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Z. Hanzálek (CTU) Integer Linear Programming (ILP) April 9, 2018 1 / 42



Problem Statement

Integer Linear Programming (ILP)

The ILP problem is given by matrix A ∈ Rm×n and vectors b ∈ Rm and
c ∈ Rn. The goal is to find a vector x ∈ Zn such that A · x ≤ b and cT · x
is the maximum.

Usually, the problem is given as max
{
cT · x : A · x ≤ b, x ∈ Zn

}
.

A large number of practical optimization problems can be modeled
and solved using Integer Linear Programming - ILP.
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Comparison of ILP and LP

The LP problem solution space is convex, since x ∈ Rn

The ILP problem differs from the LP problem in allowing
integer-valued variables. If some variables can contain real numbers,
the problem is called Mixed Integer Programming - MIP. Often MIP is
also called ILP, and we will use the term ILP when at least one
variable has integer domain.

If we solve the ILP problem by an LP algorithm and then just round
the solution, we could not only get the suboptimal solution, we can
also obtain a solution which is not feasible.

While the LP is solvable in polynomial time, ILP is NP-hard, i.e.
there is no known algorithm which can solve it in polynomial time.

Since the ILP solution space is not a convex set, we cannot use
convex optimization techniques.
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Example ILP1a: 2-Partition Problem

2-Partition Problem

Instance: Number of banknotes n ∈ Z+ and their values p1, . . . , pn,
where pi∈1..n ∈ Z+.

Decision: Is there a subset S ⊆ {1, . . . , n} such that∑
i∈S pi =

∑
i /∈S pi?

The decision problem, which can be written while using the equation
above as an ILP constraint (but we write it differently).

xi = 1 iff i ∈ S

This is one of the “easiest”
NP-complete problems.

min 0
subject to:∑

i∈1..n xi ∗ pi = 0.5 ∗∑i∈1..n pi
parameters: n ∈ Z+, pi∈1..n ∈ Z+

variables: xi∈1..n ∈ {0, 1}
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Example ILP1b: Fractional Variant of the 2-Part. Prob.

We allow division of banknotes such that xi∈1..n ∈ 〈0, 1〉. The solution
space is a convex set - the problem can be formulated by LP:

min 0
subject to:∑

i∈1..n xi ∗ pi = 0.5 ∗∑i∈1..n pi
xi ≤ 1 i ∈ 1..n

parameters: n ∈ Z+
0 , pi∈1..n ∈ Z+

0

variables: xi∈1..n ∈ R+
0

For example: p = [100, 50, 50, 50, 20, 20, 10, 10] the fractional variant
allows for x = [0, 0, 0.9, 1, 1, 1, 1, 1] and thus divides the banknotes
into equal halves 100 + 50 + 5 = 45 + 50 + 20 + 20 + 10 + 10, but
this instance does not have a non-fractional solution.
For some non-fractional instances we can easily find that they cannot
be partitioned (e.g. when the sum of all values divided by the greatest
common divisor is not an even number), however we do not know any
alg that can do it in polynomial time for any non-fractional instance.
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Example ILP1c: 2-Partition Prob. - Optimization Version

The decision problem can be solved by an optimization algorithm
while using a threshold value (here 0.5 ∗∑i∈1..n pi ) and comparing
the optimal solution with the threshold.
Moreover, when the decision problem has no solution, the
optimization algorithm returns a value that is closest to the threshold.

min Cmax

subject to: ∑
i∈1..n xi ∗ pi ≤ Cmax∑

i∈1..n(1− xi ) ∗ pi ≤ Cmax

parameters: n ∈ Z+
0 , pi∈1..n ∈ Z+

0

variables: xi∈1..n ∈ {0, 1}, Cmax ∈ R+
0

Application: the scheduling of nonpreemptive tasks {T1,T2, ...,Tn} with
processing times [p1, p2, ..., pn] on two parallel identical processors and
minimization of the completion time of the last task (i.e. maximum
completion time Cmax) - P2 ||Cmax . The fractional variant of 2-partition
problem corresponds to the preemptive scheduling problem.
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Example ILP2a: Shortest Paths

Shortest Path in directed graph

Instance: digraph G with n nodes, distance matrix c : V × V → R+
0

and two nodes s, t ∈ V .

Goal: find the shortest path from s to t or decide that t is
unreachable from s.

LP formulation using a physical analogy:

node = ball

edge = string (we consider a
symmetric distance matrix c)

node s is fixed, other nodes are
pulled by gravity

tightened string = shortest path

max lt
subject to:

ls = 0
lj ≤ li + ci ,j i ∈ 1..n, j ∈ 1..n

parameters: n ∈ Z+
0 , ci∈1..n,j∈1..n ∈ R+

0

variables: li∈1..n ∈ R+
0

Is it a polynomial problem?
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Example ILP3: Traveling Salesman Problem

Asymmetric Traveling Salesman Problem

Instance: complete digraph Kn, distance matrix c : V × V → Q+.

Goal: find the shortest Hamiltonian cycle. Cycle is a subgraph
(v1, ..., vk , e1, ..., ek) such that the sequence v1, e1, v2, ..., vk , ek , v1 is a
closed directed walk (tah) and vi 6= vj for 1 ≤ i < j ≤ k .

xi ,j = 1 iff node i is in the cycle just before node j
The enter and leave constraints do not capture the TSP completely, since
any disjoint cycle (i.e. consisting of several sub-tours) will satisfy them.
We use si , the “time” of entering node i , to eliminate the sub-tours.

min
∑

i∈1..n

∑
j∈1..n ci ,j ∗ xi ,j

subject to: xi ,i = 0 i ∈ 1..n avoid self-loop∑
i∈1..n xi ,j = 1 j ∈ 1..n enter once∑
j∈1..n xi ,j = 1 i ∈ 1..n leave once

si + ci ,j − (1− xi ,j) ∗M ≤ sj i ∈ 1..n, j ∈ 2..n cycle indivisibility

parameters: M ∈ Z+
0 , n ∈ Z+

0 , ci∈1..n,j∈1..n ∈ Q+

variables: xi∈1..n,j∈1..n ∈ {0, 1}, si∈1..n ∈ R+
0
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Branch and Bound Method

The method is based on splitting the solution space into disjoint sets.

