
1

MIX ED - C RIT ICAL IT Y S CHEDU L IN G
U S ER GU IDE

SET OF A LGOR IT HMS FO R SOLVING MIX ED - CR IT ICA LIT Y SCHDU LIN G

TABLE OF CONTENTS

Purpose of This Document .. 2

MCSchduling Graphical User Interface.. 2

Tab Page No. 1: Test Instances ... 2

A Generated MC Instance File Format ... 4

Tab Page No. 2: Mixed Integer Programming ... 4

Tab Page No. 3: GA Configuration ... 6

Tab Page No. 4: Genetic Algorithm ... 7

Tab Page No. 5: Simulated Annealing ... 8

Tab Page No. 6: Clairvoyant EDF ... 9

Tab Page No. 7: DP .. 9

Saving An MC Instance Solution ... 10

Previewing an MC Instance Solution .. 11

Command Line User Interface .. 11

Command Line MC Instance Solution File Format .. 12

Genetic Algorithm Configuration File Format ... 12

Simulated Annealing Configuration File Format ... 14

2

PURPOSE OF THIS DOCU MENT

The next few pages presents a brief documentation of the MCScheduling application in form of
a user guide. For detailed documentation of the application, please, refer to the /doc/index.html
and the article On Non-Preemptive Mixed-Criticality Scheduling.

MCSCHDULING GRAPHICAL USER INTERFACE

This section describes the graphical user interface of the MCScheduling application. The figure 1
shows how the main window looks like. The GUI is a collection of several tab pages that may be
(in order of appearance) described as

1. Test Instances – This page contains a set of few methods for random generating of mixed-
criticality instances.

2. Mixed Integer Programming – The page dedicated to a mixed integer linear programming
solver (MIP solver).

3. GA Configuration – This page contains a configuration settings for a genetic algorithm
that may be used for solving the given MC instances.

4. Genetic Algorithm – The page dedicated to a genetic algorithm solver (GA solver) using
the configuration set up in the previous page.

5. Simulated Annealing - The page dedicated to a simulated algorithm solver (SA solver). It
also contains a part for the configuration of the algorithm unlike in the case of GA solver
it all fits on a single tab page.

6. Clairvoyant EDF - The page dedicated to a clairvoyant earliest deadline first algorithm
solver (CEDF solver).

7. DP - The page dedicated to a dynamic programming algorithm solver (DP solver).

In the following subsections each of the pages is described in detail with an accompanying
screenshot to make it more clear.

There is also a command line user interface that is discussed in the upcoming section. This
interface is more practical for running multiple tests for a single test instance of a mixed-
criticality instance.

TAB PAGE NO. 1: TEST INSTANCES

The Test Instances tab page provides 3 different methods for generating random mixed-
criticality instances which may be instantly apparent from the big push buttons saying
„Generate!“ in the figure 1.

The first part is used to give an appropriate name to each of the generated MC instance. The
Collection Name sets the common name prefix for the instances and Instance Count denotes
the number of instances to generate. As a result of the setting displayed in the figure 1, one
hundred MC instances named test_instance_000 to test_instance_100 is going to be generated.

3

FIGURE 1: TEST INSTANCES TAB PAGE

The second part is the 1st generator called Feasible Instance Generator and is called this way
from an obvious reason – it generates instances with guaranteed feasible solution. The first
column of edit boxes serves to set the number of MC jobs for each criticality level (denoted by
row). The second column sets the maximum value of the randomly generated execution time for
each job at the given criticality level. The third, and last, column shows the total number of MC
jobs and the criticality of to-be generated MC instances. It also allows the user to se up
the maximum length of the generated idle time intervals and release – deadline time interval.
Pushing the Generate button generates the MC instances according to the setting; their names a
basic parameters are displayed in the last part called Test Instances at the end of the same page.

The third part is the next generator called Worst-Case Instance Generator. Worst case in sense of
that a solution to each of the generated instances is also a solution to some 3-partition problem,
which is known NP-hard problem. The first parameter of the generator called Cluster Count sets
up the number of MC jobs – it corresponds to a number of partitions, i.e. 4-times the given value:
three criticality 1 jobs and one criticality 2 job. The parameter Cluster Makespan sets the exact
sum of the criticality 1 jobs‘ execution times and the value of the criticality 2 execution time for

4

the criticality 2 jobs (these job have no execution time in criticality level 1). For more details,
consult the complexity proof given in the article. It is also guaranteed that the generated
instances do all have a feasible solution.

