

ANALYSIS OF OSEK/VDX BASED AUTOMOTIVE APPLICATIONS

Libor Waszniowski, Zdenek Hanzalek

Czech Technical University
Centre for Applied Cybernetics, Department of Control Engineering

Karlovo nám. 13, 121 35 Prague 2, Czech Republic
{hanzalek, xwasznio}@fel.cvut.cz

Abstract: The aim of this article is to show, how an automotive real-time software
application running under real-time operating system compliant with OSEK/VDX
standard can be modelled by timed automata. The application under consideration
consists of several basic or extended tasks, it includes resource sharing and
synchronisation by events. For such system, model checking theory based on timed
automata and implemented in model checking tools can be used for verifying complex
time and logical properties of proposed model. Use of this methodology is demonstrated
on the automotive case study. The automated transmission system and its control software
running under OSEK compliant operating system are modelled and properties necessary
for its proper function are verified by model checker UPPAAL.

Keywords: Real-Time Operating Systems, Validation

1 INTRODUCTION

Several special purpose real-time software analysis
methods have been developed in the area of real time
scheduling (Buttazzo, 1997; Liu, 2000) and they have
been widely used in praxis. These methods dedicated
to schedulability analysis, e.g. rate monotonic
analysis (RMA) (Sha, and Goodenough, 1991), are
very successful for analysis of systems with
independent periodic tasks but incorporation of non-
periodic tasks and inter-task communication
primitives can lead to pessimistic results. To achieve
more general and more precise analysis, the model
checking method allowing to automatically verify
safety and liveness properties of the system model,
can be used. The model expressing time and
structural properties of the system can be based on
timed automata or on hybrid automata.

Corbet (1996) provides a method for constructing
models of real time Ada tasking programs based on
constant slope linear hybrid automata. The model can
be automatically analysed by HyTech verifier. Even
thought the author reports that the analysing
algorithm does usually terminate in practice, the
reachability problem for hybrid automata is
undecidable in general.

Hybrid automaton (or some of its subclass e.g.
stopwatch automaton (Cassez and Larsen, 2000)) is
needed for accurate modelling of preemption
(Henzinger, et al., 1998). The continuous variable
used to measure the amount of CPU time allocated to
each task must progress when the corresponding task
is executed and must be stopped when the
corresponding task is preempted. Such behaviour
cannot be modelled by timed automaton that does not
allow stopping of the clock variable (Alur and Dill,
1994; Bouyer, et al., 2000). Therefore only over-
approximate model of preemption based on timed
automata is known (Fersman, et al., 2003;
Waszniowski and Hanzálek, 2003b).

On the other hand, the advantage of timed automata
is decidability of reachability problem and the model-
checking of timed computation tree logic (TCTL)
properties problem. Fersman et al. (2002) and
Amnell et al. (2003) extend the timed automata
(without loosing of mentioned advantage) by
asynchronous processes (i.e. tasks triggered by
events) to provide model for event-driven systems.
Tasks associated to locations of timed automaton are
executable programs characterised by its worst-case
and best-case execution time, deadline and other
parameters for scheduling (e.g. priority). Transition
leading to a location in such automaton denotes an

event triggering the task. Released tasks are stored in
a queue and they are assumed to be executed
according to a given scheduling strategy. Both non-
preemptive and preemptive scheduling strategies are
allowed but in the case of the preemptive scheduling
and different task worst-case and best-case execution
time, the model is only over-approximation from the
model checking point of view (this approximation is
identical to the one made by timed automata model).
The results of the schedulability analysis are not
affected by this approximation (Waszniowski and
Hanzálek, 2003).

Based on these observations we provide model of
non-preemptive tasks based on timed automata.
Although the model based on timed automata does
not allow to model preemption accurately, its
advantage is (opposite to hybrid automata that are
appropriate for accurate preemption modelling) that
the termination of the model checking algorithm is
guarantied. Model checkers are available for such
model (e.g. Kronos1 and UPPAAL2 (Behrmann, at
al., 2001)). Preemptive schedulers are known to
provide higher utilisation of processor than the non-
preemptive ones (Buttazzo, 1997). On the other hand
big advantage of non-preemptive scheduling is lower
stack requirement that is important for embedded
applications where the available RAM is limited.
Moreover the non-preemptively scheduled
applications are easier to program and to debug. This
is significant advantage especially for hard real time
applications like the automotive once where the
highest reliability is required. This paper presents
another important advantage of non-preemptive
scheduling that is the possibility to create
mathematical model of the application based on
timed automata and to verify its safety and liveness
properties by full automatic model-checking tool in
finite time.

