
Analysis of Real Time Operating System Based
Applications

Libor Waszniowski, Zdenek Hanzalek

Czech Technical University
Centre for Applied Cybernetics, Department of Control Engineering

Karlovo nám. 13, 121 35 Prague 2, Czech Republic
{Hanzalek, xwasznio}@fel.cvut.cz

Abstract. This text is dedicated to modelling of real-time applications running
under multitasking operating system. Theoretical background is based on timed
automata by Alur and Dill. As this approach is not suited for modelling pre-
emption we focus on cooperative scheduling. In the addition, interrupt service
routines are considered, and their enabling/disabling is controlled by interrupt
server considering the specified server capacity. The server capacity has influ-
ence on the margins of the computation times in the application processes. Such
systems, used in practical real-time applications, can be modelled by timed
automata and further verified since their reachability problem and model check-
ing of TCTL problem is decidable. Use of this methodology is demonstrated on
the case study.

1 Introduction

The aim of this article is to show, how timed automata [1] can be applied to modelling
of real time software applications running under operating system with cooperative
scheduling. The application under consideration consists of several process, it in-
cludes mechanisms for interrupt handling, and it uses inter-process communication
primitives like semaphores, queues etc. Model checking theory based on timed auto-
mata and implemented in model checking tools (e.g. UPPAAL[2]) can be used for
verifying time parameters or safety and liveness properties of proposed models.

Timing analysis of software (especially with concurrency and synchronisation) is
not trivial problem and it requires sophisticated methods and analysis tools. Several
special purpose methods have been developed in the area of real time scheduling
[3],[7]. These methods, e.g. rate monotonic analysis (RMA) [4], are very successful
for analysis of systems with periodic processes. To deal with non-periodic processes,
the standard method is to consider the non-periodic process as the periodic one using
the minimal inter-arrival time as process period. The analysis based on such model is
too pessimistic in some cases since inter-arrival times can vary over time [13]. Incor-
poration of inter-process communication primitives leads to pessimistic results as well
since it does not model any internal process structure and therefore worst-case block-
ing time must be considered, even though it can never occur (see section 7).

To achieve more precise analysis, process models allowing more precise and
complex timing constraints are needed. In [13] the timed automata are extended by
asynchronous processes (i.e. processes triggered by events) to provide model for
event-driven systems, which is further used for schedulability analysis. Processes (in
[13] called tasks) associated to locations of timed automaton are executable programs
characterised by its worst-case execution time, deadline and other parameters for
scheduling (e.g. priority). Transition leading to a location in such automaton denotes
an event triggering the process and the guard on transition specifies the possible arri-
val times of the event. Released processes are stored in a process queue and they are
assumed to be executed according to a given scheduling strategy. Both non-
preemptive and preemptive scheduling strategies are allowed. Such modell can deal
with non-periodic processes in more accurate manner than RMA. Moreover there is a
possibility to model internal process structure as it is shown in section 2, but the com-
putation time of modelled blocks of code cannot vary.

This drawback is overcome by more detailed process model proposed in [9]
providing a method for constructing models of real time Ada tasking programs. Time,
safety or liveness properties of produced model based on constant slope linear hybrid
automata can be automatically analysed by HyTech verifier. The state of the hybrid
automaton consists of various state variables representing an abstraction of program’s
state and it contains also continuous variables used to measure the amount of proces-
sor time allocated to each process. A transition of the hybrid automaton represents
execution of the sequential code segment. The timing constraints of the transition are
derived from the time bounds of the corresponding code. Even thought the author re-
ports that the analysing algorithm does usually terminate in practice, the reachability
problem for hybrid automata is undecidable in general.

Hybrid automaton (or some of its subclass e.g. stopwatch automaton [10]) is
needed to model premption since it is necessary to accumulate computing time of
each process separately. The continuous variable used to measure the amount of CPU
time allocated to each process must progress when the corresponding process is exe-
cuted and must be stopped when the corresponding process is preempted. Such behav-
iour cannot be modelled by timed automaton that does not allow stopping of the clock
variable (see [1]).

Based on these observations we provide the model of real time system consisting
of several concurrent processes scheduled by cooperative scheduler. Since the internal
structure of the processes and the scheduler are modelled by timed automata, the
model of the system is more accurate than the models used for schedulability analysis
(RMA and timed automata extended by processes). Opposite to the model of the sys-
tem with preemption based on hybrid automata, this approach has guarantied termina-
tion of verification algorithm due to decidability of reachability problem and model
checking of timed computation tree logic (TCTL) problem. Moreover timed automata
are one of the most studied models for real time systems and several model checkers
are available (e.g. Kronos1 and UPPAAL2 [2])

Preemptive schedulers are known to provide higher utilisation of processor than
the cooperative ones [3]. On the other hand the processor utilisation is less important

1 http://www-verimag.imag.fr/TEMPORISE/kronos/
2 http://www.uppaal.com

criterion when the schedulability can be proven for a given set of processes under co-
operative policy. Moreover the cooperative scheduling has some advantages impor-
tant especially for hard real time applications where the highest reliability is required.
In cooperative scheduling, process specifies when it is willing to release CPU to an-
other process. Then it is easy to make sure that all data structures are in a defined
state. Applications using cooperative scheduling are therefore easier to program and
to debug. In this paper we present another important advantage of cooperative sched-
uling that is possibility to create mathematical model of the application based on
timed automata and to verify its time, safety and liveness properties.