The fourth parth is the last generator called Random Instance Generator. This generator does not
guarantee a feasible solution to all generated instances, because all the parameters are
generated randomly. The settings are quite similar to the feasible generator, but unlike it, the 1st
column is used to set up the criticality level distribution for MC jobs and that is why the user has
to specify explicitly the number of jobs. But the 2nd column has the same role as in the feasible
generator. Eventually, in the 3rd column the user sets up the release time window length R and
the deadline span D: Each MC job i gets a randomly generated release time (ri) and deadline to
a value from the [0, R) and [ri, ri + D) interval, respectively.

The two push buttons at the end of the page saying „Load Instances...“ and „Save Instances...“
both show a File Browser dialog, but in the case of the first button, the user may choose a file
with previously saved generated MC instances, which are then loaded into the application (like if
they have been generated). In the case of the second button being pushed, the user have to
choose a directory, where the last set of the generated instances will be saved – it is
recommended that a new directory is created for each new generated set.

A GENERATED MC INSTANCE FILE FORMAT

When a generated mixed-criticality instance is saved into a file, it is in a plain text format
described below:

N C

T1 r1 d1 c1 p1 p2 ... pC

T2 r2 d2 c2 p2 p2 ... pC

...

TN rN dN cN p1 p2 ... pC

where N is the total number of MC jobs in the instance and C is the maximum criticality level of
one of its jobs. After the first line N lines follow, each describing the parameters of an MC job i,
which are: job’s label Ti, release time ri, deadline di, criticality ci, and execution times p1 to pC.
The execution times for higher criticality levels then the job’s own criticality are set to 0.

TAB PAGE NO. 2: MIXED INTEGER PROGRAMMING

This page is dedicated to the 1st mixed-criticality scheduling solver based on a branch-and-
bound algorithm implemented with Gurobi Optimizer library (version 4.5). The upper part of
the page contains parameters that determines the time limit and/or the iteration limit for
the solving algorithm. To set the wanted parameter, the appropriate checkbox needs to be
selected first.

When the „Start Optimization“ button is pressed the solving process is started. Each instance is
being solved either to optimality or till the time/iteration limit is reached, then the makespan
and the status of the soluton as well as the running time is displayed in the table for each of
the instances.

5

FIGURE 2: MIXED INTEGER PROGRAMMING TAB PAGE

The status of a solution may take one of these values for each of the described solvers:

 Optimal –An optimal solution has been found. The Makespan makes best value possible.

 Suboptimal – A suboptimal solution has been found. The Makespan makes an upper
bound value.

 Heuristic – A result is not proven optimal and may be even infeasible. For solvers that
output solutions with this kind of a result another column is provided where the total
sum of the tardinesses of the jobs is presented.

 Infeasible – The solution does not exist – the MC instance has been proven infeasible.

 Time Limit – The time limit has been reached, no solution found.

 Iteration Limit – The iteration limit has been reached, no solution found.

 Aborted – No solving time has been given to such an instance, because the solver has
been aborted.

This tab page looks exactly the same as the Genetic Algorithm page, but the solution table
contains one more column Lateness, which shows the total sum of tardinesses of all the jobs
in the given MC instance (see Heuristic solution status description given above).

6

TAB PAGE NO. 3: GA CONFIGURATION

This tab page (see figure 3) contains a configuration settings for a genetic algorithm that may be
used for solving the given MC instances. The page is divided into several parts dedicated to
setting of different kind of components the resulting genetic algorithm is made of.

The first part (General) is used to set up the population size and (if wanted) the number of elite
individuals that will be always copied to the next generation during the evolution.

The second part (Fitness) is used to set up the coefficients of the fitness evaluation function,
which is defined as

where is the individual (encoded solution to an MC instance) and is the multicriteria
evaluation function described in the section 5.1 of the article, here is just its definition:

The Makespan Factor and the Lateness Factor corresponds to the coefficient and ,
respectively. The user needs to change only one of these parameters, because the second one is
recalculated automatically for their sum has to equal 1.

The next part called Scaling is a list of provided fitness scaling methods, which are used to scale
(recalculate) fitness values of the individuals before the selection occurs. The methods are:

 None – no scaling is used.