The modelling methodology is briefly described in
section 2 and demonstrated on non-trivial automotive
case study in section 3.

2 MODELING OF OSEK BASED APPLICATIONS

OSEK compliant operating system provides static
priority based scheduling. Each task can be specified
as preemptive, non-preemptive or non-preemptive in
specified group. Only non-preemptive tasks are
considered in the rest of this paper since they can be
modelled by timed automata accurately. OSEK
compliant operating system provides basic tasks and
extended tasks (OSEK, 2003). Basic tasks are created
at system generation time as suspended, after
activation (by another task or alarm) they become
ready and after starting by scheduler they become
running. Running task may relinquish the processor

1 http://www-verimag.imag.fr/TEMPORISE/kronos/
2 http://www.uppaal.com

by system call Schedule and become ready or it may
terminate its execution and become suspended.
Extended tasks are moreover allowed to use system
call WailEvent, which may result in waiting state.
Waiting task is released by occurrence of at least one
event, which the task has waited for. Released task
becomes ready.

2.1 Tasks Modelling

Task code is supposed to consist of non-preemptive
blocks of code called computations (computations do
not contain any blocking operation), branching,
loops, system calls for communication and
synchronisation (e.g. SetEvent, WaitEvent) and
system call Schedule for explicit rescheduling.

Computations (Comp for short) representing the
lowest modelled granularity are supposed to take
non-deterministic execution time C∈〈L, U〉 (lover
and upper margins allow to involve uncertainty of
execution time due to non-modelled code branching
inside the computations, interrupt handlers execution,
cycle stealing by DMA device, etc.). Execution time
of other tasks elements is not considered (it can be
involved in precedent computation). Suppose for
example simple application consisting of high-
priority basic task Task1 and low-priority extended
task Task2 in Fig. 2.1.

Task1() {
 Comp1;
 Schedule();
 Comp2;
 TerminateTask();
};

Task2() {
 Comp1;
 while(TRUE) {
 WaitEvent(Event1);
 ClearEvent(Event1)
 Comp2;
 };
};

Fig. 2.1. Example of tasks pseudocode

Periodic activation of Task1 provides periodic alarm
Alarm1 modelled by automaton depicted in Fig. 2.2.
The second automaton in Fig. 2.2 is model of Alarm2
providing periodic setting of event Event1.

Alarm1
t<=Per

t>=Per
t:=0, nActivated1:=nActivated1+1

Alarm2
t<=Per

t>=Per
t:=0, Event1:=1

Fig. 2.2. Models of Alarm1 and Alarm2

Each task is represented by one timed automaton in
application model. These automata share variables to
model the sequential execution of tasks organised by
scheduler. Models of tasks from Fig. 2.1 are in Fig.
2.3 and Fig. 2.4.

The modelling notation of the model-checking tool
UPPAAL is used. The double circle used for
locations Suspended specifies an initial location. The
location WaitEvent with the letter c inside the circle
is so called committed locations providing atomicity
of traversing of in-coming and out-coming transitions
(committed location must be left immediately

without any interference of other automaton in the
model). Above a circle representing a location is
specified its name and time invariant representing
upper bound of time spend in this location. Above an
oriented edge representing a transition is
synchronisation through channel (transition marked
by chan! must be taken synchronously with the
transition marked by chan? and vice versa) and under
synchronisation is guard (all coma separated
expressions must hold to enable transition). Under
the edge are updates (all coma separated expressions
are executed).

Ready1 Comp1
w<=U1 Ready2

Comp2
w<=U2

Suspended

Schedule

w:=0, Free:=0, nQ:=nQ-1,
rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Free==1, Q[rQ]==ID
Urg! wQch!

Q[wQ]:=ID, Free:=1

P[ID]<P[Q[rQ]] Free==1, Q[rQ]==ID

w:=0, Free:=0, nQ:=nQ-1,
rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Urg!

w>=L2

Free:=1, isSuspended1:=1

wQuch!
nActivated1>0

nActivated1:=nActivated1-1, Q[wQ]:=ID,
isSuspended1:=0

w>=L1

w:=0

P[ID]>=P[Q[rQ]]

Fig. 2.3. Model of Task1

Ready1 Comp1
w<=U1

Ready2Comp2
w<=U2

Suspended

Waiting WaitEventClearEvent

w:=0, Free:=0, nQ:=nQ-1,
rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Free==1, Q[rQ]==ID,
isSuspended1==0 || nActivated1==0

Urg!

wQuch!