The rest of this paper is organised as follows: section 2 illustrate on an example of
scheduling anomaly that when one wants to make use of the internal process struc-
ture, then it is needed to consider also lower margins of computation times. Sections 3
and 4 represents a marginal part of this article. They deal with modelling of applica-
tions running under operating system based on cooperative scheduling. Since interrupt
handling can play important role in such systems, they are taken into consideration in
section 5. Section 0 illustrates an extension of proposed model by inter-process com-
munication. Presented methodology and its comparison with RMA approach is dem-
onstrated on case study in section 7.

2 On Scheduling Anomaly in Multitasking Operating System

Several multiprocessor time anomalies are known in the scheduling theory [3],[5],[7].
Similar non-linear behaviour (a shortening of the computation time leading to the pro-
longation of the completion time) can be found on one processor regardless the
scheduling policy (preemptive or cooperative), when the processes contain computa-
tions, resource sharing and idle waiting (notice that the idle waiting is processed in
parallel with computation of another process).

Example depicted in Fig. 2.1 shows a high priority processes P-high and a low
priority process P-low sharing one resource represented by a semaphore Sem. The
processes consist of computations with specified deterministic computation time, of
idle waiting with specified deterministic delay and of shared resource guarded by
semaphore. The computation times and delays given behind slash are assumed to be
constants. The computation time of CompC is C=2 in the instance a) or C=1 in the in-
stance b).

The semaphore is taken by P-high first in the instance a) regardless the scheduling
policy (priority based preemptive or priority based cooperative). Consequently the
process P-high is completed in 7 time units and the process P-low is completed in 9
time units, see Fig. 2.1 a). In the instance b), the semaphore is taken by process P-low
first and consequently the process P-high is completed in 9 time units and the process
P-low is completed in 10 time units, see Fig. 2.1 b).

The shortening of the computation time in the process P-low (C shorted from 2 to
1) leads to the prolongation of the completion time of both processes. As a conse-
quence this example illustrates a necessity to consider also lower margins of computa-
tion times when process internal structure is modelled.

This result is important to modelling process internal structure by timed automata
extended by tasks [13]. Timed automata extended by tasks allow to model precedence
constraints over tasks by boolean variables shared between tasks and automaton.
Therefore it is possible to model each process as timed automaton and to associate to
its locations tasks representing corresponding computation. Precedence constraints are
used to prevent starting of next computation before the previous one is finished. Since
tasks associated to locations is characterised only by its worst-case computation time,
some mechanisms must be used to prevent occurrence of anomalies described in this
section. One solution can be to leave processor idling when some computation is fin-
ished sooner than it was supposed.

Proc P-low
{
 CompC/C
 Take Sem
 Delay/3
 Give Sem
 CompD/1
 CompE/1
}

Proc P-high
{
 Delay/2
 Take Sem
 CompA/1
 Give Sem
 Delay/1
 CompB/3
}

CompC

CompA CompB

CompD

1 10

2 64

5

b)

CompC

CompA CompB

CompD

P-high

P-low

2 6

2 3 7

a)

3

P-high

P-low

4

5 9

8

4

7

CompE

CompE

9

6

CompA Executed Owning Sem. Delayed

Fig. 2.1. Example of the monoprocessor scheduling anomaly

3 Cooperative Scheduling Model

Cooperative scheduling enables to deschedule currently executed process only in ex-
plicitly specified points, where the system call yield() is called or where the process is
waiting.

An example of the application process model is depicted in Fig. 3.1. There are
four types of locations. Computation locations (Comp1, Comp2, Comp3 for short)
corresponding to non-preemptible blocks of code (the Computations do not contain
any blocking operation). Each two successive Computation locations are separated by
one Yield location corresponding to yield instruction where the process can be
descheduled and then it waits until it is scheduled again. On WaitTimer location the
process does not require the processor. WaitTimer location is followed by WaitProc
location where the signalled process waits until it is scheduled. The double circle used
for WaitTimer location specifies that this is initial location.

Fnc_Process1 {
while (TRUE)
{

Comp1
yield()
Comp2
yield()
Comp3
Wait_End_of_Period

}}

Comp2
w<=H2

w>=L2
w:=0

Comp3
w<=H3

WaitTimer
t<=Period_H

w>=L3

t:=0

t>=Period_L

Deschedule!

Signal!
Block!

Comp1
w<=H1

w:=0
w>=L1

w:=0

WaitProc Yield1 Yield2

Schedule? Schedule? Schedule?
Deschedule!

Fig. 3.1. Model of the application process executed under cooperative scheduling policy

As each part of the program modelled by Computation location cannot be affected
by the preemption, its finishing time is equal to the computation time which is sup-
posed to be known a priory and bounded by interval 〈L,H〉 (lover and upper margins
allow to involve uncertainty of execution time due to non-modelled code branching
inside the computations, bus errors, cache faults, page faults, cycle stealing by DMA
device, etc.).

