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Motivation Example: Lacquer Production Scheduling

Made-to-order lacquer production, where jobs
are determined by type of lacquer, quantity
and delivery date.

Goal:

minimize tardiness (delivery date overrun)

minimize storage costs

Constraints:

batch production of various kinds of lacquer

varying production process/time for different kinds

time constraints between start times and/or completion times of
operations

working hours (processing times of some operations exceed working
hours)

preparation (set-up time)
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Motivation Example: Lacquer Production Scheduling -
Formalization

Can be formalized as PSm, 1 |temp, oij , tg |
∑

wj · Tj

There are temporal constraints on operations. We must consider:
(1) minimal delay between the end of one operation and the start of the
next one (e.g. minimal delay needed to dissolve an ingredient)
(2) maximal delay between the end of one operation and the start of the
next one (e.g. the lacquer can solidify).

Moreover, the processing time on some resource (e.g. reservoir) is give by
the start and completion of different operations.
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Motivation Example: Lacquer Production Scheduling

Example

production of 29 jobs

3 types of lacquer

9 weeks time horizon
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Scheduling - Basic Terminology

set of n tasks T = {T1,T2, . . . ,Tn}
set of m types of resources (processors, machines, employees,...) with
capacities Rk , P =

{
P1
1 , . . . ,P

1
R1
,P2

1 , . . . ,P
2
R2
, . . . . . . ,Pm

1 , . . . ,P
m
Rm

}

Scheduling is an assignment of a task to resources in time

Each task must be completed
this differs from planning which decides which task will be scheduled
and processed

Set of tasks is known when executing the scheduling algorithm (this is
called off-line scheduling)

this differs from on-line scheduling - OS scheduler, for example,
schedules new tasks using some policy (e.g. priority levels)

A result is a schedule which determines which task is run on which
resource and when. Often depicted as a Gantt chart.
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General and Specific Constraints

General constraints:

Each task is to be processed by at most one resource at a time
(task is sequential)

Each resource is capable of processing at most one task at a time

Specific constraints:

Task Ti has to be processed during time interval
〈
ri , d̃i

〉

When the precedence constraint is defined between Ti and Tj , i.e.
Ti ≺ Tj , then the processing of task Tj can’t start before task Ti was
completed

If scheduling is non-preemptive, a task cannot be stopped and
completed later

If scheduling is preemptive, the number of preemptions must be finite
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Task Parameters and Variables

Parameters

release time rj

processing time pj

due date dj , time in which task
Tj should be completed

deadline d̃j , time in which task
Tj has to be completed

Variables

start time sj

completion time Cj

flow (lead) time Fj = Cj − rj

lateness Lj = Cj − dj

tardiness Tj = max{Cj − dj , 0}

C
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Graham’s Notation α |β| γ

Classify scheduling problems by
resources | tasks | criterion

Example: P2 |pmtn|Cmax represents scheduling on two parallel identical
resources, and preemption is allowed. The optimization criterion is the
completion time of the last task.

α - resources

Parallel resources - a task can run on any resource (only one type of
resource exists with capacity R, i.e. P =

{
P1, . . . ,PR

}
).

Dedicated resources - a task can run only on one resource (m
resource types with unit capacity, i.e. P =

{
P1,P2 . . . ,Pm

}
).

Project Scheduling - m resource types, each with capacity Rk , i.e.
P =

{
P1
1 , . . . ,P

1
R1
,P2

1 , . . . ,P
2
R2
, . . . . . . ,Pm

1 , . . . ,P
m
Rm

}
.
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Resources Characteristics α1, α2

α1 = 1 single resource
P parallel identical resources
Q parallel uniform resources, computation time is inversely

related to resource speed
R parallel unrelated resources, computation times are

given as a matrix (resources x tasks)
O dedicated resources - open-shop - tasks are independent
F dedicated resources - flow-shop - tasks are grouped in

the sequences (jobs) in the same order, each job visits
each machine once

J dedicated resources - job-shop - order of tasks in jobs is
arbitrary, resource can be used several times in a job

PS Project Scheduling - most general (several resource
types with capacities, general precedence constraints )

α2 = ∅ arbitrary number of resources
2 2 resources (or other specified number)
m,R m resource types with capacities R (Project Scheduling)
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Task Characteristics β1, β2, β3, β4, β5, β6, β7, β8

β1 = pmtn preemption is allowed
∅ preemption is not allowed

β2 = prec precedence constraints
in-tree,out-tree tree constraints
chain chain constraints
tmpn temporal constraints (for Project Sched.)
∅ independent tasks

β3 = rj release time

β4 = pj = k uniform processing time
pL ≤ pj ≤ pU restricted processing time
∅ arbitrary processing time

β5 = d̃j , dj deadline, due-date

β6 = nj ≤ k maximal number of tasks in a job

β7 = no-wait buffers of zero capacity

β8 = set-up time for resource reconfiguration
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Optimality Criterion γ

γ = Cmax minimize schedule length Cmax = max {Cj}
(makespan, i.e. completion time of the last task)∑

Cj minimize the sum of completion times∑
wjCj minimize weighted completion time

Lmax minimize max. lateness Lmax = max {Cj − dj}
∅ decision problem
· · ·

An Example: P ||Cmax means:
Scheduling on an arbitrary number of parallel identical resources, no
preemption, independent tasks (no precedence), tasks arrive to the system
at time 0, processing times are arbitrary, objective is to minimize the
schedule length.
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Scheduling on One Resource
Minimizing Makespan (i.e. schedule length Cmax)

1 |prec |Cmax - easy
the tasks are processed in an arbitrary order that satisfies the
precedence relation (i.e. topological order), Cmax =

∑n
j=1 pj

1 ||Cmax - easy

1 |rj |Cmax - easy
the tasks are processed in a non-descending order of rj (Tj with the
lowest rj first)

1
∣∣∣d̃j
∣∣∣Cmax - easy

the tasks are processed in a non-descending order of d̃j
can be solved by EDF - Earliest Deadline First
the feasible schedule doesn’t have to exist

1
∣∣∣rj , d̃j

∣∣∣Cmax - NP-hard

NP-hardness proved by the pol. reduction from 3-Partition problem
for pj = 1 there exists a polynomial algorithm
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1
∣∣∣rj , d̃j

∣∣∣Cmax Problem is strongly NP-hard

We prove it by reduction from the 3-Partition problem, which is
strongly NP-complete.

