
 

     

 
 
 
 
 
 

ANALYSIS OF OSEK/VDX BASED AUTOMOTIVE APPLICATIONS 
 
 
 

Libor Waszniowski, Zdenek Hanzalek 
 
 

Czech Technical University 
Centre for Applied Cybernetics, Department of Control Engineering 

Karlovo nám. 13, 121 35 Prague 2, Czech Republic 
{hanzalek, xwasznio}@fel.cvut.cz 

 
 
 

 
Abstract: The aim of this article is to show, how an automotive real-time software 
application running under real-time operating system compliant with OSEK/VDX 
standard can be modelled by timed automata. The application under consideration 
consists of several basic or extended tasks, it includes resource sharing and 
synchronisation by events. For such system, model checking theory based on timed 
automata and implemented in model checking tools can be used for verifying complex 
time and logical properties of proposed model. Use of this methodology is demonstrated 
on the automotive case study. The automated transmission system and its control software 
running under OSEK compliant operating system are modelled and properties necessary 
for its proper function are verified by model checker UPPAAL. 
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1 INTRODUCTION 

Several special purpose real-time software analysis 
methods have been developed in the area of real time 
scheduling (Buttazzo, 1997; Liu, 2000) and they have 
been widely used in praxis. These methods dedicated 
to schedulability analysis, e.g. rate monotonic 
analysis (RMA) (Sha, and Goodenough, 1991), are 
very successful for analysis of systems with 
independent periodic tasks but incorporation of non-
periodic tasks and inter-task communication 
primitives can lead to pessimistic results. To achieve 
more general and more precise analysis, the model 
checking method allowing to automatically verify 
safety and liveness properties of the system model, 
can be used. The model expressing time and 
structural properties of the system can be based on 
timed automata or on hybrid automata. 

Corbet (1996) provides a method for constructing 
models of real time Ada tasking programs based on 
constant slope linear hybrid automata. The model can 
be automatically analysed by HyTech verifier. Even 
thought the author reports that the analysing 
algorithm does usually terminate in practice, the 
reachability problem for hybrid automata is 
undecidable in general. 

Hybrid automaton (or some of its subclass e.g. 
stopwatch automaton (Cassez and Larsen, 2000)) is 
needed for accurate modelling of preemption 
(Henzinger, et al., 1998). The continuous variable 
used to measure the amount of CPU time allocated to 
each task must progress when the corresponding task 
is executed and must be stopped when the 
corresponding task is preempted. Such behaviour 
cannot be modelled by timed automaton that does not 
allow stopping of the clock variable (Alur and Dill, 
1994; Bouyer, et al., 2000). Therefore only over-
approximate model of preemption based on timed 
automata is known (Fersman, et al., 2003; 
Waszniowski and Hanzálek, 2003b). 

On the other hand, the advantage of timed automata 
is decidability of reachability problem and the model-
checking of timed computation tree logic (TCTL) 
properties problem. Fersman et al. (2002) and 
Amnell et al. (2003) extend the timed automata 
(without loosing of mentioned advantage) by 
asynchronous processes (i.e. tasks triggered by 
events) to provide model for event-driven systems. 
Tasks associated to locations of timed automaton are 
executable programs characterised by its worst-case 
and best-case execution time, deadline and other 
parameters for scheduling (e.g. priority). Transition 
leading to a location in such automaton denotes an 



 

     

event triggering the task. Released tasks are stored in 
a queue and they are assumed to be executed 
according to a given scheduling strategy. Both non-
preemptive and preemptive scheduling strategies are 
allowed but in the case of the preemptive scheduling 
and different task worst-case and best-case execution 
time, the model is only over-approximation from the 
model checking point of view (this approximation is 
identical to the one made by timed automata model). 
The results of the schedulability analysis are not 
affected by this approximation (Waszniowski and 
Hanzálek, 2003). 