Q[wQ]:=ID,
isWaiting2:=0

Event1==1
Free==1, Q[rQ]==ID,
isSuspended1==0 || nActivated1==0

Free:=0, nQ:=nQ-1,
rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Urg!

w>=L2

wQuch!
nActivated2>0

nActivated2:=nActivated2-1, Q[wQ]:=ID,
isSuspended2:=0, Event1:=0

w>=L1

Event1==0

Free:=1,
isWaiting2:=1

Event1==1

w:=0,
Event1:=0

Fig. 2.4 Model of Task2

Automaton representing the model of a task consists
of locations and variables representing state of the
task code execution from the application point of
view (Comp1, Comp2, Schedule, WaitEvent,
ClearEvent), state of the task from the scheduling
point of view (Suspended, Ready1, Ready2, Waiting)
and state of the scheduler and objects of the operating
system (Free, Q, Event1,...).

Each task is identified by unique integer ID
(0,1,2,...). Priority of the task is stored in global array
P, indexed by ID. IDs of all tasks, which are in
Ready state, are stored in the queue modelled as
global array Q representing a circular buffer. The
integer nQ is the number of elements in the queue.
The integer rQ is the position for reading of the first
element in Q and the integer wQ is position of the
first empty element in Q as is depicted in Fig. 2.5.
Tasks are ordered in descending order according to
their priorities in Q (rQ points to the ready task with
the highest priority).

- ID3 ID1 ID2 - -

rQ wQ

Q

nQReady queue
ID1 ID2 ID3 ... IDn

P

Priorities

3 1 5 x x

Fig. 2.5. Array of tasks priorities and ready queue

ID of the task leaving the Ready state is deleted from
the ready queue by decrementing the number of
elements in the queue nQ and by moving reading
pointer rQ to the next element in the queue. ID of the
task entering the Ready state is written to the end of
ready queue. The ready queue must be reordered
after this operation. Ordering according priorities is
provided by automaton wPriorQueue depicted in Fig.
2.6. Reordering mechanism is started by
synchronisation channel wQch or wQuch. The
channel wQch is used on transitions from Comp to
Ready where the upper margin of the time of taking
this transition is expressed by time invariant of
location Comp (It is not distinguished Comp1 and
Comp2 or Ready1 and Ready2 respectively when it is
not necessary and it is abbreviated by Comp or Ready
respectively). The channel wQuch is used on
transitions from Suspended or Waiting to Ready.
Since no upper margin of the time of taking these
transitions is expressed, the channel wQuch is
declared as urgent channel (no time progress is
enabled when there are some enabled transitions
synchronised through urgent channel). This transition
is therefore taken as soon as it is enabled.

nQ<sizeQ
nQ:=nQ+1, i:=wQ, wQ:=(wQ<sizeQ-1 ? wQ+1 : 0)

i!=rQ
j:=(i==0 ? sizeQ-1 : i-1)

i==rQ

P[Q[i]]<=P[Q[j]] P[Q[i]]>P[Q[j]]

tmp:=Q[i], Q[i]:=Q[j], Q[j]:=tmp,
i:=(i==0 ? sizeQ-1 : i-1)

wQuch?wQch?

Fig. 2.6. Automaton wPriorQueue providing
reordering of ready queue Q

Mutual exclusive access of the tasks to running state
(locations Comp1 and Comp2) is guarded by two-
state variable Free. Moreover, only the highest
priority task (its ID is at the top of ready queue) can
become running. To prevent processor idling (no task
is running even thought it would be possible), the
transition from Ready to Comp location must be
taken as soon as it is enabled. This is provided by
urgent channel Urg, which provides synchronisation
with still enabled transition in one location
automaton constructed specially for this purpose.

Suspended task becomes ready when it has been
activated at least once (nActivated1>0). When the
conformance class of operating system does not
support multiple activations, zero must be assigned to
the variable nActivated1 on transition ending in
Suspended location.

