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Abstract: This article shows, how a preemptive 
multitasking application running under a real-time 
operating system compliant with OSEK/VDX 
standard can be modeled by timed automata. The 
application under consideration consists of several 
tasks, it includes synchronization by events and 
resource sharing. For such system, model-checking 
theory based on timed automata and implemented in 
model-checking tools can be used to verify time and 
logical properties of the proposed model. It is shown 
that the proposed model is over-approximation in the 
case of preemptive scheduling policy. 

1 INTRODUCTION 

This paper deals with modeling of applications 
running under real-time operating system (OS). 
Typical application under assumption is a controller 
consisting of periodic and aperiodic tasks constrained 
by deadlines and synchronized via communication 
primitives. 

The model-checking (Larsen, et al., 1995) approach, 
shown in this paper, provides timed automata (Alur 
and Dill, 1994) model of an operating system, 
application tasks and controlled environment. In the 
scheduling theory, the task model usually consists of 
its execution time, the blocking time and the inter-
arrival time. Our approach assumes a fine grain 
model of the task internal structure consisting of 
computations, system calls, selected variables, code 
branching and loops. Therefore the model combines 
both, logic and timing parameters of a discrete event 
system enabling to check rather complex properties 
(safety and bounded liveness properties, 
schedulability, state reachability) by model-checking 
tools (e.g. UPPAAL1 (Behrmann, et al., 2001) and 
Kronos2 (Daws, et al., 1996)) in finite time. 

Even though timed automata and model-checking 
(analogous to other formal methods) allows modeling 
and verifying almost everything, it is generally 
known, that they are susceptible to state space 
explosion. This fact restricts the size of verified 
application to the small size that seems to be 
unusable in praxis (compared with matured 

                                                 
1 http://www.uppaal.com 
2 http://www-verimag.imag.fr/TEMPORISE/kronos/ 

schedulability analysis methods (Liu, 2000)). 
Therefore we try to show in this paper, how to build 
a compromise model of a reasonable size on one side 
and of reasonable granularity allowing detailed 
formal analysis of real-time properties that can not be 
done by schedulability analysis on the other side. 

Methods for schedulability analysis, e.g. rate 
monotonic analysis (RMA) ((Sha, et al., 1991; Liu, 
2000) have been widely used in praxis. However they 
can lead to pessimistic results when non-periodic 
tasks, shared resources and other features are 
incorporated (Bailey, et al., 1995). The schedulability 
analysis based on model-checking of fine grain 
model provides less pessimistic results in some cases 
(Waszniowski and Hanzálek, 2003). 

Fersman, et al. in (2002) and (2003) extended timed 
automata by asynchronous tasks (i.e. tasks triggered 
by events) to provide model for event-driven 
systems. This approach provides good results for 
aperiodic tasks but it is not suited to model the task 
internal structure as follows from results of (Krčál 
and Yi, 2004). Corbet in (1996) provides model of 
real time Ada tasking programs based hybrid 
automata. Opposite to timed automata used in our 
approach, reachability problem is undecidable for 
hybrid automata and therefore the verification 
algorithm termination is not guarantied in general. 
Timed automata are used to model primitives of 
Ravenscar run-time kernel for Ada in (Lundqvist and 
Asplund, 2003). However, the time in application is 
discrete opposite to our approach where the time is 
dense. 

This paper is organized as follows: Section 2 
describes fine grain model used in this paper. 
Sections 3 and 4 present timed automata models of 
tasks and OSEK compliant OS (OSEK, 2003). This 
model is an over-approximation from the model-
checking point of view in some cases as it is shown 
in Section 5. 

2 APPLICATION FINE GRAIN MODEL 

Fine grain model treats tasks and interrupt service 
routines (ISR) internal structure, the OS functionality 
and the controlled environment behavior. All 
components are modeled by timed automata 



     

synchronized via channels and by shared variables. 
The task model consists of several blocks of code 
called computations (characterized by their BCET 
and WCET), calls of OS services, selected variables, 
and code branching and loops (affected by values of 
selected variables). 

Structure of the entire model is on Fig. 2.1. 
Rectangular blocks represent particular timed 
automata. Synchronization is expressed by arcs 
labeled by name of the synchronization channel. The 
most important data structures are shown in the right 
side of the figure. The essential components are 
explained in the following sections. 
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Fig. 2.1 Overview of entire timed automata model 

When a general property of the model is analyzed by 
exhaustive state space search (done by model 
checking tool), an execution time of a task must be 
specified by an interval covering all possible cases, 
i.e. 〈BCET, WCET〉. Due to scheduling anomaly, 
WCET of computations do not necessary lead to the 
worst case finishing time of the whole task. 