3-Partition decision problem instance, I3P = (A,B), is given as:

a multiset A of 3m integers a1, a2, . . . , a3m (sizes of items), and

a positive integer B (size of bins) such that
∀i ∈ {1, 2, . . . , 3m} : B

4 < ai <
B
2 and

∑3m
i=1 ai = mB.

The problem is to determine whether A can be partitioned into m disjoint
subsets A1,A2, . . . ,Am such that, ∀j ∈ {1, 2, . . . ,m} :

∑
ai∈Aj

ai = B.

Note: if we show that there is a subset Aj which contains integers
summing to B, then it must contain three integers. This follows from the
assumption B

4 < ai <
B
2 (try to sum-up 4 integers or 2 integers).

Example 1: A = {4, 5, 5, 5, 5, 6}, thus m = 2, B = 15, 3.75 < ai < 7.5.
There is feasible 3-partition A1 = {4, 5, 6}, A2 = {5, 5, 5}.
Example 2: A = {4, 4, 4, 6, 6, 6}, thus m = 2, and B = 15. No solution.
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Reduction from 3-Partition to 1
∣∣∣rj , d̃j

∣∣∣Cmax

From the given instance of the 3-Partition problem I3P = (A,B), we build

1
∣∣∣rj , d̃j

∣∣∣Cmax scheduling problem instance ISCH comprised of 4m tasks

Tj = (pj , rj , d̃j) as follows:

∀j ∈ {1, . . . ,m} : Tj = (1, (B+1) · (j−1), (B+1) · (j−1)+1). These
are “additional/artificial” tasks used to separate the subsets.

∀j ∈ {m + 1, . . . , 4m} : Tj = (ai , 0,∞), i = j −m.
Each of these tasks Tj corresponds to the element ai of I3P .

It is easy to prove that the I3P = (A,B) has a solution if and only if the
optimal solution of the related ISCH has value of Cmax = m · (B+1).
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Position based ILP formulation for 1
∣∣∣rj , d̃j

∣∣∣Cmax

xiq = 1 iff task i is at the q-th position in the sequence of tasks
tq start time of task on the q-th position

minCmax

subject to:∑n
q=1 xiq = 1 i = 1..n∑n
i=1 xiq = 1 q = 1..n

tq ≥∑n
i=1 ri · xiq q = 1..n

tq ≥ tq−1 +
∑n

i=1 pi · xi ,q−1 q = 2..n

tq ≤∑n
i=1 d̃i · xi ,q −

∑n
i=1 pi · xi ,q q = 1..n

Cmax ≥ tn +
∑n

i=1 pi · xin

variables: xi∈1..n,q∈1..n ∈ {0, 1}, Cmax ∈ 〈0,UB〉, tq∈1..n ∈ 〈0,UB〉

... more efficient than relative order ILP
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Bratley’s Algorithm for 1
∣∣∣rj , d̃j

∣∣∣Cmax

A branch and bound (B&B) algorithm.
Branching - without bounding it is an enumerative method that creates
a solution tree (some of the nodes are infeasible). Every node is labeled by:
(the order of tasks)/(completion time of the last task).
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Reduction of the Tree - Bounding

(i) eliminate the node exceeding the deadline (and all its “brothers”)

If there is a node which exceeds
any deadline, all its descendants
should be eliminated

Critical task (here T3) will have
to be scheduled anyway -
therefore, all of its “brothers”
should be eliminated as well

T

d
1

1

T
2

2
d

T
1 T

1 4
T

d
4

T T
1 3

d
3

due to this node we can

eliminate its others„br ”
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Tree Size Reduction - Decomposition

(ii) problem decomposition due to idle waiting - e.g. when the employee
waits for the material, his work was optimal

Consider node v on level k . If Ci of the
last scheduled task is less than or equal
to ri of all unscheduled tasks, there is
no need for backtrack above v

v becomes a new root and there are
n − k levels (n − k unscheduled tasks)
to be scheduled
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Optimality Test - Termination of Bratley’s Algorithm

Definition: BRTP - Block with Release Time Property

BRTP is a set of k tasks that satisfy:

first task T[1] starts at it’s release time

all k tasks till the end of the schedule run without “idle waiting”

r[1] ≤ r[i ] for all i = 2 . . . k

Note: “till the end of the schedule” implies there is at most one BRTP

Lemma: sufficient condition of optimality

If BRTP exists, the schedule is optimal (the search is finished).

t

T[k]k = 1

r[k] Cmax

T[2]

r[i] ≥ r[1] ∀ i = 2 · · · k t

T[3] · · · T[k]T[1]

r[1] Cmax

Proof:

this schedule is optimal since the last task T[k]

can not be completed earlier

order of prec. tasks is not important - see (ii)

no task from BRTP can be done before r[1]

there is no task after Cmax
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BRTP is not Necessary Condition of Optimality

Example:

T[2]T[1]
r[1]r[2] Cmax = d̃[2]d̃[1]

In this particular case, the schedule is optimal, but it does not have BRTP.

Tightening the bounds:
In general, Cmax found without BRTP could be used for bounding further
solutions while setting all deadlines to be at most Cmax − ε.
This ensures that if other feasible schedules exist, only those that are
better by ε than the solution at hand, are generated.
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Bratley’s Algorithm - Example

r =(4,1,1,0), p =(2,1,2,2), d̃ =(8,5,6,4)
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Scheduling on One Resource
Minimizing

∑
wjCj

1 ||∑Cj - easy
SPT rule (Shortest Processing Time first) - schedule the tasks in a
non-decreasing order of pj

1 ||∑wjCj - easy
Weighted SPT - schedule the tasks in a non-decreasing order of

pj
wj

1 |rj |
∑

Cj - NP-hard

1 |pmtn, rj |
∑

Cj - can be solved by modified SPT

1 |pmtn, rj |
∑

wjCj - NP-hard

1
∣∣∣d̃j
∣∣∣
∑

Cj - can be solved by modified SPT

1
∣∣∣d̃j
∣∣∣
∑

wjCj - NP-hard

1 |prec|∑Cj - NP-hard
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Branch and Bound with LP for 1 |prec|∑wjCj

First, we formulate the problem as an ILP:

we use variable xij ∈ {0, 1} such that xij = 1 iff Ti precedes Tj or
i = j

we encode precedence relations into eij ∈ {0, 1} such that eij = 1 iff
there is a directed edge from Ti to Tj in the precedence graph G or
i = j

criterion - completion time of task Tj consists of pj and the
processing time of its predecessors:

Cj =
∑n

i=1 pi · xij
wj · Cj =

∑n
i=1 pi · xij · wj

J =
∑n

j=1 wj · Cj =
∑n

j=1

∑n
i=1 pi · xij · wj

from all feasible schedules x we look for the one that minimizes J(x),
i.e. minx J(x)
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ILP formulation for 1 |prec|∑wjCj

min
∑n

j=1

∑n
i=1 pi · xij · wj

subject to:

xi ,j ≥ ei ,j i , j ∈ 1..n if Ti precedes Tj in G ,
then it precedes Tj

in the schedule
xi ,j + xj ,i = 1 i , j ∈ 1..n, i 6= j eitherTi precedesTj ,

or vice versa
1 ≤ xi ,j + xj ,k + xk,i ≤ 2 i , j , k ∈ 1..n, no cycle exists in the

i 6= j 6= k digraph of x
xi ,i = 1 i ∈ 1..n

parameters: wi∈1..n, pi∈1..n ∈ R+
0 ei∈1..n,j∈1..n ∈ {0, 1}

variables: xi∈1..n,j∈1..n ∈ {0, 1}
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Branch and Bound with LP Bounding

We relax on the integrality of variable x :

0 ≤ xij ≤ 1 and xi∈1..n,j∈1..n ∈ R
This does not give us the right solution, however we can use the
JLP(remaining tasks) value of this LP formulation as a lower bound
on the “amount of remaining work”

The Branch and Bound algorithm creates a similar tree as Bradley’s
algorithm.

root

(T )/w C
1 11

(T ,T )/w + wC C
1 2 21 1 2

.   .   .

. 
  

. 
  

.

(T ,T )/J =w + wC C
1 n 11 n n

(T ,...,T )/J = wS C
1 n 1n jj

2

J(remaining tasks)

Let J1 be the value of the best solution known
up to now

We discard the partial solution of value J2 not
only when J2 ≥ J1, but also when
J2 + JLP(remaining tasks) ≥ J1.
Since the solution space of ILP is a subspace of
LP we know:
J(remaining tasks) ≥ JLP(remaining tasks).
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Scheduling on One Resource
Minimizing Lmax

1 || Lmax - solved by EDD (Earliest Due Date first) rule in polynomial
time

1 |rj | Lmax - NP-hard

1 |rj , pj = 1| Lmax - polynomial - iterating EDD

1 |pmtn, rj | Lmax - polynomial - iterating EDD by Horn

1
∣∣∣pmtn, rj , dj = d̃j

∣∣∣ Lmax - polynomial - the same Horn’s algorithm

often called EDF

1
∣∣∣pmtn, prec, rj , dj = d̃j

∣∣∣ Lmax - polynomial - transformation to

independent task set and then EDF

Important notes:

minimization of Lmax implies existence of due-date dj (even if it is not
in β notation)

Lmax may have negative value. In such case, minimization of lateness
Lmax may be interpreted as maximization of earliness.
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Problem 1 || Lmax - EDD and its Optimality

Can be solved by EDD (Earliest Due Date first), i.e. tasks are
scheduled in order of nondecreasing due dates.

Time complexity is O(n · log n).

Optimality can be proven by simple swaps:

Let SA be an optimal schedule produced by an algorithm A.

Let SEDD be a schedule produced by EDD.

If SA 6= SEDD , then there exist two tasks Ta and Tb with da ≤ db,
such that Tb immediately precedes Ta in SA.

Swap of Ta and Tb cannot increase the maximum lateness of the task
set Lmax .

By finite number of swaps, SA is changed to SEDD ,
SA swap→ S ′

swap→ · · · swap→ SEDD
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Problem 1 || Lmax - Optimality of EDD - Illustration

TaTb

Ta Tb

CA
a

S ′

SA

C ′a

CA
b

C ′b

da db

LA
max({Ta, Tb}) = CA

a − da

L′max({Ta, Tb}) = max{L′a, L′b}

da db

Tc

Tc

dc0

dc0
L′a

L′b

LA
a

LA
bLA

c = 0

L′c = 0

Two cases must be considered when pa > 0 and pb > 0:
1) If L′a ≥ L′b then L′max({Ta,Tb}) = C ′a − da < CA

a − da
2) If L′a ≤ L′b then L′max({Ta,Tb}) = C ′b − db = CA

a − db < CA
a − da

Since, in both cases, L′max({Ta,Tb}) < LAmax({Ta,Tb}) we can conclude
that the swap of Ta and Tb decreases Lmax({Ta,Tb}) and thus it cannot
increase Lmax(T ), the maximum lateness of all tasks.
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Problem 1 |pmtn, rj | Lmax - Horn’s Algorithm

Input: T , set of n preemptive tasks. Processing times (p1, p2, ..., pn),
release dates (r1, r2, ..., rn) and due-dates (d1, d2, ..., dn).

Output: Start times of preempted parts of tasks.

while T 6= ∅ do
t1 := minTj∈T {rj}; // t1 is now

if all tasks are ready at time t1 then t2 =∞;
else t2 = minTj∈T {rj |rj > t1}; // situation changes in t2
T ′ = {Tj |Tj ∈ T , rj = t1}; // set of ready tasks

choose Tk ∈ T ′ with minimal dj ; // EDD in T ′
δ := min {pk , t2 − t1};
schedule Tk or its part in interval 〈t1, t1 + δ);
if δ = pk then T := T \ {Tk};
else pk := pk − δ; // preemption

for Tj ∈ T ′ do rj := t1 + δ;

end
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Problem 1 |pmtn, rj | Lmax

Example:
T = {T1,T2,T3,T4}
p = ( 3, 2, 3, 4)
r = ( 0, 4, 2, 0)
d = (13, 8, 11, 16)
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Optimality of Horn’s Algorithm for 1 |pmtn, rj | Lmax and its

application to 1
∣∣∣pmtn, rj , dj = d̃j

∣∣∣ Lmax

Theorem - Optimality of Horn’s Algorithm

Given a set of n independent preemptive tasks with arbitrary release times,
any algorithm that at any instant executes the task with earliest due date
among all the ready tasks is optimal with respect to Lmax minimization.

When we assume 1
∣∣∣pmtn, rj , dj = d̃j

∣∣∣ Lmax then the algorithm is often

called EDF (Earliest Deadline First). Such algorithm:

minimizes Lmax

decides schedulability – if there exists a feasible schedule
(Lmax ≤ 0) for the given instance, then the EDF is able to find it
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Optimality of Horn’s Algorithm

Assuming the input parameters to be nonnegative integers, the proof of
the theorem is based on the following reasoning:

Let SA be an optimal schedule produced by algorithm A

Let SEDF be a schedule produced by EDF

Let schedule SA starts at time t = 0 and D is the latest due date.