Based on these observations we provide model of 
non-preemptive tasks based on timed automata. 
Although the model based on timed automata does 
not allow to model preemption accurately, its 
advantage is (opposite to hybrid automata that are 
appropriate for accurate preemption modelling) that 
the termination of the model checking algorithm is 
guarantied. Model checkers are available for such 
model (e.g. Kronos1 and UPPAAL2 (Behrmann, at 
al., 2001)). Preemptive schedulers are known to 
provide higher utilisation of processor than the non-
preemptive ones (Buttazzo, 1997). On the other hand 
big advantage of non-preemptive scheduling is lower 
stack requirement that is important for embedded 
applications where the available RAM is limited. 
Moreover the non-preemptively scheduled 
applications are easier to program and to debug. This 
is significant advantage especially for hard real time 
applications like the automotive once where the 
highest reliability is required. This paper presents 
another important advantage of non-preemptive 
scheduling that is the possibility to create 
mathematical model of the application based on 
timed automata and to verify its safety and liveness 
properties by full automatic model-checking tool in 
finite time. 

The modelling methodology is briefly described in 
section 2 and demonstrated on non-trivial automotive 
case study in section 3. 

2 MODELING OF OSEK BASED APPLICATIONS 

OSEK compliant operating system provides static 
priority based scheduling. Each task can be specified 
as preemptive, non-preemptive or non-preemptive in 
specified group. Only non-preemptive tasks are 
considered in the rest of this paper since they can be 
modelled by timed automata accurately. OSEK 
compliant operating system provides basic tasks and 
extended tasks (OSEK, 2003). Basic tasks are created 
at system generation time as suspended, after 
activation (by another task or alarm) they become 
ready and after starting by scheduler they become 
running. Running task may relinquish the processor 
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by system call Schedule and become ready or it may 
terminate its execution and become suspended. 
Extended tasks are moreover allowed to use system 
call WailEvent, which may result in waiting state. 
Waiting task is released by occurrence of at least one 
event, which the task has waited for. Released task 
becomes ready. 

2.1 Tasks Modelling 

Task code is supposed to consist of non-preemptive 
blocks of code called computations (computations do 
not contain any blocking operation), branching, 
loops, system calls for communication and 
synchronisation (e.g. SetEvent, WaitEvent) and 
system call Schedule for explicit rescheduling. 

Computations (Comp for short) representing the 
lowest modelled granularity are supposed to take 
non-deterministic execution time C∈〈L, U〉 (lover 
and upper margins allow to involve uncertainty of 
execution time due to non-modelled code branching 
inside the computations, interrupt handlers execution, 
cycle stealing by DMA device, etc.). Execution time 
of other tasks elements is not considered (it can be 
involved in precedent computation). Suppose for 
example simple application consisting of high-
priority basic task Task1 and low-priority extended 
task Task2 in Fig. 2.1. 

Task1() { 
 Comp1; 
 Schedule(); 
 Comp2; 
 TerminateTask(); 
}; 

Task2() { 
 Comp1; 
 while(TRUE) { 
  WaitEvent(Event1); 
  ClearEvent(Event1) 
  Comp2; 
 }; 
}; 

Fig. 2.1. Example of tasks pseudocode 

Periodic activation of Task1 provides periodic alarm 
Alarm1 modelled by automaton depicted in Fig. 2.2. 
The second automaton in Fig. 2.2 is model of Alarm2 
providing periodic setting of event Event1. 

Alarm1
t<=Per

t>=Per
t:=0, nActivated1:=nActivated1+1

 

Alarm2
t<=Per

t>=Per
t:=0, Event1:=1

 

Fig. 2.2. Models of Alarm1 and Alarm2 

Each task is represented by one timed automaton in 
application model. These automata share variables to 
model the sequential execution of tasks organised by 
scheduler. Models of tasks from Fig. 2.1 are in Fig. 
2.3 and Fig. 2.4. 

The modelling notation of the model-checking tool 
UPPAAL is used. The double circle used for 
locations Suspended specifies an initial location. The 
location WaitEvent with the letter c inside the circle 
is so called committed locations providing atomicity 
of traversing of in-coming and out-coming transitions 
(committed location must be left immediately 



 

     

without any interference of other automaton in the 
model). Above a circle representing a location is 
specified its name and time invariant representing 
upper bound of time spend in this location. Above an 
oriented edge representing a transition is 
synchronisation through channel (transition marked 
by chan! must be taken synchronously with the 
transition marked by chan? and vice versa) and under 
synchronisation is guard (all coma separated 
expressions must hold to enable transition). Under 
the edge are updates (all coma separated expressions 
are executed). 