Each transition beginning in Ready location in Task2
automaton has guard containing expression
isSuspended1==0 || nActivated1==0 (|| is logical or
and == is relation equality). This expression prevents
the low-priority task Task2 to become running when
the high-priority task Task1 is suspended but can be
immediately activated. It can be seen that the

transition from Suspended to Ready1 in Task1
automaton has higher priority than the transitions
from Ready1 to Comp1 and from Ready2 to
ClearEvent in automaton Task2. This transition
priority assignment reflects the fact that the operating
system releases waiting tasks and activates
suspended tasks, if it is possible, before scheduling.
This problem is studied in (Waszniowski and
Hanzálek, 2003a) in more details.

Notice that the proposed model is simplified by
assumption that the context switch does not take any
time. Context switch time can be simply involved in
the computation time of each computation.

2.2 Resource modelling

OSEK compliant operating system provides resource
management for coordination of concurrent access of
several tasks to shared resources. Since system call
Sechedule or WaitEvent must not be called while a
resource is occupied, resources are in non-preemptive
tasks protected just by avoiding of using Sechedule
and WaitEvent within a critical section.

Nevertheless if there is requirement to use resources
in non-preemptive scheduling, it can be very simply
modelled. Due to OSEK priority ceiling resource
access protocol (OSEK 2003) (sometimes called
Highest Locker or Immediate Inheritance protocol),
the only effect of getting and releasing resources is
task priority change from its static priority to the
priority ceiling of the resources and vice versa. It can
be incorporated to the proposed model by changing
actual task priority in P[ID] to resource priority
ceiling at transition representing GetResource. The
old value of P[ID] must be stored in resource
dedicated variable PriorityBeforeRequest that is
assigned back to the actual task priority in P[ID] at
transition representing ReleaseResource.

3 AUTOMATED TRANSMISSION CASE STUDY

This section demonstrates modelling of the OSEK
compliant operating system based applications on the
example of the automated transmission system. Five-
speed gearbox is assumed. Each of three shifting rods
is actuated by servo that can shift the collar form
neutral to one gear or to the second gear. Automaton
representing one shifting rod is depicted in Fig. 3.5.
Dry clutch actuated by servo is supposed. It is
modelled by automaton depicted in Fig. 3.4. Gearbox
and clutch are controlled by computer running
software consisting of three non-preemptive tasks
executed under OSEK compliant operating system.
Task AutomatedTransmisionTask (Fig. 3.1) selects
according to engine condition appropriate gear
(variable DesiredGear). It is assigned by the lowest
priority 1 and it is periodically activated by alarm
AutTransAlarm modelled by automaton in Fig. 3.7

b). AutomatedTransmisionTask is modelled by
automaton in Fig. 3.6. If the currently engaged gear
(variable CurrentGear) differ from the desired gear,
task GearBoxTask is activated. The GearBoxTask
(Fig. 3.2) opens the clutch, disengages current gear,
engages desired gear and closes clutch. This task is
assigned by the middle priority 2. It is modelled by
automaton in Fig. 3.8. When the GearBoxtask
disengaging or engaging any gear, it specifies which
shifting rod servo (variable RodServo) and in which
direction (variable MoveDir) it is necessary to move.
Then it activates the highest priority task
RodServoTask that controls the movement to the
desired position in closed loop (see Fig. 3.3 and
automaton in Fig. 3.9).

AutomatedTransmissionTask() {
 Comp1;
 if (GearBoxReady==0)
 TerminateTask();
 Schedule();
 Comp2;
 if (DesiredGear==CurrentGear)
 TerminateTask();
 ActivateTask (GearBoxTask);
 TerminateTask();
};

Fig. 3.1. AutomatedTransmissionTask pseudocode

GearBoxTask() {
 GearBoxReady:=0;
 ClearEvent (ClutchClosedEvent);
 OpenClutch;
 WaitEvent (ClutchOpenedEvent);
 if (CurrentGear != NEUTRAL) {
 ClearEvent(EngagedEvent);
 MoveDir:=Gear2BackDir (CurrentGear);
 ActivateTask (RodServoTask);
 WaitEvent (EngagedEvent);
 };
 if (DesiredGear!=NEUTRAL) {
 ClearEvent(EngagedEvent);
 MoveDir:=Gear2Dir(DesiredGear);
 RodServo:=Gear2Rod(DesiredGear);
 ActivateTask (RodServoTask);
 WaitEvent (EngagedEvent);
 }
 CurrentGear:=DesiredGear;
 ClearEvent (ClutchOpenedEvent);
 CloseClutch;
 WaitEvent (ClutchClosedEvent);
 GearBoxReady:=1;
 TerminateTask();
};