Without loss of generality SA can be divided into unit-time slices.

Let it is the id of the task executing slice t.

Let jt is the id of the ready task with earliest due date at time t.

If SA 6= SEDF then there is slice t such that it 6= jt .

Swap of slices of Tit and Tjt cannot increase the maximum lateness of
the task set Lmax .

SEDF is obtained from SA by at most D swaps.
SA swap→ S ′

swap→ · · · swap→ SEDF
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Optimality of Horn’s Algorithm - Illustration

TjtTit

t

S ′

SA

djt dit

T 2
jt

rjt rit

Tit

djt ditrjt rit t

T 1
jt

Using the same argument adopted in the proof of EDD optimality for
1 || Lmax , it is easy to show that each swap cannot increase the maximum
lateness of the task set Lmax .
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Problem 1
∣∣∣pmtn, prec, rj , dj = d̃j

∣∣∣ Lmax

Chetto, Silly, Bouchentouf algorithm transforms set T of dependent tasks
into T ′ of independent tasks by modification of timing parameters:

modification of the release dates
1 For any task without predecessors set r

′

j = rj .
2 Select task Tj such that its release date has not been modified but the

release dates of all immediate predecessors Th have been modified. If
no such task exists, exit.

3 Set r
′

j = max{rj ,max{r ′

h + ph|Th is immediate predecessor of Tj} and
jump to step 2.

modification of deadlines
1 For any task without successors set d̃

′

j = d̃j .
2 Select a task Tj such that its deadline has not been modified but the

deadlines of all immediate successors Tk have been modified. If no
such task exists, exit.

3 Set d̃
′

j = min{d̃j ,min{d̃ ′

k − pk |Tk is immediate successor of Tj} and
jump to step 2.

EDF is executed on independent tasks in T ′
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Problem 1
∣∣∣pmtn, prec, rj , dj = d̃j

∣∣∣ Lmax

No problem constraints are violated by Chetto, Silly, Bouchentouf
algorithm:

r
′
j ≥ rj and d̃

′
j ≤ d̃j , therefore, the schedulability of T ′ with respect

to the timing constraints (release dates and deadlines) implies also
schedulability of T with respect to the timing constraints

due to the structure of the Horn’s alg. (consider a set of released
tasks and choose the one with smallest deadline) and modification of
the timing constraints the scheduled tasks of T ′ are ordered in the
same way as given by the precedence constraints, therefore,
precedence constraints of T are not violated
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Scheduling on Parallel Identical Resources
Minimizing Cmax

P2 ||Cmax - NP-hard

schedule n non-preemptive tasks on two parallel identical resources
minimizing makespan, i.e. the completion time of the last task
the problem is NP-hard because the 2 partition problem (see ILP lecture)
can be reduced to P2 ||Cmax while comparing the optimal Cmax with the
threshold of 0.5 ∗∑i∈1..n pi .

P |pmtn|Cmax - easy

can be solved by the McNaughton algorithm in O(n)

P
∣∣∣pmtn, rj , d̃j

∣∣∣− - easy

decision version of maximum flow problem (see the lecture on Flows)

P |prec|Cmax - NP-hard

LS - approximation algorithm with factor rLS = 2− 1
R , where R is the

number of parallel identical resources

P ||Cmax - NP-hard

LPT - approximation algorithm with factor rLPT = 4
3 − 1

3R
dynamic programming - Rothkopf’s pseudopolynomial algorithm

P |pmtn, prec|Cmax - NP-hard

Muntz&Coffman’s level algorithm with factor rMC = 2− 2
R

Z. Hanzalek (CTU course KO) Scheduling May 18, 2022 37 / 79



McNaughton’s Algorithm for P |pmtn|Cmax

Input: R, number of parallel identical resources, n, number of
preemptive tasks and computation times (p1, p2, ..., pn).

Output: n-element vectors s1, s2, z1, z2 where s1i (resp. s2i ) is start
time of the first (resp. second) part of task Ti and z1i (resp.
z2i ) is the resource ID on which the first (resp. second) part of
task Ti will be executed.

s1i = s2i = z1i = z2i := 0 for all i ∈ 1 . . . n;
t := 0; v := 1; i := 1;

C ∗max = max
{

maxi=1...n {pi} , 1
R

∑n
1 pi
}

;
while i ≤ n do

if t + pi ≤ C ∗max then
s1i := t; z1i := v ; t := t + pi ; i := i + 1;

else
s2i := t; z2i := v ; pi := pi − (C ∗max − t); t := 0; v := v + 1;

end

end
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McNaughtnon’s Algorithm for P |pmtn|Cmax

The term C ∗max = max
{

maxi=1...n {pi} , 1
R

∑n
1 pi
}

should be interpreted as
follows:

component maxi=1...n {pi} represents the sequential nature of each
task - it’s parts can be assigned to different resources, but these parts
can not be run simultaneously. Note that each task can be divided
into two parts at most.
component 1

R

∑n
1 pi represents a situation when all resources work

without idle waiting

Example 1:
p = (2, 3, 2, 3, 2),R = 3
compute C ∗max = max

{
3, 123

}
= 4

Example 2:
p = (10, 8, 4, 14, 1),R = 3
compute C ∗max = max

{
14, 373

}
= 14

t

T1
2

2 4 = C ∗
max30 1

P1

P3

P2 T1
3 T2

4

T1
4 T1

5

T1
1 T2

2

t

T1
2

2 14 = C ∗
max100 4

P1

P3

P2 T1
3 T2

4

T1
4 T1

5

T1
1 T2

2

1266 8
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List Scheduling - Approximation Alg. for P |prec|Cmax

Input: R, number of parallel identical resources, n, number of
non-preemptive tasks and their proc. times (p1, p2, ..., pn). DAG.

Output: start times (s1, s2, ..., sn) and resource IDs (z1, z2, ..., zn).

tv := 0 for all v ∈ 1 . . .R; // free time of resource

si = zi := 0 for all i ∈ 1 . . . n;
Sort tasks in list L;
for i := 1 to n do // for all tasks

k = arg minv=1...R {tv}; // choose res. with the lowest tv
Create S as a subset of tasks in L with smallest availability time ai ;
Choose Ti ∈ S which is the first one in the list L;
Remove Ti from the list L;
si = max{tk , ai}; zi = k; // assign Ti to Pk

tk = si + pi ; // update free time of Pk

end

ai , availability time of Ti , is equal to tk if it has no predecessors, it is
equal to ∞ if at least one of its predecessors is in L, and it is equal to
maxj∈Pred(Ti ){sj + pj} if all of its predecessors have been removed from L.
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List Scheduling - Approximation algorithm for P |prec|Cmax

List Scheduling (LS) is a general heuristic useful in many problems.