 Rank Scaling – the individuals are sorted in ascending order according to their current
fitness value. Then their new fitness value is set to the position in that sequence,
resulting in the worst individual getting 1 and the best getting n (the population size).

 Sigma Scaling – the new fitness value for each individial in the population is

calculated from its old fitness value according to

 , where is the

average fitness value and is the standard deviation of the fitness score.

 Boltzmann Scaling – the new fitness value for each individial in the population is

calculated from its old fitness value according to

 , where e is the

Euler’s number and the term

 denotes the average value of its argument over

the whole population, t is the temperature parameter starting with value Start Temp. and
slowly dropping by factor of Drop Step until reaching its minimum Min. Temp.

The fourth part (Selection) is used to pick a selection operator for the genetic algorithm. How
each of these operators works is out of scope of this document. The provided selection operators
are: Roulette Wheel Selection (most commonly used), Stochastic Tournament Selection (also
frequently used for its simplicity a fast execution), Stochastis Universal Sampling, Deterministic
Sampling, Remainder Stochastic Sampling (with or withour replacement).

The second to last part (Crossover) allows the user to select more then one crossover operator
that will be used by the genetic algorithm. The parameters of the operators are Crossover Rate
and Crossover Ratio (only some operators has it and it denotes the ratio of how much

7

information is taken from „father“ and „mother“). The operators has to be checked to be
selected and its order among the selected operators in the execution of the evolution may be
change by Up and Down buttons. The crossover operator list contains: Order Crossover, Order-
Based Crossover, Position-Based Crossover, Cycle Crossover, Partially Mapped Crossover,
Alternation Position Crossover, Heuristic Crossover, and Greedy Crossover.

The last part (Mutation) allows the user to select more the one mutation operator that will be
used by the genetic algorithm. The only parameter of the operators is Mutation Rate. The
mutation operator list contains: Insertion Mutation, Inversion Mutation, Exchange Mutation,
Scramble Mutation, Displacement Mutation, and Displaced Inversion Mutation.

FIGURE 3: GA CONFIGURATION TAB PAGE

The configuration of the genetic algorithm may be saved into a text file and then later loaded
back into the application by the two push buttons located at the bottom of this tab page. The
format of this configuration file is described at the end of this document.

TAB PAGE NO. 4: GENETIC ALGORITHM

This page is dedicated to the 2nd mixed-criticality scheduling solver based on the genetic
algorithm that has been configured on the previous page. The solver want work if there is no
valid configuration present. This tab page looks in essence the same as the mixed integer

8

programming tab page, so please, refer to the the description of that particular tab for more
information.

TAB PAGE NO. 5: SIMULATED ANNEALING

This page (see figure 4) is dedicated to the 3rd mixed-criticality scheduling solver based on a
simulated annealing algorithm.

The upper part of the page contains parameters that determines the time limit and/or the
iteration limit for the solving algorithm. To set the wanted parameter, the appropriate checkbox
needs to be selected first.

The process of optimization is initiated or aborted by pressing the push button saying „Start
Optimization“ or „Stop Optimization“, respectively. The description of the results of the
optimization are mentioned in the previous Mixed Integer Programming Tab section.

The middle part of the page called Simulated Annealing Configuration deals with, as its name
suggests, the configuration of the simulated annealing algorithm.

The first two parameters that reside in the Solution Evaluation part are the same as for the
genetic algorithm, please refer to the description of the GA Configuration tab page for more
information.

The parameters in the Temperature Settings part directly influence the process of „crawling“ in
the neighbourhood of a specific solution of an MC instance. The simulated annealing algorithm
works basically as follows, first it starts with some (preferably good) initial solution to the given
MC instance S. The solution S is then tweaked with („perturbed“) a little bit and a new solution is
created, lets call it R. If the quality of R is better then the quality of S (measured by the
multicriteria evaluation function E described above), then S is reassigned with R and the process
continues in a loop. On the other hand, if R is worst then S, there is still a chance that S will be
reassigned with R and this chance is described by the cummulative distribution function

where is a radom variable drawn from a uniform distribution on the unit interval [0, 1]. Here
the temperature parameter comes to light, because t denotes temperature. The temperature
initial value is set to the value of the parameter Max. Temperature. At the end of each loop of the
algorithm the temperature t drops down by a factor given by the parameter Cooling Factor , but
it never falls below the value of the parameter Min. Temperature.