3 TASK MODEL BY TIMED AUTOMATA 

Each task (or its instance) is modeled by one timed 
automaton in UPPAAL notation (see Fig. 3.1). 
Double circle represents initial location. A location 
can be labeled by its name and a time invariant in the 
form “c<=U”, allowing to stay in the location only 
when the clock c is smaller or equal to U. A 
transition can be labeled by a synchronization 
(channel name with ‘?’ or ‘!’), a guard (comma 
separated logical terms and an assignment (comma 
separated assignments by ‘:=’). 

Fig. 3.1 shows an example of a task executing 
computations Comp1 and Comp2 and calling OS 
services SetEvent(task,event) and TerminateTask. 
Each computation is represented by one location of 
the same name (e.g. Comp1). The time spent in this 
location (measured by clock c) represents 
computation’s finishing time (including preemption) 
and it is bounded by values stored in integers L[ID] 
and U[ID] (elements of arrays L and U respectively, 
where index ID is unique tasks identifier). These 

bounds are initialized to BCET and WCET, and they 
are increased when the task is preempted (provided 
by timed automaton PreemptCtrl described later). 

Task1() 
{ 
 Comp1; 
 SetEvent(ID2,E1); 
 Comp2; 
 TerminateTask(); 
} 
 

Comp1
c<=U[ID]

TerminateTask

SetEvent

Comp2
c<=U[ID]

Return[ID]?
c:=0,
L[ID]:=BCET1,
U[ID]:=WCET1

c>=L[ID], State[ID]==RUNNING
SetEventCh!

ParTask:=ID2, ParEvent:=E1

Return[ID]?
c:=0,L[ID]:=BCET2,U[ID]:=WCET2

TerminateTaskCh!
c>=L[ID], State[ID]==RUNNING

a) Pseudo-code b) Task automaton 
Fig. 3.1 Simple task example 

OS services calls are modeled by transitions 
synchronized by channels of corresponding names 
(e.g. SetEventCh!) and by locations of corresponding 
names (e.g. SetEvent) where the task is waiting return 
from services (channel Return[ID]?). 

4 OS KERNEL MODEL 

The OS model consists of variables representing OS 
objects, and timed automata representing OS 
services, managing preemption (PreemptCtrl) and 
sorting ready queue according to priorities 
(SortQueue). 

Each OS service is modeled by timed automaton 
representing its functionality defined by OSEK 
specification (OSEK, 2003). The automaton is 
waiting in its initial state until its function is called 
from the task model. Then it manipulates tasks states, 
the ready queue (Q) and other operating system 
objects (e.g. events) and chooses the highest priority 
task to run and store its ID in variable RunID. Then it 
invokes PreemptCtrl automaton (by channel 
EndSysCall) modeling the context switch and 
providing a preemption control. As an example of a 
service model we introduce WaitEvent(Mask) service 
that cause the task wait for events in Mask. Fig. 4.1 
shows WaitEvent OS service functionality in a 
pseudo-code. 
WaitEvent (Mask) 
{ 
 if ((Event[RunID] & Mask) == 0) 
 { 
  State[RunID] := WAITING; 
  WaitMask[RunID] := Mask; 
  Release Internal Resource; 
  RunID := Extract Top of ReadyQ; 
  ContextSwitch;       // modeled in PreemptCtrl 
  Get Internal Resource; 
  State[RunID] := RUNNING;   // modeled in PreemptCtrl 
 } 
 return E_OK; 
}; 
Fig. 4.1 WaitEvent pseudo-code 

WaitEvent OS service automaton is depicted in Fig. 
4.2. Locations marked by “c“ are so called 
committed locations in UPPAAL notation. It must be 
left immediately, without any interference of other 



     

automaton that is not in a committed location. Since 
all locations in the automaton in Fig. 4.2, except the 
initial one, are committed locations, therefore the 
whole service seems to be atomic from the point of 
view of tasks and controlled environment models. 
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P[RunID]:=IntResCeiling[RunID]

WaitEventCh?

 
Fig. 4.2 WaitEvent service automaton 

PreemptCtrl automaton, depicted in Fig. 4.3, starts 
execution of scheduled task (RunID) and provides 
prolongation of finishing time bounds (L[ID] and 
U[ID]) of preempted tasks. If the task that should be 
scheduled now (RunID) was preempted by a task 
released by an ISR in the past, its state has been 
PREEMPTED since then (set in the ISR model). In 
this case, the RunID task model is in the location 
corresponding to some computation and its progress 
must be allowed now by setting its state RUNNING 
in PreemptCtrl. If the RunID task model waits for 
synchronization Return[RunID] in a location 
corresponding to an OS service call (its state is 
READY), its state is also set RUNNING, and the 
progress in the task model is allowed by the 
synchronization via channel Return[RunID]. Since a 
new computation is started in RunID task in this case, 
bounds L[i] and U[i] of all PREEMPTED tasks (i.e. 
all tasks that are in location corresponding to a 
computation) are moreover increased by bounds of 
the currently beginning computation (L[RunID] and 
U[RunID]). 