We have a list (n-tuple) of tasks and when some resource is free, we
assign available task from the list to this resource.

The accuracy of LS depends on the criterion and sorting procedure.

Approximation factor of LS algorithm [Graham 1966]

For P |prec|Cmax (and also for P ||Cmax) and arbitrary (unsorted) list L,
List Scheduling is an approximation algorithm with factor rLS = 2− 1

R

An example illustrating the case when the factor is attained:

n = (R − 1) · R + 1,
p = (1, 1, . . . , 1,R),
≺ empty.
Illustration for R = 4
rLS = 2− 1

4 = 7
4

t2 4 = C ∗
max30 1

P1

P3

P2
T1

T13

P4

T5

T7T10

T11T8

T4

T2

T3 T6 T9T12

L = (Tn,T1, . . . ,Tn−1)

t2 430 1

P1

P3

P2

T1 T13

P4

T5

T7

T10

T11

T8T4

T2

T3

T6

T9

T12

6 75

L′ = (T1,T2, . . . ,Tn)
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Anomalies of List Scheduling Algorithm

The LS algorithm depends not only on the order of tasks in L, but it
exhibits anomalies (Cmax surprisingly increases when relaxing some
constraints/parameters) caused by:

(1) the decrease of processing time pi
(2) the removal of some precedence constraints
(3) the increase of the number of resources R

Example illustrating different anomalies for
R = 2, n = 8, p = (3, 4, 2, 4, 4, 2, 13, 2)

Using list L = (T1,T2,T3,T4,T5,T6,T7,T8),
LS finds solution with C ∗max = 17.
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List Scheduling Anomalies - Prolongation of Cmax

Exchange position of T7 and T8

L = (T1,T2,T3,T4,T5,T6,T8,T7).

(1) Decrease pi of all tasks by one.

(2) Remove prec. constr. T3 ≺ T4.

(3) Add resource (R = 3).
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LPT (Longest Processing Time First)
- Approximation Algorithm for P ||Cmax

The approximation factor of the LS algorithm can be decreased using the
Longest Processing Time first (LPT) strategy

During initialization of LS, we sort list L in a non-increasing order of
pi

Approximation factor of LPT algorithm [Graham 1966]

LPT algorithm for P||Cmax is an approximation algorithm with factor
rLPT = 4

3 − 1
3R

Time complexity of LPT algorithm is O(n · log(n)) due to the sorting.
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LPT (Longest Processing Time First)
- Approximation Algorithm for P ||Cmax

An example illustrating the case when the factor is attained:
p = (2R − 1, 2R − 1, 2R − 2, 2R − 2, . . . ,R + 1,R + 1,R,R,R)
n = 2 · R + 1,≺ empty,

Illustration for R = 3

optimum:

t

2 9 = C ∗
max60 4

P1

P3

P2

T1

T5 T7

T4T2

T3

T6

8

LPT:

t

2 60 4

P1

P3

P2

T1 T5 T7

T4

T2

T3

T6

8 1110

rLPT = 4
3 − 1

9 = 11
9

Factor of LPT algorithm

If the number of tasks is big, the factor can get better depending on
k - the number of tasks assigned to the resource which finishes last:
rLPT = 1 + 1

k − 1
kR
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Dynamic Programming for P ||Cmax [Rothkopf]

For fixed R, the number of processors, there is a pseudopolynomial
algorithm - input instance is restricted to bounded nonnegative integers:
number of tasks and their processing times.

we add a binary variable xi (t1, t2, . . . , tR) where

i = 1, 2 . . . n is the task index
v = 1, 2, . . .R is the index of the resource
tv = 0, 1, 2, . . .UB is the time variable associated to the resource v
UB is upper bound on Cmax

xi (t1, t2, . . . , tR) = 1 iff tasks T1,T2, . . . ,Ti can be assigned to the
resource such that Pv is occupied during the time interval
〈0, tv 〉 ; v = 1, 2, . . .R

Z. Hanzalek (CTU course KO) Scheduling May 18, 2022 46 / 79



Dynamic Programming for P ||Cmax [Rothkopf]

Input: R, the number of parallel identical resources, n, the number of
nonpreemptive tasks and their processing time (p1, p2, ..., pn).

Output: n-elements vectors s and z where si is the start time and zi is
the resource ID.

for (t1, t2, . . . , tR) ∈ {1, 2, . . .UB}R do x0(t1, t2, . . . , tR) := 0;
x0(0, 0, . . . , 0) := 1;
for i := 1 to n do // for all tasks

for (t1, t2, . . . , tR) ∈ {0, 1, 2, . . .UB}R do // in the whole space

xi (t1, t2, . . . , tR) := ORR
v=1xi−1(t1, t2, . . . , tv − pi , . . . tR);

// xi () = 1 iff there existed

// xi−1() = 1 ‘‘smaller’’ by pi in any direction

end

end
C ∗max = minxn(t1,t2,...,tR)=1 {maxv=1,2,...R {tv}};
Assign tasks Tn,Tn−1, . . . ,T1 in the reverse direction;

Time complexity is O(n · UBR).
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Example for P ||Cmax [Rothkopf]

Example n=3, R=2, p=(2,1,2), UB=5.

t
1

t
2

i

UB

UB

0

n

i = 0, x0(t1, t2)
0   1   2   3   4   5

0 T

1

2

3

4

5

t
1

t
2

i = 2, x2(t1, t2)
0   1   2   3   4   5

0 T

1 T

2 T

3 T

4

5

t
1

t
2

i = 1, x1(t1, t2)
0   1   2   3   4   5

0 T

1

2 T

3

4

5

t
1

t
2

i = 3, x3(t1, t2)
0   1   2   3   4   5

0 T

1 T

2 T

3 T

4 T

5 T

t
1

t
2
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Complexity of P ||Cmax [Rothkopf]

For polynomially bounded R, (i.e., R = poly(n)) the problem is
strongly NP-hard.

Can be shown by reduction from 3-partition problem with
Cmax = B,R = m, n = 3m, pi = ai (take care, in 3-partition the
number 3 means number of items in the bin).
Here, the Rothkopf algorithm is not pseudopolynomial, since its
complexity is O(n · UBR) = O(n · UBpoly(n)), which is equal to
O(n · UBn/3) for the instances reduced from 3-partition.