The following behaviour of the cooperative scheduler is assumed: if the processor
is free, the process with the highest priority among all processes in a queue of ready
processes is scheduled. The currently executed process will run until it voluntarily re-
linquishes processor by calling system call yield() or until it is blocked. The model of
the cooperative scheduler is created as the network of automata synchronised with
application processes through synchronisation channels as depicted in Fig. 3.2. The
scheduler chooses the highest priority ready process and enables its execution through
Schedule channel. Deschedule channel is used to signal that the process relinquishes
the processor (by yield()). The Block channel is used to relinquish processor on some
blocking system call and the Signal channel announce that the blocking is finished
and the process is ready to be executed on the processor.

P1 Sch1

Schedule1
Deschedule1

Block1
Signal1

P2 Sch2

Schedule2
Deschedule2

Block2
Signal2

Pn Schn

Schedulen
Deschedulen

Blockn
Signaln

.........

SchedulerApplication

wPriorQueue

wQch

wQch

wQch

wQch
P

ID1 ID2 ID3 ID4 ... IDnPriorities

- ID3 ID4 ID1 ID2 - - -

rQ wQ

Q

nQReady queue

Fig. 3.2. Synchronization of cooperative scheduler with processes

One automaton of the cooperative scheduler model (Schi) is depicted in Fig. 3.3.

Ready Execution

Pended

Free:=1

Block?
Signal?

Free==1, Q[rQ]==ID

Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Schedule!

Q[wQ]:=ID

wQch! Deschedule?

Free:=1

Q[wQ]:=ID

wQch!

Fig. 3.3. One automaton Schi of the coopera-
tive scheduler in Fig. 3.2

nQ<sizeQ
wQch?

nQ:=nQ+1, i:=wQ, wQ:=(wQ<sizeQ-1 ? wQ+1 : 0)

i!=rQ
j:=(i==0 ? sizeQ-1 : i-1)

i==rQ

P[Q[i]]<=P[Q[j]]
P[Q[i]]>P[Q[j]]

tmp:=Q[i], Q[i]:=Q[j], Q[j]:=tmp,
i:=(i==0 ? sizeQ-1 : i-1)

Fig. 3.4. Automaton wPriorQueue providing re-

ordering of queue Q

Each process is identified by unique integer ID (0,1,2,...). Priority of the process is
stored in global array P, indexed by ID. IDs of all processes, which are in Ready state,
are stored in the queue modelled as global array Q representing a circular buffer. The
integer nQ is the number of elements in the queue. The integer rQ is the position for
reading of the first element in Q and the integer wQ is position of the first empty ele-
ment in Q as is depicted in Fig. 3.2. Processes are ordered in descending order accord-
ing to their priorities in Q (rQ points to the ready process with highest priority).

As shown in Fig. 3.3 mutual exclusive access to Execution location is guarded by
two-state variable Free. Moreover, only the highest priority process scheduler
automaton (its ID is at the top of ready queue) can take transition from Ready to Exe-
cution location. To prevent processor idling, the transition from Ready to Execution
location must be taken as soon as it is enabled. This is provided by declaring the
channel Schedule as urgent channel (no time progress is enabled when there are some
enabled transitions synchronised through urgent channel). The two unnamed locations
with the letter c inside the circle are so called committed locations providing atomic-
ity of traversing of in-coming and out-coming transitions (committed location must be
left immediately without any interference of other automaton in the model). These lo-
cations are in Fig. 3.3 necessary only due to impossibility to use two synchronizations
on one transition in UPPAAL.

ID of the process leaving the Ready state is deleted from the ready queue by dec-
rementing number of elements in the queue nQ and by moving reading pointer rQ to
the next element in the queue. ID of the process entering the Ready state is written to
the end of ready queue. The ready queue must be reordered after this operation. Or-
dering according priorities is provided by automaton wPriorQueue depicted in Fig.
3.4. Reordering mechanism is started by synchronisation channel wQch.

Note on the modelling of the context switch time: Notice that the model of the

scheduler automaton proposed in Fig. 3.3 is simplified by assumption that the context
switch does not take any time. But for proper exploration of time properties of real-
time system the context switch time should be considered. Since the context switch in
cooperative scheduling occurs once per Computation location, context switch time
can be simply involved in the computation time of each Computation.

4 Modelling Deterministic Behaviour of the Scheduler

Notice that proposed model created as synchronised product of application process
automata and corresponding scheduler automata (Fig. 3.3) contain non-deterministic
behaviour, which does not correspond to real behaviour of the scheduler. This non-
determinism occurs when the transition from Ready to Execution location of one
scheduler automaton Schi is enabled and simultaneously the transition from Pended to
Ready location of another scheduler automaton Schj is enabled. In such case the tran-
sition from Pended to Ready should be taken first since the scheduler updates states of
processes first. Then the highest priority ready process should be chosen and the
scheduler automaton of this process should take the transition to Execution location.
Please realise that the model adopted in previous paragraph allows also other behav-
iour: the transition from Ready to Execution location of the first scheduler automaton
is taken first and the transition from Pended to Ready location of the second scheduler
automaton is taken afterwards. In such case the second process looses the chance to
compete the processor that is undesirable since the lower priority process can take the
processor even though there is some higher priority ready process at the same time.

The objective of this paragraph is to eliminate such undesirable behaviour, which
does not correspond to reality. The transition priorities will be used to determine the
order of transitions. High priority 2 will be assigned to the transitions from Pended to
Ready locations in all scheduler automata. Lower priority 1 will be assigned to all re-
maining transitions. Since the transition priority is not concerned in timed automata, it
is incorporated by modifying guards on transitions.

