache misses during compute phases when the allocated capacity
is larger than three-quarters of the actual capacity. Therefore we
selected only half of the actual capacity.

It has to be underlined that the mentioned problems are related to
the relatively early stage of development of our tools, and not to an
inherent limitation to the methodology. Most of these restrictions
will be lifted as our technology gets more mature.

6 EXPERIMENTAL EVALUATION
In order to validate the correctness of all blocks of the proposed
toolchain and to evaluate its performance, we created several batches
of experiments based on the composition of the three ADAS ker-
nels described in Section 2 (GEMM, FFT, and binary tree search).
Such batches are instantiated with different parameters to create
a number of use-case scenarios, as shown in Table 1. For given
scenarios, we generated PREM compliant code by using the pro-
posed compiler, profiled the resulting code to get execution times
of generated PREM intervals, solved the ILP problem, and run ex-
periments on NVIDIA Jetson TX1 board (based on ARM Cortex
A57 processor). We use Linux 3.16 to run the experiments, and to
establish predictable behavior required for the PREM model, we
implemented system calls for temporary disabling / enabling of
interrupts on the selected core and for flushing and invalidating of
the entire cache. We measured execution times and the numbers
of cache misses in particular intervals by using the performance
monitor unit (event L2D_CACHE_REFILL and PMCCNTR register) in
user space. Subsequently, the ILP model solved in IBM ILOG CPLEX
Optimization Studio gives start times which define sequencing of
memory intervals in our test bed.

We evaluate the effectiveness of the approach on four scenarios,
each scenario having only 16 intervals, because of the time com-
plexity of the ILP solution. Faster heuristic scheduling algorithms
are planned for future work. Table 1 describes compositions of
the scenarios. Each application of a scenario is described by two
numbers – count and parallelism. We explain the meaning of the
numbers on Scn. 1, which is the scenario from Figure 1. The first
application is two subsequent GEMMs (C = αA × B + βC) where

Scenario Scn. 1 Scn. 2 Scn. 3 Scn. 4
GEMM count 2 2 1 2
GEMM parallelism 4, 2 4, 2 7 4, 2
FFT count 2 2 2 4
FFT parallelism 1 1 1 2
Search count 5 5 5 3
Search parallelism 1 2 1 1

Table 1: Composition of selected scenarios

I1 and I6 are transpositions of the matrix B and I2,3,4,5 and I7,8
are actual multiplications that can run in parallel (GEMM count
2, parallelism 4 and 2). The second application is FFT followed by
inverse FFT (FFT count 2, parallelism 1), and the third application is
binary search tree algorithm divided into multiple intervals (Search
count 5, parallelism 1). The four selected scenarios are following:

(1) this scenario corresponds to Figure 1 and has just been de-
scribed,

(2) the second scenario is composed of exactly the same appli-
cations, the only difference is a division of binary searches
into two parallel chains of intervals (I12, I13, I14 and I15, I16),

(3) the third scenario has only one multiplication divided into
seven parallel intervals and

(4) the fourth has the same two GEMMs as in Scn. 1, two inde-
pendent FFTs followed by inverse FFTs and only three graph
traversal intervals.

The number of parallel multiplications was automatically gen-
erated by the compiler which converted all scenarios into PREM
compliant code. The amount of data processed by FFT was selected
so that FFT completely fits into core-local memory. Binary search
intervals cannot be efficiently converted into predictable intervals,
therefore we marked them for transformation into compatible in-
tervals. The compiler also generated scenarios with uncontrolled
access to main memory by taking the same dependency graphs and
intervals without prefetch and write-back phases. We call these
code Legacy in this section.

Execution times of particular PREM phases were obtained by
taking the worst-case execution time from 100 executions on a
single core. Then we solved the ILP with the obtained execution
times.