Ready1 Comp1
w<=U1 Ready2

Comp2
w<=U2

Suspended

Schedule

w:=0, Free:=0, nQ:=nQ-1,
rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Free==1, Q[rQ]==ID
Urg! wQch!

Q[wQ]:=ID, Free:=1

P[ID]<P[Q[rQ]] Free==1, Q[rQ]==ID

w:=0, Free:=0, nQ:=nQ-1,
rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Urg!

w>=L2

Free:=1, isSuspended1:=1

wQuch!
nActivated1>0

nActivated1:=nActivated1-1, Q[wQ]:=ID,
isSuspended1:=0

w>=L1

w:=0

P[ID]>=P[Q[rQ]]

 

Fig. 2.3. Model of Task1 

 

Ready1 Comp1
w<=U1

Ready2Comp2
w<=U2

Suspended

Waiting WaitEventClearEvent

w:=0, Free:=0, nQ:=nQ-1,
rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Free==1, Q[rQ]==ID,
isSuspended1==0 || nActivated1==0

Urg!

wQuch!

Q[wQ]:=ID,
isWaiting2:=0

Event1==1
Free==1, Q[rQ]==ID,
isSuspended1==0 || nActivated1==0

Free:=0, nQ:=nQ-1,
rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Urg!

w>=L2

wQuch!
nActivated2>0

nActivated2:=nActivated2-1, Q[wQ]:=ID,
isSuspended2:=0, Event1:=0

w>=L1

Event1==0

Free:=1,
isWaiting2:=1

Event1==1

w:=0,
Event1:=0

 

Fig. 2.4 Model of Task2 

Automaton representing the model of a task consists 
of locations and variables representing state of the 
task code execution from the application point of 
view (Comp1, Comp2, Schedule, WaitEvent, 
ClearEvent), state of the task from the scheduling 
point of view (Suspended, Ready1, Ready2, Waiting) 
and state of the scheduler and objects of the operating 
system (Free, Q, Event1,...). 

Each task is identified by unique integer ID 
(0,1,2,...). Priority of the task is stored in global array 
P, indexed by ID. IDs of all tasks, which are in 
Ready state, are stored in the queue modelled as 
global array Q representing a circular buffer. The 
integer nQ is the number of elements in the queue. 
The integer rQ is the position for reading of the first 
element in Q and the integer wQ is position of the 
first empty element in Q as is depicted in Fig. 2.5. 
Tasks are ordered in descending order according to 
their priorities in Q (rQ points to the ready task with 
the highest priority). 

- ID3 ID1 ID2 - -

rQ wQ

Q

nQReady queue
ID1 ID2 ID3 ... IDn

P

Priorities

3 1 5 x x

 

Fig. 2.5. Array of tasks priorities and ready queue 

ID of the task leaving the Ready state is deleted from 
the ready queue by decrementing the number of 
elements in the queue nQ and by moving reading 
pointer rQ to the next element in the queue. ID of the 
task entering the Ready state is written to the end of 
ready queue. The ready queue must be reordered 
after this operation. Ordering according priorities is 
provided by automaton wPriorQueue depicted in Fig. 
2.6. Reordering mechanism is started by 
synchronisation channel wQch or wQuch. The 
channel wQch is used on transitions from Comp to 
Ready where the upper margin of the time of taking 
this transition is expressed by time invariant of 
location Comp (It is not distinguished Comp1 and 
Comp2 or Ready1 and Ready2 respectively when it is 
not necessary and it is abbreviated by Comp or Ready 
respectively). The channel wQuch is used on 
transitions from Suspended or Waiting to Ready. 
Since no upper margin of the time of taking these 
transitions is expressed, the channel wQuch is 
declared as urgent channel (no time progress is 
enabled when there are some enabled transitions 
synchronised through urgent channel). This transition 
is therefore taken as soon as it is enabled. 

nQ<sizeQ
nQ:=nQ+1, i:=wQ, wQ:=(wQ<sizeQ-1 ? wQ+1 : 0)

i!=rQ
j:=(i==0 ? sizeQ-1 : i-1)

i==rQ

P[Q[i]]<=P[Q[j]] P[Q[i]]>P[Q[j]]

tmp:=Q[i], Q[i]:=Q[j], Q[j]:=tmp,
i:=(i==0 ? sizeQ-1 : i-1)

wQuch?wQch?