This approach is demonstrated on simple example of two periodic application
processes modelled by time automata depicted in Fig. 4.1. Process P1 is the low prior-
ity one and process P2 is the high priority one. Both processes are scheduled by coop-
erative scheduler modelled by two scheduler automata Sch1 and Sch2 depicted in Fig.
3.3.

Comp
w1<=6

WaitTimer
t1<=20

WaitProc
w1>=6

Block1!

t1>=20
t1:=0

Signal1!

Schedule1?

w1:=0

Comp
w2<=5

WaitTimer
t2<=10

WaitProc
w2>=5

Block2!

t2>=10
t2:=0

Signal2!

Schedule2?

w2:=0

a) Low priority process P1 b) High priority process P2
Fig. 4.1. Automata of application processes

Resulting model of whole application is a synchronised product of all concerned
automata (Sch1, Sch2, P1, P2, wPriorQueue) and it is depicted in Fig. 4.2. The loca-
tion names consist of the first letters of the location names of the original automata (in
the order Sch1, Sch2, P1, and P2). Priorities are assigned to the transitions were non-
deterministic choice can occur (high priority 2 to the transitions from Pended to
Ready and low priority 1 to other transitions). Notice that urgent locations (symbol ∪∪∪∪
inside the location) are used to prevent processor idling (the time progress is disabled
when some automaton resides in urgent location). This function was provided by ur-
gent channel Schedule in automaton Schi in previous section.

P_P_WT_WT
t1<=20, t2<=10

P_R_WT_WP
t1<=20

P_E_WT_C
t1<=20, w2<=5

R_P_WP_WT
t2<=10

R_E_WP_C
w2<=5

E_P_C_WT
w1<=6, t2<=10

R_R_WP_WP

E_R_C_WP
w1<=6

t2:=0
t2>=10

w2:=0

t1<20

w2>=5, t1<20

t1>=20
t1:=0

t1>=20

t1:=0

t1>=20
t1:=0

w2>=5

w1:=0
t2<10

t2>=10

t2:=0

w2:=0

t2>=10
t2:=0

w1>=6

Priority 2

Priority 1

Priority 2
Priority 1

Priority 2

Priority 1

Priority 2Priority 2

Fig. 4.2. Resulting model concerning transition priorities

(synchronised product of Sch1, Sch2, P1, P2, wPriorQueue)

Our approach to transition priority is the following. Suppose the transition from
Pended to Ready to be taken non-deterministically between lower and upper margin
of the signalling time (within interval <L, H>). Since any process can be scheduled
prior to another process becoming ready infinitely short time after scheduling deci-
sion, the transition priority has no sense in interval <L, H). In other words it is desired
to preserve the non-determinism in interval <L, H). On the other hand, the priority of
transition from Pended to Ready must be high at time H since the scheduler updates
states of processes prior to scheduling decision (as explained above). Our approach to
give priority to the transitions is to restrict the lower priority transition guard g1 to
g1’=g1∧ (t<H), where t is a clock and t≤H is invariant of the location where the higher
priority transition begin. Restricted guards of lower priority transitions are in doted
grey filled ellipsis in Fig. 4.2.

5 Interrupts

Interrupts are usually used for fast handling of asynchronous external events. Interrupt
is particularly important in cooperative scheduling since low priority process cannot
be preempted and therefore high priority process cannot be used to handle asynchro-
nous event when short response time is required. When the interrupt request (IRQ) ar-
rives from the environment and corresponding interrupt is enabled, currently executed
process is interrupted and interrupt service routine (ISR) is executed. The relative fin-
ishing time F of currently executed Computation is therefore prolonged by computa-
tion time of ISR (CISR) and it is no more equal to the known computation time. There-
fore it is needed to change upper margin H of each computation location in the timed
automata process model. Each H is prolonged by MaxSC (maximum server capacity),
the value corresponding to the processor time reserved for all interrupt service rou-
tines. Since the number of interrupt requests depends on the environment, the total
computation time of all ISR (ΣCISR) is not known a priory and moreover the existence
of its upper bound is not guaranteed.

The interrupt server limiting amount of processor time spent for interrupts is used
to guarantee that ΣCISR does not exceed MaxSC value. Contrary to servers used for
handling aperiodic tasks in scheduling theory (pooling, deferrable, sporadic servers
[3], [6]), the prevention of servicing interrupt must be done at the hardware level (by
disabling IRQ) and before the IRQ occur. The architecture of the system with inter-
rupt server is depicted in Fig. 5.1. Interrupt service routines are not called directly
when some interrupt is requested, but they are wrapped by the code of ISR_Server()
function (see Fig. 5.3). The interrupt server has specified server capacity SC, which is
filled by the value MaxSC at the beginning of each computation. The function
Fill_Server(MaxSC) listed in Fig. 5.3 is used for it. When an interrupt occurs the
server capacity SC is decreased by the value of corresponding CISR and interrupt
server checks if the remaining capacity SC is sufficient for handling next ISR. If not
the corresponding IRQ is disabled. This check is provided when SC changes, once by
Fill_Server() and repeatedly on each interrupt by ISR_Server(). Notice that CS, the
computation time of ISR_Server(), is considered. Further H has to be prolonged by
CFS, the computation time of the function Fill_Server() (see Fig. 5.2). The lower mar-
gin L of any computation location is affected only by CFS.