For any constant R, (e.g., R = 2) the problem is weakly NP-hard

Here, the Rothkopf algorithm is pseudopolynomial, since its complexity
is O(n · UB2).
It can not be used to solve the instance reduced from 3-partition, but it
can be used to solve the instances reduced from 2-partition problem,
which is weakly NP-hard (take care, in 2-partition the number 2 means
number of bins).
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Muntz&Coffman’s Level Algorithm for P |pmtn, prec|Cmax

Principle:

tasks are picked from the list ordered by the level of tasks

the level of task Tj - sum of pi (including pj) along the longest
path from Tj to a terminal task (a task with no successor)

when more tasks of the same level are assigned to less resources, each
task gets part of the resource capacity β
the algorithm moves forward to time τ when one of the tasks ends
or the task with a lower level would be processed by a bigger capacity
β than the tasks with a higher level

For P2 |pmtn, prec|Cmax and P |pmtn, forest|Cmax , the algorithm is exact.
For P |pmtn, prec|Cmax approximation alg. with factor rMC = 2− 2

R .
Time complexity is O(n2).

Input: R, the number of parallel identical resources, n, the number of
preemptive tasks and proc. times (p1, p2, ..., pn). Prec. in DAG.

Output: n-elements vectors s1, ..., sk , ...sK and z1, ..., zk , ...zK where ski
is the start time of the k-th part of task Ti and zki is
corresponding resource ID.
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Muntz&Coffman’s Level Algorithm for P |pmtn, prec|Cmax

compute the level of all tasks ; t := 0; h := R; // h free res.

while unfinished tasks exist do
construct Z; // subset T of free tasks in time t
while h > 0 and |Z| > 0 do // free resources and free tasks

construct S; // subset Z of tasks of the highest level

if |S| > h then // more tasks than resources

assign part of capacity β := h
|S| to tasks in S; h := 0;

else
assign one resource to each task in S; β := 1; h := h − |S|;

end
Z := Z \ S;

end
compute δ; // see explanation below

decrease proc.times and levels by (δ) ·β;// finished part of task

t := t + δ;h := R;

end
Use McNaughton’s alg. to re-schedule parts with more tasks on less res.;

t + δ is time when (1) EITHER one task is finished (2) OR a current level
of an assigned task becomes lower than a level of an unassigned ready
task (3) OR a task executed at faster rate β starts to have current level
below the current level of a task executed at slower rate β
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Example - Muntz&Coffman’s Alg. for P |pmtn, prec|Cmax

T2

4

T1

3

T3
3

T4
5

T5
3

T6
1

T7
2

T8
0

R=2

time21

9

levels

8
7

level(2), =1b

level(1,3), =0.5b

0

level(1,2,3), =0.67b

d=2

.

t = 0, p = (3, 4, 3, 5, 3, 1, 2, 0)
level = (8, 9, 8, 5, 5, 1, 2, 0),Z = {T1,T2,T3}
h = 2,S = {T2}, β = 1
h = 1,S = {T1,T3}, β = 0.5
δ = 2 due to the case (3)

t = 2, p = (2, 2, 2, 5, 3, 1, 2, 0)
level = (7, 7, 7, 5, 5, 1, 2, 0),Z = {T1,T2,T3}
h = 2,S = {T1,T2,T3}, β = 0.67
δ = 3 due to the case (1)

...
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Project Scheduling - Minimizing Cmax

PS1 |temp|Cmax - NP-hard

PS1 stands for single resource, temp stands for temporal constraints
Input: The number of non-preemptive tasks n and processing times
(p1, p2, ..., pn). The temporal constraints defined by digraph G .
Output: n-element vector s, where si is the start time of Ti

PSm, 1 |temp|Cmax - NP-hard

PSm, 1 stands for m resource types, each of capacity 1
Input: The number of non-preemptive tasks n and processing times
(p1, p2, ..., pn). The temporal constraints defined by digraph G .
The number of dedicated resources m and the assignment of the tasks
to the resources (a1, a2, ..., an).
Output: n-element vector s, where si is the start time of Ti
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Motivation Example: Message Scheduler for Profinet IO
IRT - Specification

Profinet IO IRT is an Ethernet-based hard-real time communication
protocol, which uses static schedules for time-critical data. Each node
contains a special hardware switch that intentionally breaks the standard
forwarding rules for a specified part of the period to ensure that no
queuing delays occur for time-critical data.

Goal: Minimize the makespan (the schedule length) for time critical
messages.

P1 P2 P3 P4

N1

CP-1616

P1 P2 P3 P4

N5

CP-1616

P1 P2 P3 P4

N4

Sinamics S120

P1 P2 P3 P4

N3

PN-IO/CP-1616

P1 P2

N2

IM151-3

link N3-N1

link N1-N3

link N5-N3

link N3-N5

link N1-N2

link N2-N1
link N1-N4

link N4-N1

line N1 → N3 N1 → N4 N1 → N2 N2 → N1 N3 → N1 N4 → N1 N3 → N5 N5 → N3

line delay [ns] 4875 5130 5862 3841 4875 4895 4875 4875
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Motivation Example: Message Scheduler for Profinet IO
IRT - Specification

Constraints:

tree topology ⇒ fixed routing

release date r - earliest time the message can be sent

deadline d̃ - latest time the message can be delivered

maximal allowed end-to-end time delay

ID source → target length [ns] r [ns] d̃ [ns] end2end delay [ns]
256 N2 → N3 5760 5000 20000 11000
257 N3 → N2 5760 15000 40000 15000
258 N1 → N3 5760 15000 – –
259 N3 → N1 5760 20000 35000 –
128 N3 → {N1,N2,N4,N5} 11680 5000 {–,–,–,18000} {–,17675,17675,15000}
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Motivation Example: Message Scheduler for Profinet IO
IRT - Formalization

Can be formulated as
PSm, 1 |temp|Cmax problem.

task = message on a given line

positive cost edge = r ,
precedence relations

negative cost edge = d̃ ,
end-to-end delay

unicast message = chain of
tasks (assuming positive edges)

multicast message = out-tree of
tasks (assuming positive edges)

T3

1 - 3

6880

T2

2 - 1

6880

3841

4875

5000

- 4120

- 8120

- 13120

- 33120

- 28120

15000

15000

20000

T5

1 - 2

6880

T4

3 - 1

6880

T6

1 - 3

6880

T7

3 - 1

6880

T1

0

256

257

258

259

4875

4875

- 4875

- 4875
- 2200

- 5200

0

0

T11

1 - 2

12800

T12

1 - 4

12800

T9

3 - 1

12800

T10

3 - 5

12800

T8

0

128
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Motivation Ex.: Message Sch. for Profinet IO IRT - Result