 

Fig. 2.6. Automaton wPriorQueue providing 
reordering of ready queue Q 

Mutual exclusive access of the tasks to running state 
(locations Comp1 and Comp2) is guarded by two-
state variable Free. Moreover, only the highest 
priority task (its ID is at the top of ready queue) can 
become running. To prevent processor idling (no task 
is running even thought it would be possible), the 
transition from Ready to Comp location must be 
taken as soon as it is enabled. This is provided by 
urgent channel Urg, which provides synchronisation 
with still enabled transition in one location 
automaton constructed specially for this purpose.  

Suspended task becomes ready when it has been 
activated at least once (nActivated1>0). When the 
conformance class of operating system does not 
support multiple activations, zero must be assigned to 
the variable nActivated1 on transition ending in 
Suspended location. 

Each transition beginning in Ready location in Task2 
automaton has guard containing expression 
isSuspended1==0 || nActivated1==0 (|| is logical or 
and == is relation equality). This expression prevents 
the low-priority task Task2 to become running when 
the high-priority task Task1 is suspended but can be 
immediately activated. It can be seen that the 



 

     

transition from Suspended to Ready1 in Task1 
automaton has higher priority than the transitions 
from Ready1 to Comp1 and from Ready2 to 
ClearEvent in automaton Task2. This transition 
priority assignment reflects the fact that the operating 
system releases waiting tasks and activates 
suspended tasks, if it is possible, before scheduling. 
This problem is studied in (Waszniowski and 
Hanzálek, 2003a) in more details. 

Notice that the proposed model is simplified by 
assumption that the context switch does not take any 
time. Context switch time can be simply involved in 
the computation time of each computation.  

2.2 Resource modelling 

OSEK compliant operating system provides resource 
management for coordination of concurrent access of 
several tasks to shared resources. Since system call 
Sechedule or WaitEvent must not be called while a 
resource is occupied, resources are in non-preemptive 
tasks protected just by avoiding of using Sechedule 
and WaitEvent within a critical section. 

Nevertheless if there is requirement to use resources 
in non-preemptive scheduling, it can be very simply 
modelled. Due to OSEK priority ceiling resource 
access protocol (OSEK 2003) (sometimes called 
Highest Locker or Immediate Inheritance protocol), 
the only effect of getting and releasing resources is 
task priority change from its static priority to the 
priority ceiling of the resources and vice versa. It can 
be incorporated to the proposed model by changing 
actual task priority in P[ID] to resource priority 
ceiling at transition representing GetResource. The 
old value of P[ID] must be stored in resource 
dedicated variable PriorityBeforeRequest that is 
assigned back to the actual task priority in P[ID] at 
transition representing ReleaseResource. 

3 AUTOMATED TRANSMISSION CASE STUDY 

This section demonstrates modelling of the OSEK 
compliant operating system based applications on the 
example of the automated transmission system. Five-
speed gearbox is assumed. Each of three shifting rods 
is actuated by servo that can shift the collar form 
neutral to one gear or to the second gear. Automaton 
representing one shifting rod is depicted in Fig. 3.5. 
Dry clutch actuated by servo is supposed. It is 
modelled by automaton depicted in Fig. 3.4. Gearbox 
and clutch are controlled by computer running 
software consisting of three non-preemptive tasks 
executed under OSEK compliant operating system. 
Task AutomatedTransmisionTask (Fig. 3.1) selects 
according to engine condition appropriate gear 
(variable DesiredGear). It is assigned by the lowest 
priority 1 and it is periodically activated by alarm 
AutTransAlarm modelled by automaton in Fig. 3.7 