Notice that the function ISR_Server() supposes that the hardware does not support
nested interrupts (ISR_Server() cannot be interrupted by another interrupt).

..... ...

Interrupt Server

Scheduler

Pn
ISRnISR1

ISR_
Server

HW
IRQ1

IRQn
...

SC
ISR_

Server
-
-

+

P1

+

INT1 INTnDI1 DIn

Comp1
w<=H1 + CFS + MaxSC1

Schedule?

w:=0
w>=L1 + CFS

Deschedule!

Fill_Server (MaxSC)
{
 Disable_INT
 SC :=MaxSC
 Check for all IRQ
 if (SC – CISR - CS) < 0
 Disable IRQ
 else
 Enable IRQ
 Enable_INT
}

ISR_Server ()
{
 SC := SC – CISR - CS
 call ISR
 Check for all IRQ
 if (SC – CISR - CS) < 0
 Disable IRQ
 else
 Enable IRQ
}

Fig. 5.1. System architec-
ture with interrupt server

Fig. 5.2. Computa-
tion location consid-
ering interrupts

Fig. 5.3. Interrupt server routines

Choice of MaxCS value for different locations depends on application require-
ments and it is specified at the design stage.

6 Inter Process Communication Primitives

Very important part of each multitasking application (and source of many possible er-
rors) is a communication between processes and their synchronisation. Operating sys-
tem usually provides many facilities to manage inter process communication. It is not
intention of this paper to introduce models of all possible kinds of inter process com-
munication.

On example of semaphore we show, how to extend the proposed model of the
scheduler and application. The semaphore is the primitive used mostly for synchroni-
zation and mutual access to resources. It can be taken or given by the process using
the system calls Take() or Give(). When the semaphore is given, its value is increased.

When the semaphore is taken, its value is decreased. When the value of the sema-
phore is zero, it cannot be taken and the process attempting to take it is blocked until
the semaphore is given by another process. This blocking time can be bounded by
timeout. When more than one processes are blocked on one semaphore, they are wait-
ing in priority queue or FIFO (First In First Out) queue. This basic behaviour of
semaphore can be modified according to the purpose it is dedicated to. We suppose
the semaphore being of counting type with value ranging from zero to MaxCount.

Example of an application process model with semaphore is depicted in Fig. 6.1.
The process attempts to take the semaphore by synchronisation Take!. Then it waits in
location WaitSem until the semaphore is taken (synchronisation Taken?) or until
timeout expires (synchronisation TOut!). The synchronisation Give! is used to give
the semaphore. Notice that giving the semaphore is not blocking operation and there-
fore the semaphore is given on the transition entering the Comp3 location. On the
other hand taking semaphore is blocking operation and therefore transitions with
Taken? and TOut! lead to the locations WaitProc2 or WaitProc3 resp. where the
process waits for the processor.

Fnc_Process1 {
 while (TRUE) {
 Comp1
 Result := Take (Sem, TimeOut)
 if (Result == TOut) {
 Comp4
 Yield() }
 else {
 Comp2
 Give (Sem) }
 Comp3
 Wait_End _of_Period
 } }

Comp1
w<C1Hi

Comp2
w<C2Hi

Comp3
w<C3Hi

WaitTimer
t<=Period

WaitProc1 WaitProc2WaitSem
w<=TimeOut

WaitProc3
Comp4

w<C4Hi
Yield

w>C1Lo
Take!

w:=0

w>C2Lo
Give!

t>=Period

t:=0

Signal!

Schedule?

w:=0

Schedule?

w:=0

w>C3Lo

Block!

Taken?

w>=TimeOut
TOut!

Schedule?

w:=0

w>C4Lo
Deschedule!

Schedule?
w:=0

Fig. 6.1. Model of process containing Take and Give one semaphore

The scheduler model for application with two semaphores is depicted in Fig. 6.2.
The scheduler of executed process is asked for taking the semaphore by synchronisa-
tion Take?. If the semaphore is empty (Sem==0), the processor is relinquished
(Free:=1), ID of the process is written to the queue of the semaphore (SemQ) and the
queue (FIFO or priority) is reordered by synchronisation wSemQch!. The scheduler
and the process then wait in the location WaitSem until the semaphore is given by an-
other process or until its time-out expires. If the semaphore is not empty (Sem>0) its
value is decreased and the synchronisation Taken! is immediately followed by syn-
chronisation Schedule! to continue in execution. The processor is not relinquished in
this case.

The queue of the processes waiting for the semaphore (SemQ) can be FIFO queue
or priority queue. In the case of priority queue, its elements (IDs of processes) must
be reordered according to priorities when the next process issues Take on the empty
semaphore. This is managed by the automaton similar to the one depicted in Fig. 3.4.
The only difference is the name of the queue (SemQ, wSemQch, nSemQ, rSemQ,
wSemQ). Reordering is not necessary when FIFO queue is used.

Ready Exe

Pended

WaitSem1

WaitSem2

Free:=1

Block?Signal?