The process of optimization is initiated or aborted by pressing the push button saying „Start
Optimization“ or „Stop Optimization“, respectively. The description of the results of
the optimization are mentioned in the previous Mixed Integer Programming Tab section.

9

FIGURE 4: SIMULATED ANNEALING TAB PAGE

TAB PAGE NO. 6: CLAIRVOYANT EDF

This page (see figure 5) is dedicated to the 4th mixed-criticality scheduling solver based on an
adaptation of clairvoyant earliest deadline first algorithm by Cecilia Ekelin.

The page contains only a table of MC instances to solve and two push buttons. The process of
optimization is initiated or aborted by pressing the push button saying „Start Optimization“ or
„Stop Optimization“, respectively. The description of the results of the optimization are
mentioned in the previous Mixed Integer Programming Tab section.

TAB PAGE NO. 7: DP

This page is dedicated to the last mixed-criticality scheduling solver based on a dynamic
programming algorithm quite similar to an algorithm for solving TSP. Because the algorithm has
exponential memory demands for its execution, it is useful only for really small instances
(containing up to 12 jobs).

The page looks the same as the previous Clairvoyant EDF tab page (see figure 5). It contains only
a table of MC instances to solve and two push buttons. The process of optimization is initiated or
aborted by pressing the push button saying „Start Optimization“ or „Stop Optimization“,

10

respectively. The description of the results of the optimization are mentioned in the previous
Mixed Integer Programming Tab section.

FIGURE 5: CLAIRVOYAND EDF TAB PAGE

SAVING AN MC INSTANCE SOLUTION

Each of the solver tabs containts at its buttom a single push button saying „Save Solution...“.
When it is pressed a File Browser dialog appears and the user may choose a directory, where all
the solutions is going to be saved. The saved solution file is given the name of the MC instance
with a file extention „*.sol“ and its plain text content has the following format

M L

T1 s1

T2 s2

...

TN sN

where M is the makespan of the schedule, L is the sum of all the jobs’ tardinesses. After the first
line N (the number of jobs in the solved MC instance) lines follows, each of them contains the
name of the job with its given start time.

11

PREVIEWING AN MC INSTANCE SOLUTION

Once an MC instance is solved a user may double-click on the specific MC instance in the table (of
the solver tab page) and a solution preview in form of a Gantt chart will be displayed.
An example how this chart looks like, see figure 6 below.

FIGURE 6: AN EXAMPLE OF THE MC INSTACE SOLUTION PREVIEW

COMMAND LINE USER INTERFACE

The MCScheduling application may be also executed from the command line with one or more
arguments that are described in this section. This way no graphical user interface is available.

MCScheduling –s <solver type> -f <solver config. file> -t <time limit>

 -i <iteration limit> -c <number of repetitions>

 -in <input file> -out <output file>

The solver type argument –s may take one of the following values:

 mip – The selected solver type is mixed integer programming.

 ga – The selected solver type is the genetic algorithm.

 sa - The selected solver type is simulated annealing algorithm.

 cedf - The selected solver type is the clairvoyant EDF algorithm.

 dp - The selected solver type is the dynamic programming algorithm.

The genetic algorithm and simulated annealing algorithm require a configuration in order to
execute and for that purpose there is the –f argument which takes a file path to an appropriate

configuration file.

The –t argument is used to set up the time limit in seconds and it takes only integer values.

The –i argument is used to set up the iteration limit for the solving algorithm and it takes only

integer values.

12

The –c argument takes an integer value that determines the number of repetitions. Each

instance is solved as many times as it is the value of this argument. The final solution is then
taken from as the average of all the repetitive solutions.

The –in argument determines the file path to the MC instance to solve.

And, eventually, the –out argument determines the file path where the solution to the specified

MC instance will be saved.

Example:

mcscheduling.exe -s mip -t 60 -in test01.ins -out mip_test01.sol

This command will execute the mixed integer programming solver on the instance in the file
test01.ins and it will run maximally for 1 minute; the solution is then saved to a file named
mip_test01.sol.

