

FORMAL VERIFICATION OF OSEK/VDX BASED APPLICATIONS

Libor Waszniowski, Zdenek Hanzalek

Czech Technical University
Faculty of Electrical Engineering, Department of Control Engineering

Karlovo nám. 13, 121 35 Prague 2, Czech Republic
{xwasznio, hanzalek}@fel.cvut.cz

Abstract: This article shows, how a preemptive
multitasking application running under a real-time
operating system compliant with OSEK/VDX
standard can be modeled by timed automata. The
application under consideration consists of several
tasks, it includes synchronization by events and
resource sharing. For such system, model-checking
theory based on timed automata and implemented in
model-checking tools can be used to verify time and
logical properties of the proposed model. It is shown
that the proposed model is over-approximation in the
case of preemptive scheduling policy.

1 INTRODUCTION

This paper deals with modeling of applications
running under real-time operating system (OS).
Typical application under assumption is a controller
consisting of periodic and aperiodic tasks constrained
by deadlines and synchronized via communication
primitives.

The model-checking (Larsen, et al., 1995) approach,
shown in this paper, provides timed automata (Alur
and Dill, 1994) model of an operating system,
application tasks and controlled environment. In the
scheduling theory, the task model usually consists of
its execution time, the blocking time and the inter-
arrival time. Our approach assumes a fine grain
model of the task internal structure consisting of
computations, system calls, selected variables, code
branching and loops. Therefore the model combines
both, logic and timing parameters of a discrete event
system enabling to check rather complex properties
(safety and bounded liveness properties,
schedulability, state reachability) by model-checking
tools (e.g. UPPAAL1 (Behrmann, et al., 2001) and
Kronos2 (Daws, et al., 1996)) in finite time.

Even though timed automata and model-checking
(analogous to other formal methods) allows modeling
and verifying almost everything, it is generally
known, that they are susceptible to state space
explosion. This fact restricts the size of verified
application to the small size that seems to be
unusable in praxis (compared with matured

1 http://www.uppaal.com
2 http://www-verimag.imag.fr/TEMPORISE/kronos/

schedulability analysis methods (Liu, 2000)).
Therefore we try to show in this paper, how to build
a compromise model of a reasonable size on one side
and of reasonable granularity allowing detailed
formal analysis of real-time properties that can not be
done by schedulability analysis on the other side.

Methods for schedulability analysis, e.g. rate
monotonic analysis (RMA) ((Sha, et al., 1991; Liu,
2000) have been widely used in praxis. However they
can lead to pessimistic results when non-periodic
tasks, shared resources and other features are
incorporated (Bailey, et al., 1995). The schedulability
analysis based on model-checking of fine grain
model provides less pessimistic results in some cases
(Waszniowski and Hanzálek, 2003).

Fersman, et al. in (2002) and (2003) extended timed
automata by asynchronous tasks (i.e. tasks triggered
by events) to provide model for event-driven
systems. This approach provides good results for
aperiodic tasks but it is not suited to model the task
internal structure as follows from results of (Krčál
and Yi, 2004). Corbet in (1996) provides model of
real time Ada tasking programs based hybrid
automata. Opposite to timed automata used in our
approach, reachability problem is undecidable for
hybrid automata and therefore the verification
algorithm termination is not guarantied in general.
Timed automata are used to model primitives of
Ravenscar run-time kernel for Ada in (Lundqvist and
Asplund, 2003). However, the time in application is
discrete opposite to our approach where the time is
dense.

This paper is organized as follows: Section 2
describes fine grain model used in this paper.
Sections 3 and 4 present timed automata models of
tasks and OSEK compliant OS (OSEK, 2003). This
model is an over-approximation from the model-
checking point of view in some cases as it is shown
in Section 5.

2 APPLICATION FINE GRAIN MODEL

Fine grain model treats tasks and interrupt service
routines (ISR) internal structure, the OS functionality
and the controlled environment behavior. All
components are modeled by timed automata

synchronized via channels and by shared variables.
The task model consists of several blocks of code
called computations (characterized by their BCET
and WCET), calls of OS services, selected variables,
and code branching and loops (affected by values of
selected variables).