Free==1, Q[rQ]==ID,
((Sem1==0) || (nSem1Q==0)), (Sem2==0 || nSem2Q==0)

Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Schedule!

Q[wQ]:=ID

wQch! Deschedule?

Free:=1

Q[wQ]:=ID

wQch!

wQch!

Q[wQ]:=ID

wQch!

Q[wQ]:=ID

Sem1>0, Sem1Q[rSem1Q]==ID
Taken1!

Sem1:=Sem1-1, nSem1Q:=nSem1Q-1, rSem1Q:=(rSem1Q<sizeQ-1 ? rSem1Q+1 : 0)

TOut1?

Sem1==0
wSem1Qch!

Sem1Q[wSem1Q]:=ID, Free:=1

Take1?

Sem1>0
Taken1!

Sem1:=Sem1-1

Schedule!

Give1?
Sem1:=(Sem1<MaxCount ? Sem1+1 : MaxCount)

ExCh1!

ExV1:=ID

TOut2?ExCh2!

ExV2:=ID

Sem2>0, Sem2Q[rSem2Q]==ID
Taken2!

Sem2:=Sem2-1, nSem2Q:=nSem2Q-1, rSem2Q:=(rSem2Q<sizeQ-1 ? rSem2Q+1 : 0)

Q[wQ]:=ID

wQch!

Q[wQ]:=ID

wQch!

Sem2>0
Taken2!

Sem2:=Sem2-1

Take2?

Sem2Q[wSem2Q]:=ID, Free:=1

Sem2==0
wSem2Qch!

Give2?
Sem2:=(Sem2<MaxCount ? Sem2+1 : MaxCount)

Fig. 6.2. Scheduler model containing two semaphores (extension of Fig. 3.3)

As it has been explained in section 4, rescheduling is not possible before updating
states of all processes. Therefore transitions from Ready to Exe have lower priority
than the transitions from WaitSem to Ready. That means that scheduling cannot occur
when there is any process waiting on signalled semaphore. This is modelled by re-
stricting transition from Ready to Exe guard g to g’=g ∧ ∀ i (Semi=0 ∨ nSemiQ=0).

7 Case Study

This section demonstrates the methodological approach to modeling real-time operat-
ing system based applications on the example of the elevator controller.

The elevator cabin either resides in a floor, or it moves between floors, or it goes
through a floor (Fig. 7.2 b). The cabin movement is controlled by a three-state vari-
able Go having value UP, or DOWN, or STOP. The value of the cabin possition sen-
sor is stored in variable In which is equal to 1 when the cabin resides in or goes
through any floor. The motor overheating is detected by value Hi of variable Temper
(see Fig. 7.2 c). In such case the cabin must stop in the forthcoming floor and further
movement is disabled by resetting variable Enable.

All sensors and actuators are connected to the control system by the buss guaran-
teeing the message delivering time. The control system software consists of three
processes scheduled by cooperative scheduler and one interrupt service routine.

The buss controller generates interrupt request (IRQ), when new data are received
from the buss or all prepared data were transmitted to the buss (see Fig. 7.2 d). If the
interrupt is enabled (EN=1), the hardware interrupt controller (see Fig. 7.2 e) inter-
rupts the CPU, the ISR_Server is invoked (see Fig. 7.2 f) and semaphore Sem1 is sig-
nalled. The highest priority process ComProc, providing communication services,
takes semaphore Sem1, then it recognises the data receiver and it signals semaphore
Sem3 or Sem4 (see the code in Fig. 7.1 and corresponding automaton in Fig. 7.2 g).
The middle priority process DiagProc provides diagnostic and emergency shut-down

when the motor is over-heated. It is waiting on Sem3 (see the code in Fig. 7.1 and cor-
responding automaton in Fig. 7.2 h). The lowest priority process CtrlProc providing
the cabin control is waiting on Sem4 (see the code in Fig. 7.1 and corresponding
automaton in Fig. 7.2 i). The semaphore Sem2 provides mutual exclusive access to all
shared data. Pseudocode of the control system software is in Fig. 7.1.

The goal of this case study is to create model of the system and to use the model-
checking tool UPPAAL to verify the following properties:
! Prop1: No IRQ is lost i.e. a) handling interrupt is short enough and b) the interrupt

server capacity is sufficient.
! Prop2: The execution of ComProc is started between two successive interrupts.
! Prop3: The execution of ComProc is finished within 24 ms after taking Sem1.
! Prop4: The execution of DiagProc is finished within 24 ms after taking Sem3.
! Prop5: The execution of CtrlProc is finished within 34 ms after taking Sem4.
! Prop6: Usage of elevator is disabled 166 ms after the motor overheating.
! Prop7: The cabin will stop in any floor 5.2 s after the motor overheating.

The automata of the proposed model are depicted in Fig. 7.2. The interconnection

of all automata is depicted in Fig. 7.2 a). The scheduler automaton is similar to the
one in Fig. 6.2 but it is extended for four semaphores.