We evaluate our PREM compliant scenarios executed according
to the solved schedules on 100 000 runs and compare that with an
implementation with uncontrolled access to main memory. Both
implementations are based on a thread pool in order to minimize
overheads for creating new threads. Jobs to be executed by the pool
threads are picked from a queue. In PREM execution, the pool has a
thread for each CPU core and the queue is ordered according to the
schedule. When a PREM phase finishes earlier than expected, the
subsequent phase is executed immediately once all dependencies
are satisfied. In Legacy executions, the queue is dynamically filled
based on the DAG and the jobs are executed by threads whose num-
ber equals to maximum parallelism achievable by the application.
The threads are scheduled by the Linux SCHED_FIFO scheduler and
all have the same priority.

6.1 Experimental results
In Table 2 the measured worst-case execution times (WCET) and
mean execution times are shown for each of the four scenarios,
both for PREM and Legacy executions. Furthermore, the schedule

Combining PREM compilation and ILP scheduling PMAM’18, February 24–28, 2018, Vienna, Austria

Scenario Scn. 1 Scn. 2 Scn. 3 Scn. 4

PREM
CMAX (ms) 7.92 7.92 8.42 8.10
WCET (ms) 7.79 7.79 8.40 8.09
Mean (ms) 7.63 7.63 8.32 7.87

Legacy WCET (ms) 9.75 11.27 11.09 10.79
Mean (ms) 7.77 9.11 8.92 8.93

ILP solving time (s) 41 73 7908 60

Table 2: Scheduled completion time andmeasured execution
times for the scenarios, as well as the time required to find
the optimal schedule.

completion time CMAX calculated by the ILP solver is shown for
the PREM schedules (Legacy schedules are based on best-effort and
have no pre-determined schedules). Lastly, the time required to find
the optimal schedule for each of the scenarios is provided.

The ILP solver was able to find a solution for up to 34 activities
(16 PREM intervals) in a reasonable time (last line in Table 2 shows
solution times on Intel Core i7-3770). In three of the four cases, the
ILP solver was able to find a solution in less than two minutes. In
the last case, the exploration took longer, due to the significantly
larger solution space caused by additional parallelism in the task
set. The solution of Scenario 1 in the form of Gantt diagram is in
Figure 6.

Themeasured execution times of all 100 000 runs of our scenarios
are presented in logarithmic scale histograms in Figures 8a–8d. The
PREM schedule completion time CMAX is shown as a dashed black
line.

There are three main findings in the results of the experi-
ments. First, in every scenario, the variance of completion times
under PREM is small (max 3.8%) in comparison to Legacy ex-
ecutions (up to 52.4%). We calculate the variance P for PREM
as P = 100 × (WCETPREM/BCETPREM − 1) where WCETPREM
and BCETPREM are the measured worst and best case execution
times of the PREM compliant execution and analogously L =
100×(WCETLegacy/BCETLegacy−1) for the Legacy execution. Higher
variances of Legacy executions are caused by non-optimal sched-
ules resulting from dynamic scheduling algorithm as well as by
competition for the shared memory. For example, we can see in
Figure 8d that the histogram of the Legacy executions has three
major peaks which correspond to three different schedules and se-
lection of particular schedule depends on actual execution times of
preceding intervals. If an interval is delayed, then a different sched-
ule is selected at runtime. We can clearly see the positive impact
of PREM in combination with static scheduling on the variance of
completion times. The variance could be even smaller if we strictly
followed start times of the generated schedule.

Second, the measured WCET of the PREM schedule is always
smaller than calculated schedule completion time. Since we allow
execution of intervals as soon as they are ready (we do not wait for
the corresponding start time when all dependencies are satisfied
and requested resources are available), the whole scenario can finish
earlier. The fact that all executions finish before estimated WCET
shows that our WCET estimations of particular tasks acquired
by single core profiling are sufficient and are not affected by the
execution of multiple intervals on a multi-core system at the same
time.