Fig. 3.2. GearBoxTask pseudocode

RodServoTask() {
 Move (RodServo, MoveDir);
 ClearEvent (EndLimitEvent);
 SetRelAlarm (ServoPerAlarm, PERIOD, PERIOD);
 while (TRUE) {
 ComputeServoPID;
 WaitEvent (ServoPerEvent || EndLimitEvent)
 GetEvent (RodServoTask, refMask)
 if (*refMask & EndLimitEvent) {
 Stop;
 break;
 };
 ClearEvent (ServoPerEvent);
 };
 CancelAlarm (ServoPerAlarm);
 SetEvent(GearBoxTask, EngagedEvent);
 TerminateTask();
};

Fig. 3.3. RodServoTask pseudocode

The goal of this case study is to create model of the
described automated transmission system and its
control system and to use the model-checking tool
UPPAAL to verify the following properties:

• At most one shifting rod can leave neutral.
• Any shifting rod may move only when clutch is

opened.
• The GearBoxTask execution is finished within 0.4s

after activation.
• Each gear is engaged and clutch is closed 0.5s after

the gear was selected.
• Clutch is not opened more than 0.4s.

Theses properties was formalised in TCTL based
UPPAAL specification language and successfully
verified by UPPAAL verifier.

Closed
Closing

t<=ShiftTime

Opening
t<=ShiftTime

Opened

OpenClutch?

t:=0

t>=ShiftTime

ClutchOpenedEvent:=1

CloseClutch?

t:=0

t>=ShiftTime

ClutchClosedEvent:=1

Fig. 3.4. Clutch automaton

Shifting1
t<=ShiftTime

Gear1

Neutral

Gear2

Shifting2
t<=ShiftTime

MoveInNeutral
t<=NT

t>=ShiftTime,
Move==1, RodServo==ROD, MoveDir==1
EndLimitEvent:=1, t:=0

Move==1, RodServo==ROD, MoveDir==0
Urg!

t:=0

t>=ShiftTime,
Move==1, RodServo==ROD, MoveDir==0

EndLimitEvent:=1, t:=0
Move==1, RodServo==ROD, MoveDir==1
Urg!

t:=0

Move==1, RodServo==ROD, MoveDir==0
Urg!

t:=0

t>=ShiftTime,
Move==1, RodServo==ROD, MoveDir==0
EndLimitEvent:=1, t:=0

Move==1, RodServo==ROD, MoveDir==1
Urg!

t:=0

t>=ShiftTime,
Move==1, RodServo==ROD, MoveDir==1

EndLimitEvent:=1, t:=0

t>=NT

Move==0
Urg!

Fig. 3.5. One shifting rod automaton

Ready1 Comp1
w<=U1 Ready2

Comp2
w<=U2

Suspended

Schedule

if

w:=0, Free:=0, nQ:=nQ-1,
rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Free==1, Q[rQ]==ID
Urg! wQch!

Q[wQ]:=ID, Free:=1

P[ID]<P[Q[rQ]] Free==1, Q[rQ]==ID

w:=0, Free:=0, nQ:=nQ-1,
rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Urg!

DesiredGear==CurrentGear

Free:=1, t:=0
wQuch!

nActivatedAT>0

nActivatedAT:=nActivatedAT-1, Q[wQ]:=ID

P[ID]>=P[Q[rQ]]

w:=0

w>=L1,
GearBoxReady==0

Free:=1

DesiredGear!=CurrentGear

nActivatedGB:=nActivatedGB+1,
Free:=1, t:=0

w>=L1,
GearBoxReady==1

DesiredGear:=3
DesiredGear:=4

DesiredGear:=2
DesiredGear:=1

DesiredGear:=5

DesiredGear:=0
DesiredGear:=R

w>=L2

Fig. 3.6. Automated transmission task automaton

NotActive

Activated
t<=PERIOD

SetAlarm?
t:=0

CancelAlarm?

t>=PERIOD
t:=0, ServoPerEvent:=1

AutTransAlarm
t<=PERIOD

t>=PERIOD
t:=0, nActivatedAT:=nActivatedAT+1

a) ServoPerAlarm b) AutTransAlarm

Fig. 3.7. Alarms automata

Ready1

Comp1
w<=U1

Ready2

Comp2
w<=U2

Suspended

WaitingCO

WaitEventCO

if_CurNeutral

if_DesNeutral

Comp4
w<=U4

WaitEventCC

WaitEventE1

WaitingE1

Ready3

Comp3
w<=U3

WaitEventE2

WaitingE2

Ready4

WaitingCC

Ready5

Comp5

w<=U5
End

w:=0, Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Free==1, Q[rQ]==ID, RSisSuspended==0 || nActivatedRS==0,
RSisWaiting==0 || (ServoPerEvent==0 && EndLimitEvent==0)

Urg!

wQuch!