ComProc ()
{
 while (true) {
 Take (Sem1)
 Fill_Server (S1)
 Computation1 /12
 Take (Sem2)
 Fill_Server (S2)
 Computation2 /12
 if (Data==DIAG)
 Give (Sem3)
 if (Data==CTRL)
 Give (Sem4)
 Give (Sem2)
 } }

DiagProc ()
{
 while (true) {
 Take (Sem3)
 Fill_Server (S1)
 Computation1 /12
 Take (Sem2)
 Fill_Server (S2)
 Computation2 /12
 if (Temper==Hi) {
 Enable:=0
 if (Go!=STOP and In==1)
 Go:=STOP
 }
 Give (Sem2)
 } }

CtrlProc ()
{
 while (true) {
 Take (Sem4)
 Take (Sem2)
 Fill_Server (S1)
 Computation1 /22
 Yield
 Fill_Server (S2)
 Computation2 /12
 Give (Sem2)
 }
}

Fig. 7.1. Control system software pseudocode

The specified properties are formalized in CTL as follow:
! Prop1 a) ∀ ! ¬ IntCtrl.NestedIRQ, b) ∀ ! ¬ IntCtrl.DisabledIRQ
! Prop2: ∀ ! Sem1<2
! Prop3: ∀ ! ((ComProc.WaitProc2 ∧ ComProc.t=0) ⇒

∀ " (ComProc.EndComp ∧ ComProc.t<24))
! Prop4: ∀ ! ((DiagProc.WaitProc2 ∧ DiagProc.t=0) ⇒

∀ " (DiagProc.EndComp ∧ DiagProc.t<24))
! Prop5: ∀ ! ((CtrlProc.WaitProc2 ∧ CtrlProc.t=0) ⇒

∀ " (CtrlProc.EndComp ∧ CtrlProc.t<34))
! Prop6: ∀ ! ((Temper=Hi ∧ tTemper=0) ⇒ ∀ " (Enable=0 ∧ tTemper<166))

! Prop7: ∀ ! ((Temper=Hi ∧ tTemper=0) ⇒
∀ " (Enable=0 ∧ In=1 ∧ Go=STOP ∧ tTemper<5200))

Result of verification: all properties except Prop6 are satisfied.

InFloor BetweenFloors

t<=5000

ThroughFloor

t<=1000

Enable==1

Go:=DOWN, In:=0, t:=0

Enable==1
Go:=UP, In:=0, t:=0 In:=1, t:=0

t>=4000, Go!=STOP

In:=0, t:=0
Go!=STOP, t>=1000

Go:=STOP, In:=1
t>=4000

Go==STOP
Urg!

b) Cabin

Buss IntCtrl
(HW) ISR_Server

DiagProc CtrlProc

INTIRQ

Sem1

Cabin

Motor

Go
In

Temper

EN

Sem2

SC

ControllerElevator

iRet

Data

ComProc

Sem3 Sem4

Enable

a) Model interconnection

TemperOK TemperHi

Temper:=Hi, tTemper:=0
c) Motor

Wait
t<=DataH

SendData

t1>=Diag
t1:=0, Data:=DIAG

IRQ!
t2>=Ctrl

t2:=0, Data:=CTRL

IRQ!
t>=DataL

t:=0

IRQ!

Data:=OTHER
t1<Diag, t2<Ctrl

d) Buss

NestedIRQDisabledIRQ

EN>0
IRQ?

INT!
EN==0
IRQ?

IRQ?

iRet?

e) IntCtrl

ISR_Comp
w<=C_ISR

INT?

w:=0, SC:=SC-C_ISR,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

w>=C_ISR

Sem1:=(Sem1<MaxCount ? Sem1+1 : MaxCount)

iRet!

f) ISR Server

CompTake1 Computation1
w<=H1+FS+S1WaitProc1 WaitProc2WaitSem1 WaitSem2 WaitProc3 Computation2

w<=H2+FS+S2
EndComp

Take1!Schedule1?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

Schedule1?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

Taken1?

t:=0

Take2Com!
w>=L1+FS

Signal1!
Taken2Com?

Schedule1?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

w>=L2+FS, Data==DIAG
Give3!

w>=L2+FS, Data==CTRL
Give4!

w>=L2+FS, Data==OTHER
Give2Com!

g) ComProc

CompTake Computation1
w<=H1+FS+S1WaitProc1 WaitProc2WaitSem3 WaitSem2 WaitProc3 Computation2

w<=H2+FS+S2

WaitFloor

EndComp

Take3!Schedule2?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

Schedule2?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

Taken3?

t:=0

Take2Diag!
w>=L1+FS

Signal2!
Taken2Diag?

Schedule2?

w:=0, SC:=S2,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

w>=L2+FS, Temper==OK

w>=L2+FS, Temper==Hi, Go==STOP
Enable:=0

w>=L2+FS, Temper==Hi, Go!=STOP
Enable:=0

In==1

Go:=STOP

In==0
Give2Diag!

h) DiagProc

CompTake1 CompTake2WaitProc1 WaitProc2WaitSem4 WaitSem2 WaitProc3 Computation1
w<=H1+FS+S1 EndCompYield Computation2

w<=H2+FS+S2

Take4!Schedule3?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

Schedule3?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

Taken4?

t:=0

Take2Ctrl!Signal3! Taken2Ctrl?
Schedule3?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

w>=L1+FS
Deschedule3!