Structure of the entire model is on Fig. 2.1.
Rectangular blocks represent particular timed
automata. Synchronization is expressed by arcs
labeled by name of the synchronization channel. The
most important data structures are shown in the right
side of the figure. The essential components are
explained in the following sections.

OS Services
(ActivateTask,
Terminatetask,

SetEvent,
WaitEvent, etc.)

OS Services
(ActivateTask,
Terminatetask,

SetEvent,
WaitEvent, etc.)

OS Services
(ActivateTask,
Terminatetask,

SetEvent,
WaitEvent, etc.)

OS Services
(ActivateTask,
Terminatetask,

SetEvent,
WaitEvent, etc.)

Application SW

- ID3 ID1 ID2 - -

rQ wQ

Q

nQReady queue

ISR

PreemptCtrl

SortQueue

Environment Model

TasksTasksTasksTasks

En
dS

ys
Ca

ll

R
et

ur
n

IR
Q

ProlongU
C

h

OS Service Call
(ActivateTaskCh, TerminateTaskCh, SetEventCh, WaitEventCh, etc.)

R
et

ur
n

Shared variables

OS

Controlled Environment

QSorted
SortQ

Priorities

Tasks states State S1 S2 S3 S4 S5

U
L

.........

Tasks
Event
Masks

Event M1 M2 M3 M4 M5

WaitMask M1 M2 M3 M4 M5

ID1 ID2 ID3 ... IDn

P 3 1 5 6 2 7

IsrID

U1 U2 U3 U4 U5

L1 L2 L3 L4 L5

U6

L6Bounds of
finishing
times

Fig. 2.1 Overview of entire timed automata model

When a general property of the model is analyzed by
exhaustive state space search (done by model
checking tool), an execution time of a task must be
specified by an interval covering all possible cases,
i.e. 〈BCET, WCET〉. Due to scheduling anomaly,
WCET of computations do not necessary lead to the
worst case finishing time of the whole task.

3 TASK MODEL BY TIMED AUTOMATA

Each task (or its instance) is modeled by one timed
automaton in UPPAAL notation (see Fig. 3.1).
Double circle represents initial location. A location
can be labeled by its name and a time invariant in the
form “c<=U”, allowing to stay in the location only
when the clock c is smaller or equal to U. A
transition can be labeled by a synchronization
(channel name with ‘?’ or ‘!’), a guard (comma
separated logical terms and an assignment (comma
separated assignments by ‘:=’).

Fig. 3.1 shows an example of a task executing
computations Comp1 and Comp2 and calling OS
services SetEvent(task,event) and TerminateTask.
Each computation is represented by one location of
the same name (e.g. Comp1). The time spent in this
location (measured by clock c) represents
computation’s finishing time (including preemption)
and it is bounded by values stored in integers L[ID]
and U[ID] (elements of arrays L and U respectively,
where index ID is unique tasks identifier). These

bounds are initialized to BCET and WCET, and they
are increased when the task is preempted (provided
by timed automaton PreemptCtrl described later).

Task1()
{
 Comp1;
 SetEvent(ID2,E1);
 Comp2;
 TerminateTask();
}

Comp1
c<=U[ID]

TerminateTask

SetEvent

Comp2
c<=U[ID]

Return[ID]?
c:=0,
L[ID]:=BCET1,
U[ID]:=WCET1

c>=L[ID], State[ID]==RUNNING
SetEventCh!

ParTask:=ID2, ParEvent:=E1

Return[ID]?
c:=0,L[ID]:=BCET2,U[ID]:=WCET2

TerminateTaskCh!
c>=L[ID], State[ID]==RUNNING

a) Pseudo-code b) Task automaton
Fig. 3.1 Simple task example

OS services calls are modeled by transitions
synchronized by channels of corresponding names
(e.g. SetEventCh!) and by locations of corresponding
names (e.g. SetEvent) where the task is waiting return
from services (channel Return[ID]?).