b). AutomatedTransmisionTask is modelled by 
automaton in Fig. 3.6. If the currently engaged gear 
(variable CurrentGear) differ from the desired gear, 
task GearBoxTask is activated. The GearBoxTask 
(Fig. 3.2) opens the clutch, disengages current gear, 
engages desired gear and closes clutch. This task is 
assigned by the middle priority 2. It is modelled by 
automaton in Fig. 3.8. When the GearBoxtask 
disengaging or engaging any gear, it specifies which 
shifting rod servo (variable RodServo) and in which 
direction (variable MoveDir) it is necessary to move. 
Then it activates the highest priority task 
RodServoTask that controls the movement to the 
desired position in closed loop (see Fig. 3.3 and 
automaton in Fig. 3.9). 

AutomatedTransmissionTask() { 
 Comp1; 
 if (GearBoxReady==0) 
  TerminateTask(); 
 Schedule(); 
 Comp2; 
 if (DesiredGear==CurrentGear) 
  TerminateTask(); 
 ActivateTask (GearBoxTask); 
 TerminateTask(); 
}; 
 

Fig. 3.1. AutomatedTransmissionTask pseudocode 

GearBoxTask() { 
 GearBoxReady:=0; 
 ClearEvent (ClutchClosedEvent); 
 OpenClutch; 
 WaitEvent (ClutchOpenedEvent); 
 if (CurrentGear != NEUTRAL) { 
  ClearEvent(EngagedEvent); 
  MoveDir:=Gear2BackDir (CurrentGear); 
  ActivateTask (RodServoTask); 
  WaitEvent (EngagedEvent); 
 }; 
 if (DesiredGear!=NEUTRAL) { 
  ClearEvent(EngagedEvent); 
  MoveDir:=Gear2Dir(DesiredGear); 
  RodServo:=Gear2Rod(DesiredGear); 
  ActivateTask (RodServoTask); 
  WaitEvent (EngagedEvent); 
 } 
 CurrentGear:=DesiredGear; 
 ClearEvent (ClutchOpenedEvent); 
 CloseClutch; 
 WaitEvent (ClutchClosedEvent); 
 GearBoxReady:=1; 
 TerminateTask(); 
}; 
 

Fig. 3.2. GearBoxTask pseudocode 

RodServoTask() { 
 Move (RodServo, MoveDir); 
 ClearEvent (EndLimitEvent); 
 SetRelAlarm (ServoPerAlarm, PERIOD, PERIOD); 
 while (TRUE) { 
  ComputeServoPID; 
  WaitEvent (ServoPerEvent || EndLimitEvent) 
  GetEvent (RodServoTask, refMask) 
  if (*refMask & EndLimitEvent) { 
   Stop; 
   break; 
  }; 
 ClearEvent (ServoPerEvent); 
 }; 
 CancelAlarm (ServoPerAlarm); 
 SetEvent(GearBoxTask, EngagedEvent); 
 TerminateTask(); 
}; 
 

Fig. 3.3. RodServoTask pseudocode 



 

     

The goal of this case study is to create model of the 
described automated transmission system and its 
control system and to use the model-checking tool 
UPPAAL to verify the following properties: 

• At most one shifting rod can leave neutral. 
• Any shifting rod may move only when clutch is 

opened. 
• The GearBoxTask execution is finished within 0.4s 

after activation. 
• Each gear is engaged and clutch is closed 0.5s after 

the gear was selected. 
• Clutch is not opened more than 0.4s. 
 
Theses properties was formalised in TCTL based 
UPPAAL specification language and successfully 
verified by UPPAAL verifier. 