Q[wQ]:=ID, GBisWaitingCO:=0
ClutchOpenedEvent==1

Free==1, Q[rQ]==ID, RSisSuspended==0 || nActivatedRS==0,
RSisWaiting==0 || (ServoPerEvent==0 && EndLimitEvent==0)
Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Urg!

w>=L2
EngagedEvent:=0,MoveDir:=(CurrentGear%2==1 ? 0:1),
nActivatedRS+=1

wQuch!
nActivatedGB>0
nActivatedGB:=nActivatedGB-1, GBisSuspended:=0, Q[wQ]:=ID,
ClutchOpenedEvent:=0, ClutchClosedEvent:=0, EngagedEvent:=0, t:=0

ClutchOpenedEvent==0
Free:=1, GBisWaitingCO:=1

ClutchOpenedEvent==1

w:=0
CurrentGear!=NEUTRAL

w<=L1
GearBoxReady:=0, ClutchClosedEvent:=0

OpenClutch!

CurrentGear==NEUTRAL

EngagedEvent==0
Free:=1, GBisWaitingE:=1

EngagedEvent==1
wQuch!

Q[wQ]:=ID, GBisWaitingE:=0

Free==1, Q[rQ]==ID, RSisSuspended==0 || nActivatedRS==0,
RSisWaiting==0 || (ServoPerEvent==0 && EndLimitEvent==0)

Urg!

Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

EngagedEvent==1

DesiredGear!=NEUTRAL
w:=0

w>=L3
EngagedEvent:=0, nActivatedRS+=1,
MoveDir:=DesiredGear%2, RodServo:=(DesiredGear+1)/2

EngagedEvent==0
Free:=1, GBisWaitingE:=1

EngagedEvent==1
wQuch!

Q[wQ]:=ID, GBisWaitingE:=0

Free==1, Q[rQ]==ID, RSisSuspended==0 || nActivatedRS==0,
RSisWaiting==0 || (ServoPerEvent==0 && EndLimitEvent==0)

Urg!

Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0), w:=0

w>=L4
CloseClutch!

ClutchOpenedEvent:=0, CurrentGear:=DesiredGear

DesiredGear==NEUTRAL
w:=0

EngagedEvent==1

ClutchClosedEvent==0
Free:=1, GBisWaitingCC:=1

ClutchClosedEvent==1
wQuch!

Q[wQ]:=ID, GBisWaitingCC:=0

Free==1, Q[rQ]==ID, RSisSuspended==0 || nActivatedRS==0,
RSisWaiting==0 || (ServoPerEvent==0 && EndLimitEvent==0)

Urg!

Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0), w:=0

ClutchClosedEvent==1

w>=L5
GearBoxReady:=1, GBisSuspended:=1, Free:=1

Fig. 3.8. Gear Box task automaton

Ready1

Comp1
w<=U1

Ready2

Comp3
w<=U3

Suspended

Waiting

WaitEvent

if_End

Comp2
w<=U2

w:=0, Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)
Free==1, Q[rQ]==ID
Urg!

wQuch!

Q[wQ]:=ID, RSisWaiting:=0
ServoPerEvent==1 || EndLimitEvent==1

Free==1, Q[rQ]==ID
Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Urg!

CancelAlarm!

Move:=0, EngagedEvent:=1, RSisSuspended:=1, Free:=1

w>=L3

wQuch!
nActivatedRS>0
nActivatedRS:=nActivatedRS-1, Q[wQ]:=ID,
RSisSuspended:=0, ServoPerEvent:=0, EndLimitEvent:=0

ServoPerEvent==0, EndLimitEvent==0
Free:=1, RSisWaiting:=1

ServoPerEvent==1
|| EndLimitEvent==1

EndLimitEvent==1
w:=0

w>=L2

EndLimitEvent==0
w:=0, ServoPerEvent:=0

w>=L1
EndLimitEvent:=0, Move:=1, w:=0

SetAlarm!