4 OS KERNEL MODEL

The OS model consists of variables representing OS
objects, and timed automata representing OS
services, managing preemption (PreemptCtrl) and
sorting ready queue according to priorities
(SortQueue).

Each OS service is modeled by timed automaton
representing its functionality defined by OSEK
specification (OSEK, 2003). The automaton is
waiting in its initial state until its function is called
from the task model. Then it manipulates tasks states,
the ready queue (Q) and other operating system
objects (e.g. events) and chooses the highest priority
task to run and store its ID in variable RunID. Then it
invokes PreemptCtrl automaton (by channel
EndSysCall) modeling the context switch and
providing a preemption control. As an example of a
service model we introduce WaitEvent(Mask) service
that cause the task wait for events in Mask. Fig. 4.1
shows WaitEvent OS service functionality in a
pseudo-code.
WaitEvent (Mask)
{
 if ((Event[RunID] & Mask) == 0)
 {
 State[RunID] := WAITING;
 WaitMask[RunID] := Mask;
 Release Internal Resource;
 RunID := Extract Top of ReadyQ;
 ContextSwitch; // modeled in PreemptCtrl
 Get Internal Resource;
 State[RunID] := RUNNING; // modeled in PreemptCtrl
 }
 return E_OK;
};
Fig. 4.1 WaitEvent pseudo-code

WaitEvent OS service automaton is depicted in Fig.
4.2. Locations marked by “c“ are so called
committed locations in UPPAAL notation. It must be
left immediately, without any interference of other

automaton that is not in a committed location. Since
all locations in the automaton in Fig. 4.2, except the
initial one, are committed locations, therefore the
whole service seems to be atomic from the point of
view of tasks and controlled environment models.

Wait

(Event[RunID] & Mask)==0
State[RunID]:=WAITING, WaitMask[RunID]:=Mask,
P[RunID]:=Pstat[RunID]

nQ==0
RunID:=IDLE

(Event[RunID] & Mask)!=0
State[RunID]:=READY

EndSysCall!

nQ>0
RunID:=Q[rQ], nQ--, rQ:=(rQ<sizeQ-1 ? rQ+1 :0),
P[RunID]:=IntResCeiling[RunID]

WaitEventCh?

Fig. 4.2 WaitEvent service automaton

PreemptCtrl automaton, depicted in Fig. 4.3, starts
execution of scheduled task (RunID) and provides
prolongation of finishing time bounds (L[ID] and
U[ID]) of preempted tasks. If the task that should be
scheduled now (RunID) was preempted by a task
released by an ISR in the past, its state has been
PREEMPTED since then (set in the ISR model). In
this case, the RunID task model is in the location
corresponding to some computation and its progress
must be allowed now by setting its state RUNNING
in PreemptCtrl. If the RunID task model waits for
synchronization Return[RunID] in a location
corresponding to an OS service call (its state is
READY), its state is also set RUNNING, and the
progress in the task model is allowed by the
synchronization via channel Return[RunID]. Since a
new computation is started in RunID task in this case,
bounds L[i] and U[i] of all PREEMPTED tasks (i.e.
all tasks that are in location corresponding to a
computation) are moreover increased by bounds of
the currently beginning computation (L[RunID] and
U[RunID]).

ProlongAllPreemptedInQWaitEndSysCall ToTask

Return[RunID]!

State[RunID]:=RUNNING,
 i:=rQ

State[RunID]!=PREEMPTED

i==wQ

i!=wQ &&
State[Q[i]]==PREEMPTED
L[Q[i]]:=L[Q[i]]+L[RunID],
D[Q[i]]:=D[Q[i]]+D[RunID],
i:=(i<sizeQ-1 ? i+1 : 0)

RunID==IDLE

EndSysCall?
RunID<TASK_NUM

EndSysCall?