Third and most important, the measured WCET of PREM exe-
cutions is always smaller than the WCET of Legacy executions (at

PREM Legacy Scn. 1 Legacy Scn. 2
Time (us) Cache misses Time Cache Time Cache

P C W P C W (us) miss. (us) miss.
I1 28 31 162 3 454 22 0 106 3 510 82 3 519
I2 35 3 106 145 4 063 12 0 3 188 4 914 3 180 4 982
I3 34 3 108 145 4 063 13 0 3 188 4 970 3 187 5 055
I4 33 3 188 146 4 071 15 0 3 651 5 014 3 211 5 380
I5 20 847 78 2 380 19 4 866 2 504 1 127 2 547
I6 16 23 93 1 901 9 0 91 1 930 43 1 971
I7 32 3 198 166 4 079 9 0 3 595 4 088 3 245 4 585
I8 28 2 548 138 3 459 15 0 2 652 3 930 2 603 3 540
I9 55 – – 255 – – 45 250 46 263
I10 35 1 667 277 4 096 22 0 2 324 5 790 2 500 5 811
I11 34 1 670 275 4 081 21 0 2 308 6 281 2 361 6 428
I12 877 – – 3 850 – – 862 4 942 2 355 4 529
I13 860 – – 3 800 – – 788 4 456 1 555 4 058
I14 862 – – 3 805 – – 794 4 432 784 4 145
I15 867 – – 3 802 – – 756 4 009 2 343 4 434
I16 858 – – 3 800 – – 754 3 911 1 527 4 324

Table 3: Sample of measured execution times and cache
misses for scenarios 1 and 2

least by 25.1%, and up to 44.7%). We calculate the WCET difference
as LP = 100× (WCETLegacy/WCETPREM − 1). The WCET of Legacy
executions is strongly affected by dynamic scheduling algorithm
which does not understand the structure of the scenario. For ex-
ample scenarios 1 and 2 are composed of the same intervals, the
only difference is that Scenario 2 enables execution of two memory
intensive intervals at the same time. Concurrent execution of the
intervals (I12 and I15) prolongs both of them up to three times as
can also be seen in Table 3, and therefore subsequent tasks are
significantly delayed. The delay influences the WCET of the Legacy
execution which is 11.27ms instead of 9.75ms as well as the mean
time which is 9.11ms instead of 7.77ms while the optimal static
schedule for PREM model is the same in both scenarios.

In addition, we evaluated the application execution under the
presence of TCP-based network communication. As can be seen
from Figure 9, Legacy executions experience huge interference
caused mainly by preempting the application by packet processing
in the Linux kernel.

Table 3 shows the measured execution times and numbers of
cache misses in Scenarios 1 and 2. Each predictable interval has mea-
surements shown for each of the PREM phases (Prefetch, Compute
and Write-back). For compatible intervals, the measured values are
in the prefetch column only, as compatible intervals only consist of
a single memory phase.

From the table two important results can be seen for the mem-
ory isolation property of PREM. First, the compute phases of the
PREM compliant executions have an negligible amount of cache
misses, even though the compiler does not prefetch stack data, and
the cache employs a random replacement policy. This means that
even under these conditions, the proposed toolchain is able to pro-
duce both a system schedule and transform the code such that the
memory isolation property of PREM is upheld in practice.

Second, it can be seen that the memory phases of the PREM
compliant executions show an average of 15% fewer cache misses.
We believe this is due to the explicit eviction of data that is no
longer used, such that the loading of new data is less likely to evict
newly loaded data due to the random replacement policy.

7 RELATEDWORK
The predictable execution model was originally proposed and eval-
uated on a single core processor by R. Pellizzoni et al. [15]. The first
attempt to extend PREM to multi-core systems was made by S. Bag

PMAM’18, February 24–28, 2018, Vienna, Austria J. Matějka et al.

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
Completion time (ms)

101

103

105

107

109

Fr
e
q

u
e
n
cy

 (
-)

Legacy

PREM

P=3.8 % LP=25.1 %

L=33.1 %

(a) Scenario 1

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
Completion time (ms)

101

103

105

107

109

Fr
e
q

u
e
n
cy

 (
-)

Legacy

PREM

P=3.8 %

L=52.4 %

LP=44.7 %

(b) Scenario 2

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
Completion time (ms)

101

103

105

107

109

Fr
e
q

u
e
n
cy

 (
-)

Legacy

PREM

P=3.7 % L=29.0 %

LP=32.1 %

(c) Scenario 3

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
Completion time (ms)