Schedule3?

w:=0, SC:=S2,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

w>=L2+FS
Give2Ctrl!

i) CtrlProc

Fig. 7.2. Elevator and control system model

Note: Please notice that under the worst-case conditions the cabin will not stop
on any floor 5,2 s after increasing of the motor temperature (Prop7 is not satisfied)
even though the DiagProc will react on this situation within 166 ms (Prop6 is satis-
fied) and the maximal time that the cabin spends between two floors is 5 s (time in-
variant of the state BetweenFloors in cabin model in Fig. 7.2 b) is t<=5000). This re-

sult would be hart to find by separate analysis of time and logical properties of the
system. In fact the property Prop7 is satisfied for the value of tTemper<5332 since
5332<=166+5000+166.

7.1 Comparison with RMA approach

Notice that properties Prop3, Prop4 and Prop5 represent exploration of the worst-
case completion time for processes ComProc, DiagProc and CtrlProc. Let’s compare
approach adopted in this article to RMA approach.

Let’s suppose that the processes are scheduled by preemptive rate monotonic
scheduling:
• the minimal interarrival times are TComProc=50, TDiagProc=100 and TCtrlProc=200,
• the worst-case computation times are CComProc=24, CDiagProc=24 and CCtrlProc=34
• critical section (Sem2) is locked for durations DComProc=12, DDiagProc=12 and

DCtrlProc=34.
It is obvious that without internal structure knowledge, the worst-case blocking

time on Sem2 must be considered: BComProc=34, BDiagProc=34.
Based on these very abstracted assumptions on system behaviour, the RMA evalu-

ates processes ComProc and DiagProc non-schedulable.

8 Conclusion and Future Work

The cooperative scheduling approach given in this article avoids preemption model-
ling by hybrid automata. The model of the application processes and cooperative
scheduler is based on timed automata, for which model checking of TCTL property
problem is decidable (opposite to hybrid automata). Interrupts and inter-process
communications – the most important aspect of real time embedded applications – are
taken into consideration in the proposed model. With respect to the processor utilisa-
tion and reaction time the cooperative scheduling conceived in this article is not the
most efficient one, but due to simplicity reasons many embedded applications are of-
ten based on similar cooperative scheduling mechanisms handling interrupts sepa-
rately, therefore this approach is not just an academic idea.

Existing approaches for design and analysis of real-time applications, like Rate
Monotonic Analysis (using preemptive scheduling based on priority assignment re-
specting the rate of periodic processes), use very elegant way of deciding whether the
application is schedulable or not. But it is needed to mention, that the model checking
approach provides a room for verifying more complex properties (e.g. detection of
deadlocks in communication, specification of buffer size,…). Model checking pro-
vides also room for modelling of more complex time behaviour of the controlled sys-
tem, running truly in parallel with the control system (modelled as separate automa-
ton).

As the complexity of the model checking remains very huge in a general case it is
motivating to set up the rules applied at a design phase, that would lead into the state

spaces of reasonable size. Specification of such rules linked to the identification of the
controlled systems represents a possible direction of our future work.

Acknowledgement

This work was supported by the Ministry of Education of the Czech Republic under
Project LN00B096.

References

[1] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126:183-
235, 1994.

[2] David, A.: Uppaal2k: Small Tutorial. Documentation to the verification tool Uppaal2k.
http://www.docs.uu.se/docs/rtmv/uppaal/

[3] Buttazzo, G., C.: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications. Kluwer Academic Publishers, Boston (1997)

[4] Sha, L., Klein, M., Goodenough, J.: Rate Monotonic Analysis for Real-Time Systems.
129-155. Foundations of Real-Time Computing: Scheduling and Resource Management.
Boston, MA: Kluwer Academic Publishers (1991)

[5] Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, Vol. 17, pp. 416-429, 1969

[6] Larsen, K.G., Pettersson, P., Yi, W.: Model-Checking for Real-Time Systems. In Proceed-
ings of the 10th International Conference on Fundamentals of Computation Theory, Dres-
den, Germany, 22-25 August, 1995. LNCS 965, pages 62-88, Horst Reichel (Ed.)

[7] Liu, J.W.S.: Real-time systems. Prentice-Hall, Inc., Upper Saddle River, New Jersey 2000.
ISBN 0-13-099651-3

[8] Shaw, A.: Reasoning about time in higher-level language software. IEEE Transactions on
Software Engineering, vol. 15, July 1989

[9] Corbett, J. C.: Timing analysis of Ada tasking programs. IEEE Transactions on Software
Engineering. 22(7), pp. 461-483, July 1996

[10] Cassez F., Larsen K.: The Impressive Power of Stopwatches. In Proceedings of CONCUR
2000 - Concurrency Theory, 11th International Conference, University Park, PA, USA,
August 2000 CONCUR'2000. LNCS 1877, p. 138 ff., 2000

[11] Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What's decidable about hybrid auto-
mata? Journal of Computer and System Sciences 57:94--124, 1998

[12] Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Are Timed Automata Updatable?. In Proc.
12th Int. Conf. Computer Aided Verification (CAV'00), LNCS, Vol.1855, pp. 464-479,
Springer (2000)

[13] Fersman, E., Pettersson, P., Yi, W.: Timed Automata with Asynchronous Processes:
Schedulability and Decidability. In Proceedings of 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS 2002, Grenoble,
France, April 8-12, 2002, pp.67-82, Springer-Verlag, 2002. Lecture Notes in Computer
Science, Vol.2280