State[RunID]==PREEMPTED
State[RunID]:=RUNNING

i!=wQ &&
State[Q[i]]!=PREEMPTED
i:=(i<sizeQ-1 ? i+1 : 0)

Fig. 4.3 PreemptCtrl automaton (interrupts are

omitted)

5 MODEL OVERAPPROXIMATION

When the preemption occurs the finishing time
bounds L[Preempted] and U[Preempted] of the
preempted computation should be prolonged by the
duration of the preemption. Since the right duration
of the preemption cannot be measured in timed
automata (a clock variable cannot be stopped or
stored), the bounds L[Preempted] and U[Preempted]
are increased by bounds of the possible preemption
that are L[Preempting] and U[Preempting], the
finishing (execution) time bounds of the preempting
task computation. This introduces an additional non-
determinism to the model since the duration of the
preempted task preemption is not necessary equal to

the duration of the preempting task execution (what
holds in the real system). Therefore the set of real
system behaviors is subset of the modeled behaviors,
i.e. the model is an over-approximation.

To illustrate the over-approximation let us consider
for example low-priority task Tlow with execution
time Clow∈ [1,4] preempted by high-priority task Thigh
with execution time Chigh∈ [2,4]. All possible relative
finishing times of both tasks in the real system and in
the proposed model are depicted in Fig. 5.1.
Finishing time of Thigh is always equal to its
execution time Chigh. Finishing of Tlow is equal to its
execution time Clow plus preemption duration.
Preemption duration is bounded by bounds of Chigh in
the model but it is equal to the actual finishing time
of Thigh in the real system.

dlow

dhigh

0 2 4 6 8
0

2

4

Fhigh

Flow

Modelled behaviour
Real behaviour

Chighin [2,4]

Clowin [1,4]

F low
 =

F hig
h

Fig. 5.1 Possible values of relative finishing times F

of preempting task Thigh and preempted task Tlow

Fig. 5.1 shows that not all modeled behaviors can
occur in the real system. It is very important to keep
this fact in mind during the verification process, since
the over-approximation does not preserve a general
property. It means that it cannot be automatically
concluded that a general property satisfied by the
model is also satisfied by the real system. It is
important from the practical point of view, that over-
approximation preserves safety and bounded liveness
properties (Berard, et al., 2001). A safety property
states that, under certain conditions, an undesirable
event never occurs. A bounded liveness property
states that, under certain condition, some desirable
event will occur within some deadline. Fig. 5.1 also
shows that the worst case finishing time of each task
is the same in the model and in the real system.
Result of the schedulability analysis based on this
model is therefore correct and corresponds to reality
(it is not pessimistic).

6 CONCLUSION

We have demonstrated, how timed automata can be
used for the multitasking preemptive application
modeling. Even though the model is an over-
approximation of the real system, complex time and
logical properties considering application data and
controlled system model can be verified by model-
checking tool, since safety and bounded liveness
properties (the most important groups) are preserved
by an over-approximation.

Opposite to hybrid automata allowing precise
modeling of the preemption (Corbet, 1996),
termination of the verification algorithm is
guaranteed for timed automata. Opposite to models
based on timed automata extended by tasks
(Fersman, et al., 2002), the internal structure of the
preemptive task can be modeled. Opposite to models
used in schedulability analysis, a timed automata
based model consider the task internal structure and
the controlled environment. Consequently the less
pessimistic analysis is provided by model-checking,
especially when the analyzed application contains
features that make the response time analysis
pessimistic (e.g. tasks self-suspension).

Off course, an exhaustive analysis of the detailed
timed automata model subjects to a state space
explosion (what is a general property of most formal
methods (Corbet, 1996)). Therefore the proposed
model is abstract as much as possible and contains
only information necessary for a correct verification.
The operating system model use only modest data
structures, it does not use any clock variables
(duration of OS services and context switch is
involved in the execution time of computations), it
does not allow any non-determinism and all locations
are committed what prevents paths interleaving and
therefore restricts explored state space. Notice also
that OSEK is one of the most appropriate operating
systems to be modeled by timed automata since it is
static (all objects are created at the compilation time)
and it is designed for a modest runtime environment
of embedded devices. The model of application tasks
must be designed as a compromise between the
model precision and its state space size. It is
necessary to limit the size of modeled data, non-
determinism and number of tasks and computations
to obtain a model of reasonable size.