101

103

105

107

109

Fr
e
q

u
e
n
cy

 (
-)

Legacy

PREM

L=23.1 %

LP=33.2 %

L=3.8 %

(d) Scenario 4

Figure 8: Histograms comparing completion times of scenarios with and without PREM applied

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Completion time (ms)

101

103

105

107

109

Fr
e
q

u
e
n
cy

 (
-)

Legacy

PREM

P=3.7 % LP=231.0 %
L=253.3 %

Figure 9:Histograms comparing completion times of scenario 1with andwithout PREMapplied andwith external interference
caused by running TCP communication (netcat) over 100Mbps Ethernet
et al. [4]. Although in these papers a conceptual definition of a com-
piler for automatic generation of PREM-compliant code is provided,
no real implementation is discussed. Concerning task scheduling,
the authors simulated behavior of traditional dynamic schedulers,
such as rate monotonic or earliest deadline first, applied to syntheti-
cally generated PREM scenarios. Subsequently G. Yao et al. [17, 18]
proposed memory-centric scheduling technique that employs time
division multiple access to shared memory and enables preemption
of PREM predictable intervals. A. Alhammad and R. Pellizzoni [1]
proposed static scheduling heuristic for PREM compliant fork-join
tasks. All the above papers assume caches with deterministic re-
placement policies as local memories, and evaluations are based on
simulations or on execution on x86 platforms. Overall, our paper is
the first to describe fully-integrated PREM-support for state-of-the-
art multi-core embedded CPUs, with a realistic setup running on

real hardware and considering real-life benchmarks. Several other
papers such as A. Alhammad et al. [2] or Burgio et al. [7] utilize
scratch-pad memories (SPM). Unfortunately, many multi-core em-
bedded platforms (such as NVIDIA TX1 used in our paper) have
only cache memories with non-deterministic replacement policies
and do not have explicitly managed memories.

Manual conversion of an application into PREM compliant for-
mat is time-consuming. Therefore the original PREM paper [15]
converts manually marked functions automatically at the compiler
level. A compiler independent solution based on memory profil-
ing tools and backward refactoring of manually selected parts of
the code was proposed R. Mancuso et al. [14]. However, no fully
automated tool for transformation of code into PREM compliant
code exists so far. Our compiler, although still not fully mature, is
capable of handling legacy codes written in compliance to standard

Combining PREM compilation and ILP scheduling PMAM’18, February 24–28, 2018, Vienna, Austria

automotive coding best practices. A related problem was addressed
by Koukos et al. [11] who employ an execution model similar to
PREM to minimize power consumption. The main idea is separation
of memory phase and lowering CPU frequency during the prefetch
phase. While this work shared the underlying concept of mem-
ory/compute separation, the application is completely different, as
are the practical challenges.

PREM is not the onlymechanism able of achieving predictable ex-
ecution on COTs components based systems. MemGuard proposed
by H. Yun et al. [20] is a memory bandwidth reservation system
that provides guaranteed bandwidth for temporal core isolation.
Another way to achieve predictability can be DRAM bank-aware
allocation proposed by H. Yun [19]. However, on some platforms
(such as NVIDIA TX1), controlling DRAM bank allocation is prob-
lematic due to address randomization aimed at improving average
performance. These approaches can be considered as orthogonal
to what we describe here. The integration of PREM compilation
and bandwidth reservation on top of static schedules can provide
additional benefits.

The use of integer linear programming has long tradition in the
development of parallel automotive real-time systems. For example,
Becker et al. [6] propose a contention-free execution framework
evaluated on an AUTOSAR-based engine management unit. They
use both ILP and heuristic algorithms to find static schedules. Their
approach to application scheduling is similar to ours, with the main
difference being that we have actually evaluated the results by
executing the application on real hardware.

8 CONCLUSION
In this paper, we proposed a toolchain for automated code transfor-
mation of parallel applications into PREM compliant structure and
their execution on multi-core homogeneous system according to
the static schedule obtained by solving an integer linear program-
ming model. Experimental evaluation shows that for the selected
ADAS-like scenarios, PREM in combination with static scheduling
brings the following benefits: i) Significant reduction of completion
time jitter (max 3.8%) ii) WCET of the PREM schedule is always
smaller than calculated schedule completion time and iii) the mea-
sured WCET of PREM executions is always smaller than the WCET
of legacy executions (at least by 25.1%, and up to 44.7%).