COMMAND LINE MC INSTANCE SOLUTION FILE FORMAT

The solution of an MC Instance solved from the command line differs from the format described
above in the case the GUI is used. It is a plain text format like this

M

L

T

S

where M is the makespan of the schedule, L is the sum of all the jobs’ tardinesses, T is the total
running time of the solver in seconds and S is the status of the solution that takes one of the
following values:

 optimal –An optimal solution has been found. The Makespan makes best value possible.

 suboptimal – A suboptimal solution has been found. The Makespan makes an upper
bound value.

 heuristic – A result is not proven optimal and may be even infeasible. For solvers that
output solutions with this kind of a result another column is provided where the total
sum of the tardinesses of the jobs is presented.

 infeasible – The solution does not exist – the MC instance has been proven infeasible.

 time limit exceeded – The time limit has been reached, no solution found.

 iteration limit exceeded – The iteration limit has been reached, no solution found.

 aborted – No solving time has been given to such an instance, because the solver has
been aborted.

 error – An error occurred during execution.

 unknown – The result is unknown. The instance has not been solved, probably.

GENETIC ALGORITHM CONFIGURATION FILE FORMAT

This section contains the description of a genetic algorithm configuration file format. The genetic
algorithm configuration file is a plain text file that has to have filled a few lines in the fixed order.
Each of these lines determines a configuration of a particular component of the genetic
algorithm.

13

The file format has this form

name

popsize

elitecnt

MML alpha beta

scaler

selector

crossoverOp1

crossoverOp2

...

mutationOp1

mutationOp2

...

The first line is the name of the configuration; it may be any non-empty string. The second line
must contain an integer value that determines the size of the population. The elitecnt determines
the number of fittest individuals (elite) that will be copied to the next generation in every
iteration of the algorithm.

The 4th line sets up the multi-criteria fitness function. The arguments are (sadly) required to be
decimal values that add up to 1.

The 5th line determines the fitness scaling method and may take one of the following values:

 none – no scaling.

 rank – rank scaling.

 sigma – sigma scaling.

 boltzmann startTemp minTemp coolStep – boltzmann scaling with 3 decimal arguments.

These scaling methods and their arguments are discussed above in the section about the genetic
algorithm configuration.

The 6th line determines the selection method and it may take one of the following values:

 RWS – Roulette Wheel Selection.

 RTS tourSize fitterWinProb – Stochastic Tournament Selection.

 SUS – Stochastic Universal Sampling.

 DS – Deterministic Sampling.

 RSS withRepl – Remeainder Stochastic Sampling (with replacement if withRepl is 1).
withRepl may be 0 or 1.

These selection methods and their arguments are mentioned above in the section about the
genetic algorithm configuration.

The next lines have to contain consecutive list of crossover operators, but at least one operator.
Every operator has one decimal argument that denotes the crossover rate and should be
between 0 and 1 (inclusive). Moreover, some operators have a second argument which
determines the ratio of information taken from the parents. The crossover operators may be
defined with their arguments like this:

 OX rate ratio – Order Crossover.

 OBX rate ratio – Order-Based Crossover.

 PBX rate ratio – Position-Based Crossover.

 CX rate – Cycle Crossover.

14

 PMX rate – Partially Mapped Crossover.

 APX rate – Alternating Position Crossover.

 HX rate – Heuristic Crossover.

 GX rate – Greedy Crossover.

Then has to follow a consecutive list of mutation operator, at least one mutation operator has to
be specified. Every operator has one decimal argument that denotes the mutation rate
and should be between 0 and 1 (inclusive). The mutation operators may be defined with their
argument like this:

 DM rate – Displacement Mutation.

 IM rate – Insertion Mutation.

 IVM rate – Inversion Mutation.

 EM rate – Exchange Mutation.

 SM rate – Scramble Mutation.

 DIVM rate – Displaced Inversion Mutation.

SIMULATED ANNEALING CONFIGURATION FILE FORMAT

This section contains the description of a simulated annealing algorithm configuration file
format. The simulated algorithm configuration file is a plain text file that has to contain five lines
of text that determine the setting of different parameter of the algorithm. The file format has this
form

alpha

beta

coolFactor

minTemperature

maxTemperature

The first two lines determine the coefficients of the multi-criteria evaluation function described
in one of the preceding sections. The maximum and minimum temperature as well as cooling
factor is described (quite in detail) in the Simulated Annealing Tab section.