Closed
Closing

t<=ShiftTime

Opening
t<=ShiftTime

Opened

OpenClutch?

t:=0

t>=ShiftTime

ClutchOpenedEvent:=1

CloseClutch?

t:=0

t>=ShiftTime

ClutchClosedEvent:=1  

Fig. 3.4. Clutch automaton 

Shifting1
t<=ShiftTime

Gear1

Neutral

Gear2

Shifting2
t<=ShiftTime

MoveInNeutral
t<=NT

t>=ShiftTime,
Move==1, RodServo==ROD, MoveDir==1
EndLimitEvent:=1, t:=0

Move==1, RodServo==ROD, MoveDir==0
Urg!

t:=0

t>=ShiftTime,
Move==1, RodServo==ROD, MoveDir==0

EndLimitEvent:=1, t:=0
Move==1, RodServo==ROD, MoveDir==1
Urg!

t:=0

Move==1, RodServo==ROD, MoveDir==0
Urg!

t:=0

t>=ShiftTime,
Move==1, RodServo==ROD, MoveDir==0
EndLimitEvent:=1, t:=0

Move==1, RodServo==ROD, MoveDir==1
Urg!

t:=0

t>=ShiftTime,
Move==1, RodServo==ROD, MoveDir==1

EndLimitEvent:=1, t:=0

t>=NT

Move==0
Urg!

 

Fig. 3.5. One shifting rod automaton 

Ready1 Comp1
w<=U1 Ready2

Comp2
w<=U2

Suspended

Schedule

if

w:=0, Free:=0, nQ:=nQ-1,
rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Free==1, Q[rQ]==ID
Urg! wQch!

Q[wQ]:=ID, Free:=1

P[ID]<P[Q[rQ]] Free==1, Q[rQ]==ID

w:=0, Free:=0, nQ:=nQ-1,
rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Urg!

DesiredGear==CurrentGear

Free:=1, t:=0
wQuch!

nActivatedAT>0

nActivatedAT:=nActivatedAT-1, Q[wQ]:=ID

P[ID]>=P[Q[rQ]]

w:=0

w>=L1,
GearBoxReady==0

Free:=1

DesiredGear!=CurrentGear

nActivatedGB:=nActivatedGB+1,
Free:=1, t:=0

w>=L1,
GearBoxReady==1

DesiredGear:=3
DesiredGear:=4

DesiredGear:=2
DesiredGear:=1

DesiredGear:=5

DesiredGear:=0
DesiredGear:=R

w>=L2

 

Fig. 3.6. Automated transmission task automaton 

 

NotActive

Activated
t<=PERIOD

SetAlarm?
t:=0

CancelAlarm?

t>=PERIOD
t:=0, ServoPerEvent:=1  

AutTransAlarm
t<=PERIOD

t>=PERIOD
t:=0, nActivatedAT:=nActivatedAT+1  

a) ServoPerAlarm b) AutTransAlarm 

Fig. 3.7. Alarms automata 

Ready1

Comp1
w<=U1

Ready2

Comp2
w<=U2

Suspended

WaitingCO

WaitEventCO

if_CurNeutral

if_DesNeutral

Comp4
w<=U4

WaitEventCC

WaitEventE1

WaitingE1

Ready3

Comp3
w<=U3

WaitEventE2

WaitingE2

Ready4

WaitingCC

Ready5

Comp5

w<=U5
End

w:=0, Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Free==1, Q[rQ]==ID, RSisSuspended==0 || nActivatedRS==0,
RSisWaiting==0 || (ServoPerEvent==0 && EndLimitEvent==0)

Urg!

wQuch!

Q[wQ]:=ID, GBisWaitingCO:=0
ClutchOpenedEvent==1

Free==1, Q[rQ]==ID, RSisSuspended==0 || nActivatedRS==0,
RSisWaiting==0 || (ServoPerEvent==0 && EndLimitEvent==0)
Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Urg!

w>=L2
EngagedEvent:=0,MoveDir:=(CurrentGear%2==1 ? 0:1),
nActivatedRS+=1

wQuch!
nActivatedGB>0
nActivatedGB:=nActivatedGB-1, GBisSuspended:=0, Q[wQ]:=ID,
ClutchOpenedEvent:=0, ClutchClosedEvent:=0, EngagedEvent:=0, t:=0

ClutchOpenedEvent==0
Free:=1, GBisWaitingCO:=1

ClutchOpenedEvent==1

w:=0
CurrentGear!=NEUTRAL

w<=L1
GearBoxReady:=0, ClutchClosedEvent:=0

OpenClutch!

CurrentGear==NEUTRAL

EngagedEvent==0
Free:=1, GBisWaitingE:=1

EngagedEvent==1
wQuch!