As our future work, we will evaluate the heuristic scheduling al-
gorithm. We also aim at combining this work with PREM execution
on the GPU.

ACKNOWLEDGMENTS
This work was supported by the HERCULES Project, funded by
European Unions Horizon 2020 research and innovation program
under grant agreement No. 688860. Collaboration on this paper was
additionally supported through HiPEAC, a project that received
funding from the European Union’s H2020 research and innovation
programme under grant agreement No 687698.

REFERENCES
[1] A. Alhammad and R. Pellizzoni. 2014. Time-predictable execution of multi-

threaded applications on multicore systems. In 2014 Design, Automation Test in
Europe Conference Exhibition (DATE). 1–6. https://doi.org/10.7873/DATE.2014.042

[2] A. Alhammad, S. Wasly, and R. Pellizzoni. 2015. Memory efficient global sched-
uling of real-time tasks. In 21st IEEE Real-Time and Embedded Technology and
Applications Symposium. 285–296. https://doi.org/10.1109/RTAS.2015.7108452

[3] Motor Industry Software Reliability Association and Motor Industry Software
Reliability Association Staff. 2013. MISRA C:2012: Guidelines for the Use of the
C Language in Critical Systems. Motor Industry Research Association. https:
//books.google.ch/books?id=3yZKmwEACAAJ

[4] S. Bak, G. Yao, R. Pellizzoni, and M. Caccamo. 2012. Memory-Aware Scheduling of
Multicore Task Sets for Real-Time Systems. In 2012 IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications. 300–309. https:
//doi.org/10.1109/RTCSA.2012.48

[5] Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. 2010. Cache-
Related Preemption and Migration Delays: Empirical Approximation and Impact
on Schedulability. In Proc. 6th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications (OSPERT 2010). Brussels, Belgium.

[6] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis, and T. Nolte. 2016.
Contention-Free Execution of Automotive Applications on a Clustered Many-
Core Platform. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS).
14–24. https://doi.org/10.1109/ECRTS.2016.14

[7] P. Burgio, A. Marongiu, P. Valente, and M. Bertogna. 2015. A memory-centric ap-
proach to enable timing-predictability within embedded many-core accelerators.
In 2015 CSI Symposium on Real-Time and Embedded Systems and Technologies
(RTEST). 1–8. https://doi.org/10.1109/RTEST.2015.7369851

[8] Bjorn Forsberg, Andrea Marongiu, and Luca Benini. 2017. GPUguard: Towards
Supporting a Predictable Execution Model for Heterogeneous SoC. In DATE’17.

[9] Tobias Grosser, Armin Groesslinger, and Christian Lengauer.
2012. Polly – Performing Polyhedral Optimizations on a Low-
Level Intermediate Representation. Parallel Processing Let-
ters 22, 04 (2012). https://doi.org/10.1142/S0129626412500107
arXiv:http://www.worldscientific.com/doi/pdf/10.1142/S0129626412500107

[10] Zdeněk Hanzálek and Přemysl Šůcha. 2017. Time symmetry of resource
constrained project scheduling with general temporal constraints and take-
give resources. Annals of Operations Research 248, 1 (01 Jan 2017), 209–237.
https://doi.org/10.1007/s10479-016-2184-6

[11] Konstantinos Koukos, Per Ekemark, Georgios Zacharopoulos, Vasileios Spiliopou-
los, Stefanos Kaxiras, and Alexandra Jimborean. 2016. Multiversioned Decoupled
Access-execute: The Key to Energy-efficient Compilation of General-purpose
Programs. In Proceedings of the 25th International Conference on Compiler Con-
struction (CC 2016). ACM, New York, NY, USA, 121–131. https://doi.org/10.1145/
2892208.2892209

[12] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong
program analysis transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004. 75–86. https://doi.org/10.1109/CGO.2004.
1281665