N1 - N2

N1 - N3

N2 - N1

N3 - N1

N3 - N5

10 20 30

10 20 30

10 20 30

10

5

20 30

N1 - N4

10 20 30

10 20 30 t [µs]

Cmax

Class 3 Class 2 Class 1/NRT reserve

communication cycle

T
11

: 128, 11.68

T
9
: 128, 11.68

T
5
: 257, 5.76

T
12

: 128, 11.68

T
6
: 258, 5.76

T
7
: 259, 5.76

T
2
: 256, 5.76

T
4
: 257, 5.76

T
3
: 256, 5.76

T
10

: 128, 11.68
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Temporal Constraints

Set of non-preemptive tasks T = {T1,T2, ...,Tn} is represented by
the nodes of the directed graph G (may include negative cycles).

Processing time pi is assigned to each task.

The edges represent temporal
constraints. Each edge from Ti to Tj

has the length lij .

Each temporal constraint is
characterized by one inequality
si + lij ≤ sj .
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Temporal Constraints si + lij ≤ sj with Positive lij

Temporal Constraints (also called a generalized precedence constraint
or a positive-negative time lag)
- the start time of one task depends on the start time of another task

a) lij = pi

“normal” precedence relation

the second task can start when
the previous task is finished

Tj

l ij

Ti

pi

Tj
l ij

t

Ti

b) lij > pi

the second task can start some
time after the completion of
previous task

b.1) example of a dry operation
performed in sufficiently large
space

Tj

l ij

Ti

packpaint dry

Ti Tj
l ij

t

pi
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Temporal Constraints si + lij ≤ sj with Positive lij

b.2) another example with lij > pi - pipe-lined ALU

We assume the processing time
to be equal in all stages

Result is available l1f tics
after stage 1 reads operands

Stage 1 reads new operands
each p1 tics

Stages 2 and 3 are not
modeled since we have enough
of these resources and they are
synchronized with stage 1

l1f

delay1

stage 3

res

op11

stage 1

stage 2

T21

following
proc T1f

op21

...

op12

op22

...

T11

T12

T23

T22

T13

in st.2&3in st.1

. . .

. . .

. . .

T11 T1f
l1f

tdelay1

p1
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Temporal Constraints si + lij ≤ sj with Positive lij

c) 0 < lij < pi

Partial results of the previous task may be used to start the execution
of the following task.
E.g. the cut-through mechanism, where the switch starts transmission on
the output port earlier than it receives the complete message on the input
port.

time-triggered protocol

resources are communication
links

lab represents the delay in the
switch

different parts of the same
message are transmitted by
several communication links at
the same time

lab

processingswitch 3

line a

message1b

in switch 2

switch 1

switch 2

line b

message1a

T1a T1b
lab

t

pa
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Temporal Constraints si + lij ≤ sj with Zero or Negative lij

d) lij = 0

Task Ti has to start earlier or at
the same time as Tj Tj

Ti

Ti Tj
l ij = 0

t

pi

e) lij < 0

Task Ti has to start earlier or at
most |lij | later than Tj

It loses the sense of “normal ”
precedence relation, since Ti

does not have to precede Tj

It represents the relative
deadline of Ti related to the
start-time of Tj

Tj

Ti

Ti Tj

l ij

t

l ij < 0
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Cycles and Relative Time Windows

Absence of a positive cycle in graph G

is a necessary condition for schedulability of PS1 |temp|Cmax

is a necessary and sufficient condition for schedulability of the
instance with unlimited capacity of resources. The schedule, which
is restricted only by the temp. constraints, can be found in pol. time

by LP or
by the longest paths. For G we can create G ′, a complete digraph of
longest paths, where weight lij is the length of the longest directed
path from Ti to Tj in G (if no directed path in G exists, the weight is
lij = −∞). A start time of Tj is lower bounded by the longest path
from arbitrary node, i.e. sj ≥ max∀i∈1...n lij .

Example - relative time window, e.g. when applying
a catalyst to the chemical process
If finite lij ≥ 0 and lji < 0 do exist, tasks Ti and Tj are
constrained by the relative time window.

the length of the negative cycle determines the
“clearance” of the time window

T1

T2

T1 T2

l21

t
2

-3

l12
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ILP formulation of PS1 |temp|Cmax

Task can be represented in two ways:

Time-indexed - ILP model is based on variable xit , which is equal to
1 iff si = t. Otherwise, it is equal to zero. Processing times are
assumed to be positive integers.

Relative-order - ILP model is based on the relative order of tasks
given by variable xij , which is equal to 1 iff task Ti precedes task Tj .
Otherwise, it is equal to zero. The processing times are nonnegative
real numbers (tasks with zero processing time may be used to
represent events).

Both models contain two types of constraints:

temporal constraints

resource constraints - prevent overlapping of tasks
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Time-indexed Model for PS1 |temp|Cmax

minCmax

∑UB−1
t=0 (t · xit) + lij ≤

∑UB−1
t=0 (t · xjt) ∀lij 6= −∞ a i 6= j (temp. const.)

∑n
i=1

(∑t
k=max(0,t−pi+1) xik

)
≤ 1 ∀t ∈ {0, . . .UB − 1} (resource)

∑UB−1
t=0 xit = 1 ∀i ∈ {1, . . . n} (Ti is scheduled)∑UB−1
t=0 (t · xit) + pi ≤ Cmax ∀i ∈ {1, . . . n}

variables: xit ∈ {0, 1}, Cmax ∈ {0, . . .UB}

UB - upper bound of Cmax (e.g. UB =
∑n

i=1 max
{
pi ,maxi ,j∈{1,...,n} lij

}
).

Start time of Ti is si =
∑UB−1

t=0 (t · xit).

Model contains n · UB + 1 variables and |E |+ UB + 2n constraints.
Constant |E | represents the number of temporal constraints (edges in G ).
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Time-indexed Model for PS1 |temp|Cmax

T = {T1,T2,T3}, p = (1, 2, 1), UB = 5

T1 is scheduled:

Resource constr. at time 2:

T1

T2

T3

x10 x11 x12 x13 x14

x20 x21 x22 x23 x24

x30 x31 x32 x33 x34

T1

T2

T3

x10 x11 x12 x13 x14

x20 x21 x22 x23 x24

x30 x31 x32 x33 x34

S = 1

S 1£
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Relative-order Model for PS1 |temp|Cmax

Resource constraint for couple of tasks:
pj ≤ si − sj + UB · xij ≤ UB − pi

The constraint uses “big M” (here UB - upper bound on Cmax).