Fig. 3.9. Shifting rod servo task automaton

4 CONCLUSION AND FUTURE WORK

With respect to the processor utilisation and reaction
time the non-preemptive scheduling conceived in this
article is not the most efficient one, but due to the
simplicity reasons many embedded applications,
where the available RAM is limited, are often based
on similar non-preemptive scheduling. The non-
preemptive scheduling approach given in this article
allows creating accurate model based on timed
automata. The inter-task synchronisation – the most
important aspect of real time embedded applications
– is taken into consideration in the proposed model.

Existing approaches for design and analysis of real-
time applications, like Rate Monotonic Analysis, use
very elegant way of deciding whether the application
is schedulable or not. But it is needed to mention,
that the model checking approach provides a room
for verifying more complex properties (e.g. detection
of deadlocks in communication, specification of
buffer size,…). Model checking provides also room
for modelling and verifying of more complex time
behaviour of the controlled system, running truly in
parallel with the control system (modelled as separate
automaton).

As the complexity of the model checking remains
very huge in a general case it is motivating to set up
the rules applied at a design phase, that would lead
into the state spaces of reasonable size. Specification
of such rules linked to the identification of the
controlled systems represents a possible direction of
our future work.

ACKNOWLEDGEMENT

This work was supported by the Ministry of
Education of the Czech Republic under Project
LN00B096.

REFERENCES

Alur, R. and D.L. Dill (1994). A theory of timed
automata. Theoretical Computer Science 126,
183-235.

Amnell, T., E. Fersman, L. Mokrushin, P. Pettersson
and W. Yi (2003). TIMES: a Tool for
Schedulability Analysis and Code Generation of
Real-Time Systems. In: Proceedings of the 1st
International Workshop on Formal Modeling and
Analysis of Timed Systems FORMATS’03.
Springer-Verlag.

Behrmann, G., A. David, K.G. Larsen, O. Möller, P.
Pettersson, and Yi. W. (2001). UPPAAL - Present
and Future. In: Proceedings of the 40th IEEE
Conference on Decision and Control
(CDC'2001). Orlando, Florida, USA.

Bouyer, P., C. Dufourd, E. Fleury and A. Petit
(2000). Are Timed Automata Updatable?. In:
Proc. 12th Int. Conf. Computer Aided
Verification (CAV'00). LNCS 1855, pp. 464-479,
Springer-Verlag.

Buttazzo, G., C. (1997). Hard Real-Time Computing
Systems: Predictable Scheduling Algorithms and
Applications. Kluwer Academic Publishers,
Boston.

Cassez F. and K. Larsen (2000). The Impressive
Power of Stopwatches. In: Proceedings of
CONCUR 2000 - 11th International Conference
on Concurrency Theory. LNCS 1877, p. 138 ff.

Corbett, J. C. (1996). Timing analysis of Ada tasking
programs. In: IEEE Transactions on Software
Engineering. 22(7), pp. 461-483.

Fersman, E., P. Pettersson, and W. Yi (2002). Timed
Automata with Asynchronous Processes:
Schedulability and Decidability. In: Proceedings
of 8th International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems, TACAS 2002. LNCS 2280, pp.67-82,
Springer-Verlag.

Fersman, E., P. Pettersson and W. Yi (2003).
Schedulability Analysis using two clocks. In:
Proceedings of TACAS’03, LNCS 2619, pp 224-
239. Springer-Verlag.

Henzinger, T.A., P.W. Kopke, A. Puri and P. Varaiya
(1998). What's decidable about hybrid automata?
Journal of Computer and System Sciences 57:94-
124

Liu, J.W.S. (2000). Real-time systems. Prentice-Hall,
Inc., Upper Saddle River, New Jersey.

OSEK (2003). OSEK/VDX Operating System
Specification 2.2.1. http://www.osek-vdx.org/

Sha, L., M. Klein and J. Goodenough (1991). Rate
Monotonic Analysis for Real-Time Systems. In:
Foundations of Real-Time Computing:
Scheduling and Resource Management. 129-155.
Boston, MA: Kluwer Academic Publishers.

Waszniowski, L. and Z. Hanzálek (2003a). Analysis
of Real Time Operating System Based
Applications. In: Proceedings of FORMATS’03.
Springer-Verlag.

Waszniowski, L. and Z. Hanzálek (2003b). Model of
Multitasking Applications with Preemption based
on Timed Automata. Research report, Department
of Control Engineering, Czech Technical
University.