ProlongAllPreemptedInQWaitEndSysCall ToTask
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State[RunID]:=RUNNING,
           i:=rQ

State[RunID]!=PREEMPTED

i==wQ
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D[Q[i]]:=D[Q[i]]+D[RunID],
i:=(i<sizeQ-1 ? i+1 : 0)

RunID==IDLE

EndSysCall?
RunID<TASK_NUM

EndSysCall?

State[RunID]==PREEMPTED
State[RunID]:=RUNNING

i!=wQ &&
State[Q[i]]!=PREEMPTED
i:=(i<sizeQ-1 ? i+1 : 0)

 
Fig. 4.3 PreemptCtrl automaton (interrupts are 

omitted) 

5 MODEL OVERAPPROXIMATION 

When the preemption occurs the finishing time 
bounds L[Preempted] and U[Preempted] of the 
preempted computation should be prolonged by the 
duration of the preemption. Since the right duration 
of the preemption cannot be measured in timed 
automata (a clock variable cannot be stopped or 
stored), the bounds L[Preempted] and U[Preempted] 
are increased by bounds of the possible preemption 
that are L[Preempting] and U[Preempting], the 
finishing (execution) time bounds of the preempting 
task computation. This introduces an additional non-
determinism to the model since the duration of the 
preempted task preemption is not necessary equal to 

the duration of the preempting task execution (what 
holds in the real system). Therefore the set of real 
system behaviors is subset of the modeled behaviors, 
i.e. the model is an over-approximation. 

To illustrate the over-approximation let us consider 
for example low-priority task Tlow with execution 
time Clow∈ [1,4] preempted by high-priority task Thigh 
with execution time Chigh∈ [2,4]. All possible relative 
finishing times of both tasks in the real system and in 
the proposed model are depicted in Fig. 5.1. 
Finishing time of Thigh is always equal to its 
execution time Chigh. Finishing of Tlow is equal to its 
execution time Clow plus preemption duration. 
Preemption duration is bounded by bounds of Chigh in 
the model but it is equal to the actual finishing time 
of Thigh in the real system. 
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Fig. 5.1 Possible values of relative finishing times F 

of preempting task Thigh and preempted task Tlow 

Fig. 5.1 shows that not all modeled behaviors can 
occur in the real system. It is very important to keep 
this fact in mind during the verification process, since 
the over-approximation does not preserve a general 
property. It means that it cannot be automatically 
concluded that a general property satisfied by the 
model is also satisfied by the real system. It is 
important from the practical point of view, that over-
approximation preserves safety and bounded liveness 
properties (Berard, et al., 2001). A safety property 
states that, under certain conditions, an undesirable 
event never occurs. A bounded liveness property 
states that, under certain condition, some desirable 
event will occur within some deadline. Fig. 5.1 also 
shows that the worst case finishing time of each task 
is the same in the model and in the real system. 
Result of the schedulability analysis based on this 
model is therefore correct and corresponds to reality 
(it is not pessimistic). 

6 CONCLUSION 

We have demonstrated, how timed automata can be 
used for the multitasking preemptive application 
modeling. Even though the model is an over-
approximation of the real system, complex time and 
logical properties considering application data and 
controlled system model can be verified by model-
checking tool, since safety and bounded liveness 
properties (the most important groups) are preserved 
by an over-approximation. 



     

Opposite to hybrid automata allowing precise 
modeling of the preemption (Corbet, 1996), 
termination of the verification algorithm is 
guaranteed for timed automata. Opposite to models 
based on timed automata extended by tasks 
(Fersman, et al., 2002), the internal structure of the 
preemptive task can be modeled. Opposite to models 
used in schedulability analysis, a timed automata 
based model consider the task internal structure and 
the controlled environment. Consequently the less 
pessimistic analysis is provided by model-checking, 
especially when the analyzed application contains 
features that make the response time analysis 
pessimistic (e.g. tasks self-suspension). 

Off course, an exhaustive analysis of the detailed 
timed automata model subjects to a state space 
explosion (what is a general property of most formal 
methods (Corbet, 1996)). Therefore the proposed 
model is abstract as much as possible and contains 
only information necessary for a correct verification. 
The operating system model use only modest data 
structures, it does not use any clock variables 
(duration of OS services and context switch is 
involved in the execution time of computations), it 
does not allow any non-determinism and all locations 
are committed what prevents paths interleaving and 
therefore restricts explored state space. Notice also 
that OSEK is one of the most appropriate operating 
systems to be modeled by timed automata since it is 
static (all objects are created at the compilation time) 
and it is designed for a modest runtime environment 
of embedded devices. The model of application tasks 
must be designed as a compromise between the 
model precision and its state space size. It is 
necessary to limit the size of modeled data, non-
determinism and number of tasks and computations 
to obtain a model of reasonable size. 

Even for these restrictions, model-checking approach 
is applicable for formal verification of realistic 
applications whose verification done manually by 
human would be hard and error prone. 
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