If xij = 1, Ti precedes task Tj and
the constraint is formulated as
si + pi ≤ sj .

If xij = 0, Ti follows task Tj and the
constraint is formulated as
sj + pj ≤ si .

Ti Tj

tsi sj

Ti Tj

t

UB

si sj

Tj Ti

t

UB

s i
sj
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Relative-order Model for PS1 |temp|Cmax

minCmax

si + lij ≤ sj ∀lij 6= −∞ and i 6= j
(temporal constraint)

pj
violet
≤ si − sj + UB · xij

green
≤ UB − pi ∀i , j ∈ {1, . . . , n} and i < j

(resource constraint)

si + pi ≤ Cmax ∀i ∈ {1, . . . , n}

variables: xij ∈ {0, 1}, Cmax ∈ 〈0,UB〉, si ∈ 〈0,UB − pi 〉

The model contains n +
(
n2 − n

)
/2 + 1 variables

and |E |+
(
n2 − n

)
+ n constraints.

|E | is a number of temporal constraints (edges in G ).
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Relative-order Model for PS1 |temp|Cmax

Example: no temporal constraints, two tasks Ti , Tj with pi = 2 and
pj = 3. We set UB = 11 and we study si ∈ 〈0, 8〉.
3D polytope (left) is determined by the resource constr. given by violet
and green hyperplanes (see colors on the previous slide). Its projection to
2D space (right) shows both sequences of tasks. When we change UB, the
hyperplanes in 3D decline.
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Comparison of the Two Models

Each model is suitable for different types of tasks:

Time-indexed model:

(+) Can be easily extended for parallel identical processors.

(+) ILP formulation does not need many constraints.

(-) The size of the model grows with the size of UB.

Relative-order model:

(+) The size of ILP model does not depend on UB.

(-) Requires a big number of constraints.
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Feasibility Test for Heuristic Algorithms

If the partial schedule (found for example by a greedy algorithm which
inserts tasks in a topological order of edges with positive weight, or the
partial result during the Branch and Bound algorithm) violates some time
constraints, the order of tasks does not need to be infeasible.
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Feasible

Infeasible

When the optimal order of the tasks in the schedule is known (variables xij
are constants), it is easy to find the start time of the tasks (for example by
LP formulation involving time constraints only).
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Relative-order Model for Project Scheduling with
Dedicated Resources of Unit Capacity PSm, 1 |temp|Cmax

Part of the input parameters are the number of resources m and
assignment of the tasks to the resources (a1, ..., ai , ..., an), where ai is
index of the resource type on which task Ti will be running.

minCmax

si + lij ≤ sj ∀lij 6= −∞ and i 6= j
(temporal constraints)

pj ≤ si − sj + UB · xij ≤ UB − pi ∀i , j ∈ {1, . . . , n}, i < j and ai = aj
(on the same resource type)

si + pi ≤ Cmax ∀i ∈ {1, . . . , n}

variables: xij ∈ {0, 1}, Cmax ∈ 〈0,UB〉, si ∈ 〈0,UB〉

Model consists of less than n +
(
n2 − n

)
/2 + 1 variables (exact number

depends on the number of tasks scheduled on each resource type).
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Modeling with Temporal Constraints

Using PS1 |temp|Cmax we will model:

1
∣∣∣rj , d̃j

∣∣∣Cmax

scheduling on dedicated resources PSm, 1 |temp|Cmax

Using PSm, 1 |temp|Cmax we will model:

scheduling of multiprocessor task - task needs more than one
resource type at a given moment,
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Reduction from 1
∣∣∣rj , d̃j

∣∣∣Cmax to PS1 |temp|Cmax

This polynomial reduction proves that PS1 |temp|Cmax is NP-hard, since
Bratley’s problem is NP-hard.

Instance 1
∣∣∣rj , d̃j

∣∣∣Cmax

r = (r1, r2, . . . , rn)
p = (p1, p2, . . . , pn)
d̃ = (d̃1, d̃2, . . . , d̃n)
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Reduction from PSm, 1 |temp|Cmax to PS1 |temp|Cmax

Reduction from PSm, 1 |temp|Cmax to PS1 |temp|Cmax is based on the
projection of each resource to the independent time-window. In other
words, the schedule of tasks on P j is projected into interval
〈(j − 1) · UB, j · UB〉

Transformation consists of three steps:

Add dummy task T0 to have fixed point in time. Task T0 has
p0 = 0 and precedes all tasks {T1, . . . ,Tn}, i.e. s0 ≤ si . Due to the
criterion s0 = 0 (i.e. T0 is fixed on the time axis).

Add new temporal constraints to keep tasks {T1, . . . ,Tn} in their
time-windows.

Transform the original temporal constraints to
l ′ij = lij + (aj − ai ) · UB. See its derivation on the next slide.

Add dummy task Tn+1 to propagate the criterion minimization in all
time-windows. Task Tn+1 has pn+1 = 0 and follows all task Ti ∈ T ,
i.e. Ci = si + pi ≤ sn+1.
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Reduction from PSm, 1 |temp|Cmax to PS1 |temp|Cmax

The new start time s ′i of each task on processor ai is:
s ′i = si + (ai − 1) · UB.

Temporal constraints si + lij ≤ sj are transformed to:

s ′i − (ai − 1) · UB + lij ≤ s ′j − (aj − 1) · UB
s ′i + lij + (aj − ai ) · UB ≤ s ′j

The transformed temporal constraint will look like s ′i + l ′ij ≤ s ′j , where:

l ′ij = lij + (aj − ai ) · UB
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Reduction from PSm, 1 |temp|Cmax to PS1 |temp|Cmax
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While minimizing the completion time of Tn+1, we push tasks T1,T2 and
T3 “to the left” due to the edges entering Tn+1
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Multiprocessors Task

Transformation of multiprocessor task problem to PSm, 1 |temp|Cmax

create as many virtual tasks as there are processors needed to execute
the physical tasks

ensure that the virtual tasks of the given physical task start at the
same time - this is done by two edges with weight lij = lji = 0.
Consequently si ≤ sj and sj ≤ si .

Example: Task Ti needs resources (P1,P2,P3).
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J. B lażewicz, K. Ecker, G. Schmidt, and J. Wȩglarz.
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