[13] J. Liedtke, H. Hartig, and M. Hohmuth. 1997. OS-controlled cache predictabil-
ity for real-time systems. In Proceedings Third IEEE Real-Time Technology and
Applications Symposium. 213–224. https://doi.org/10.1109/RTTAS.1997.601360

[14] R. Mancuso, R. Dudko, and M. Caccamo. 2014. Light-PREM: Automated software
refactoring for predictable execution on COTS embedded systems. In 2014 IEEE
20th International Conference on Embedded and Real-Time Computing Systems
and Applications. 1–10. https://doi.org/10.1109/RTCSA.2014.6910515

[15] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. 2011.
A Predictable Execution Model for COTS-Based Embedded Systems. In 2011 17th
IEEE Real-Time and Embedded Technology and Applications Symposium. 269–279.
https://doi.org/10.1109/RTAS.2011.33

[16] Muhammad Refaat Soliman and Rodolfo Pellizzoni. 2017. WCET-Driven Dy-
namic Data Scratchpad Management With Compiler-Directed Prefetching. In
29th Euromicro Conference on Real-Time Systems (ECRTS 2017) (Leibniz Interna-
tional Proceedings in Informatics (LIPIcs)), Marko Bertogna (Ed.), Vol. 76. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 24:1–24:23.
https://doi.org/10.4230/LIPIcs.ECRTS.2017.24

[17] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco Caccamo.
2012. Memory-centric scheduling for multicore hard real-time systems. Real-Time
Systems 48, 6 (01 Nov 2012), 681–715. https://doi.org/10.1007/s11241-012-9158-9

[18] G. Yao, R. Pellizzoni, S. Bak, H. Yun, and M. Caccamo. 2016. Global Real-Time
Memory-Centric Scheduling for Multicore Systems. IEEE Trans. Comput. 65, 9
(Sept 2016), 2739–2751. https://doi.org/10.1109/TC.2015.2500572

[19] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. 2014. PALLOC: DRAM bank-
aware memory allocator for performance isolation on multicore platforms. In
2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium
(RTAS). 155–166. https://doi.org/10.1109/RTAS.2014.6925999

[20] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. 2013. MemGuard: Memory
bandwidth reservation system for efficient performance isolation in multi-core
platforms. In 2013 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS). 55–64. https://doi.org/10.1109/RTAS.2013.6531079

https://doi.org/10.7873/DATE.2014.042
https://doi.org/10.1109/RTAS.2015.7108452
https://books.google.ch/books?id=3yZKmwEACAAJ
https://books.google.ch/books?id=3yZKmwEACAAJ
https://doi.org/10.1109/RTCSA.2012.48
https://doi.org/10.1109/RTCSA.2012.48
https://doi.org/10.1109/ECRTS.2016.14
https://doi.org/10.1109/RTEST.2015.7369851
https://doi.org/10.1142/S0129626412500107
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0129626412500107
https://doi.org/10.1007/s10479-016-2184-6
https://doi.org/10.1145/2892208.2892209
https://doi.org/10.1145/2892208.2892209
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/RTTAS.1997.601360
https://doi.org/10.1109/RTCSA.2014.6910515
https://doi.org/10.1109/RTAS.2011.33
https://doi.org/10.4230/LIPIcs.ECRTS.2017.24
https://doi.org/10.1007/s11241-012-9158-9
https://doi.org/10.1109/TC.2015.2500572
https://doi.org/10.1109/RTAS.2014.6925999
https://doi.org/10.1109/RTAS.2013.6531079

	Abstract
	1 Introduction
	2 System model
	2.1 Target application template
	2.2 Target architecture

	3 PREM compiler
	3.1 PREM compiler design
	3.2 Compiler implementation

	4 Scheduling
	4.1 PREM application model
	4.2 Scheduling Model
	4.3 ILP formulation

	5 Implementation and Limitations
	5.1 Limitations in the current setup

	6 Experimental evaluation
	6.1 Experimental results

	7 Related work
	8 Conclusion
	Acknowledgments
	References