Even for these restrictions, model-checking approach
is applicable for formal verification of realistic
applications whose verification done manually by
human would be hard and error prone.

ACKNOWLEDGEMENT

This work was supported by the Ministry of
Education of the Czech Republic under Project
1ET400750406.

REFERENCES

Alur, R. and D.L. Dill (1994). A theory of timed
automata. Theoretical Computer Science, 126,
183-235.

Bailey C.M., A. Burns, A.J. Wellings and C.H.
Forsyth (1995). A Performance Analysis of a
Hard Real-Time System. Control Engineering
Practice, 3(4), 447-464.

Behrmann, G., A. David, K.G. Larsen, O. Möller, P.
Pettersson and W. Yi (2001). Uppaal - Present
and Future. In: Proceedings of the 40th IEEE

Conference on Decision and Control
(CDC'2001). pp. 2881-2886, Orlando, Florida.

Berard, B., M. Bidoit, A. Finkel, F. Laroussinie, A.
Petit, L. Petrucci, Ph. Schnoebelen and P.
McKenzie (2001). Systems and Software
Verification: Model-Checking Techniques and
Tools. Springer Verlag.

Corbett, J. C. (1996). Timing analysis of Ada tasking
programs. IEEE Transactions on Software
Engineering, 22(7), pp. 461-483.

Daws, C., A. Olivero, S. Tripakis and S. Yovine
(1996). The tool Kronos. In: Proceedings of
Hybrid Systems III, Verification and Control,
LNCS 1066, 208-219. Springer-Verlag, New
York.

Fersman, E., P. Pettersson, and W. Yi (2002). Timed
Automata with Asynchronous Processes:
Schedulability and Decidability. In: Proceedings
of 8th International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems, TACAS 2002, LNCS 2280, pp.67-82,
Springer-Verlag

Fersman, E., P. Pettersson, and W. Yi (2003).
Schedulability Analysis using two clocks. In:
Proceedings of TACAS’03, LNCS 2619 pp 224-
239. Springer-Verlag.

Klein, M., T. Ralya, B. Pollak, R. Obenza, and M. G.
Harbour (1993). A Practitioner's Handbook for
Real-Time Systems Analysis. Kluwer Academic
Publishers, Boston.

Krčál, P. and W. Yi (2004): Decidable and
Undecidable Problems in Schedulability
Analysis Using Timed Automata. In:
Proceedings of TACAS'04, LNCS 2988, pp 236-
250. Springer-Verlag.

Larsen, K.G., P. Pettersson, and Yi, W. (1995).
Model-Checking for Real-Time Systems. In
Proceedings of the 10th International
Conference on Fundamentals of Computation
Theory, LNCS 965, 62-88. Springer Verlag

Liu, J.W.S. (2000). Real-time systems. Prentice-Hall,
Inc., Upper Saddle River, New Jersey

Lundqvist, K. and L. Asplund (2003). A Ravenscar-
Compliant Run-time Kernel for Safety-Critical
Systems. Real-Time Systems Journal, 24(1): 29-
54.

OSEK (2003). OSEK/VDX Operating System
Specification 2.2.1. http://www.osek-vdx.org/

Sha, L., M. Klein and J. Goodenough (1991). Rate
Monotonic Analysis for Real-Time Systems.
129-155. Foundations of Real-Time Computing:
Scheduling and Resource Management. Kluwer
Academic Publishers, Boston.

Waszniowski, L. and Z. Hanzálek (2003). Analysis
of Real Time Operating System Based
Applications. In: Proceedings of the 1st
International Workshop on Formal Modeling
and Analysis of Timed Systems, FORMATS’03,
LNCS 2791, pp. 219 - 233. Springer-Verlag
Heidelberg.