Q[wQ]:=ID, GBisWaitingE:=0

Free==1, Q[rQ]==ID, RSisSuspended==0 || nActivatedRS==0,
RSisWaiting==0 || (ServoPerEvent==0 && EndLimitEvent==0)

Urg!

Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

EngagedEvent==1

DesiredGear!=NEUTRAL
w:=0

w>=L3
EngagedEvent:=0, nActivatedRS+=1,
MoveDir:=DesiredGear%2, RodServo:=(DesiredGear+1)/2

EngagedEvent==0
Free:=1, GBisWaitingE:=1

EngagedEvent==1
wQuch!

Q[wQ]:=ID, GBisWaitingE:=0

Free==1, Q[rQ]==ID, RSisSuspended==0 || nActivatedRS==0,
RSisWaiting==0 || (ServoPerEvent==0 && EndLimitEvent==0)

Urg!

Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0), w:=0

w>=L4
CloseClutch!

ClutchOpenedEvent:=0, CurrentGear:=DesiredGear

DesiredGear==NEUTRAL
w:=0

EngagedEvent==1

ClutchClosedEvent==0
Free:=1, GBisWaitingCC:=1

ClutchClosedEvent==1
wQuch!

Q[wQ]:=ID, GBisWaitingCC:=0

Free==1, Q[rQ]==ID, RSisSuspended==0 || nActivatedRS==0,
RSisWaiting==0 || (ServoPerEvent==0 && EndLimitEvent==0)

Urg!

Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0), w:=0

ClutchClosedEvent==1

w>=L5
GearBoxReady:=1, GBisSuspended:=1, Free:=1  

Fig. 3.8. Gear Box task automaton 

Ready1

Comp1
w<=U1

Ready2

Comp3
w<=U3

Suspended

Waiting

WaitEvent

if_End

Comp2
w<=U2

w:=0, Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)
Free==1, Q[rQ]==ID
Urg!

wQuch!

Q[wQ]:=ID, RSisWaiting:=0
ServoPerEvent==1 || EndLimitEvent==1

Free==1, Q[rQ]==ID
Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Urg!

CancelAlarm!

Move:=0, EngagedEvent:=1, RSisSuspended:=1, Free:=1

w>=L3

wQuch!
nActivatedRS>0
nActivatedRS:=nActivatedRS-1, Q[wQ]:=ID,
RSisSuspended:=0, ServoPerEvent:=0, EndLimitEvent:=0

ServoPerEvent==0, EndLimitEvent==0
Free:=1, RSisWaiting:=1

ServoPerEvent==1
|| EndLimitEvent==1

EndLimitEvent==1
w:=0

w>=L2

EndLimitEvent==0
w:=0, ServoPerEvent:=0

w>=L1
EndLimitEvent:=0, Move:=1, w:=0

SetAlarm!

 

Fig. 3.9. Shifting rod servo task automaton 



 

     

 

4 CONCLUSION AND FUTURE WORK 

With respect to the processor utilisation and reaction 
time the non-preemptive scheduling conceived in this 
article is not the most efficient one, but due to the 
simplicity reasons many embedded applications, 
where the available RAM is limited, are often based 
on similar non-preemptive scheduling. The non-
preemptive scheduling approach given in this article 
allows creating accurate model based on timed 
automata. The inter-task synchronisation – the most 
important aspect of real time embedded applications 
– is taken into consideration in the proposed model. 

Existing approaches for design and analysis of real-
time applications, like Rate Monotonic Analysis, use 
very elegant way of deciding whether the application 
is schedulable or not. But it is needed to mention, 
that the model checking approach provides a room 
for verifying more complex properties (e.g. detection 
of deadlocks in communication, specification of 
buffer size,…). Model checking provides also room 
for modelling and verifying of more complex time 
behaviour of the controlled system, running truly in 
parallel with the control system (modelled as separate 
automaton). 

As the complexity of the model checking remains 
very huge in a general case it is motivating to set up 
the rules applied at a design phase, that would lead 
into the state spaces of reasonable size. Specification 
of such rules linked to the identification of the 
controlled systems represents a possible direction of 
our future work. 
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