It starts by relaxing on the integrality of the variables and solves the
LP problem.

If all variables xi are integers, the computation ends. Otherwise
one variable xi /∈ Z is chosen and its value is assigned to k .

Then the solution space is divided into two sets - in the first one we
consider xi ≤ bkc and in the second one xi ≥ bkc+ 1.

The algorithm recursively repeats computation for the both new
sets till feasible integer solution is found.
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Branch and Bound Method

By branching the algorithm creates a solution space which can be
depicted as a tree.

A node represents the partial solution.

A leaf determines some (integer) solution or “bounded” branch
(infeasible solution or the solution which does not give a better value
than the best solution found up to now)

As soon as the algorithm finds an integer solution, its objective
function value can be used for bounding

The node is discarded whenever z , its (integer or real) objective
function value, is worse than z∗, the value of the best known solution

The ILP algorithm often uses an LP simplex method because after
adding a new constraint it is not needed to start the algorithm again, but
it allows one to continue the previous LP computation while solving the
dual simplex method.
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Branch and Bound Algorithm - ILP maximization problem

function  z,x = ILP(A,b,c,z ,x )
b b

z,x := -   , [ ]

return

Is

the solution to LP

infeasible?

z ,x := solution to LP problem
LP LP

yes

no

8

select some non-integer xi

k := xi

solve recursively two problems:

the first one extended with x =< ki

z’,x’ ILP(A’,b’,c,:= z ,x )
b b

if  z’ > z then z ,x :=
b b b

z’,x’

the second one extended with  x => +1i k

’ ’ := ’ ’z’ ,x’ ILP(A’ ,b’ ,c,z ,x )
b b

’’ > z then z ,x :=if  z
b b b

z’ ,x’’ ’

z <= z
LP b

no

Are

all variables

integer?

z,x := z ,x
b b

return

yes

yesz,x := z ,x
LP LP

return

no z,x := z ,x
b b

return
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Branch and Bound - Example

1 2 30

1

2

3

x
1

x
2

x = 1.25

x = 2.5

z = 3.75

1

2

1 2 30

1

2

3

x
1

x
2

x < 1

x = 1

x = 2,25

z = 3,5

1

1

2

x  < 1 x  > 2
1 1

1 2 30

1

2

3

x
1

x
2

x > 2

x = 2

x = 1

z = 0

1

1

2

x  < 2 x  > 3
2 2

1 2 30

1

2

3

x
1

x
2

x < 1

x < 2

x = 0,75

x = 2

z = 3,25

1

2

1

2

Infeasible
solution

x  < 0 x  > 1
1

1

1 2 30

1

2

3

x
1

x
2

x < 0

x < 2

x = 0

x = 1.25

z = 2,5

1

2

1

2

1 2 30

1

2

3

x
1

x
2

x = 1

x < 2

x = 1

x = 2

z  = z = 3

1

2

1

2

x  < 1 x  > 2
2

2

Infeasible
solution

1 2 30

1

2

3

x
1

x
2

x = 0

x <

x = 0

x = 1

z  = z = 2

1

max  - x  + 2x

2x  +   x  < 5

- 4x  + 4x  < 5

x  , x   > 0

x  , x      Z1 2

1 2

1 2

1 2

1 2

1

2

1

2

z < z .

z > z , algorit m
.

It is not needed to continue
since
Since the search space has no other
solution with h
terminates

*

*

*

Sea
rc

h dire
cti

on

The second feasible
solution with a better value

The first feasible solution

The third feasible
solution

*
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ILP Solution Space

max z = 3x1 + 4x2

s.t. 5x1 + 8x2 ≤ 40

x1 − 5x2 ≤ 0

x1, x2 ∈ Z+
0

What is optimal
solution?

Can we use LP to solve
ILP problem?
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5

5 6 7 8
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Rounding is not always good choice

max z = 3x1 + 4x2

a) LP solution z = 23.03
for x1 = 4.8, x2 = 0

b) Rounding leads to
infeasible solution
x1 = 6.06, x2 = 1.21

c) Nearest feasible
integer is not optimal
z = 19 for x1 = 5, x2 = 1

d) Optimal solution is
z = 21 for x1 = 3, x2 = 3
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Why integer programming?

Advantages of using integer variables

more realistic (it does not make sense to produce 4.3 cars)

flexible - e.g. binary variable can be used to model the decision
(logical expression)

we can formulate NP-hard problems

Drawbacks

harder to create a model

usually suited to solve the problems with less than 1000 integer
variables
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Special Cases of ILP - Example ILP2b: Shortest Paths

Shortest path in a graph

Instance: digraph G given by incidence matrix
W : V × E → {−1, 0,+1} (such that wij = +1 when edge ej leaves
vertex i and wkj = −1 when edge ej enters vertex k), distance vector
c ∈ R+

0 and two nodes s, t ∈ V .

Goal: find the shortest path from s to t or decide that t is
unreachable from s.

LP formulation:

xj = 1 iff edge j is
chosen

For every node except s
and t we enter the node
as many times as we
leave it

min
∑

j∈1..m cj ∗ xj
subject to:∑

j∈1..m ws,j ∗ xj = 1 source s∑
j∈1..m wi ,j ∗ xj = 0 i ∈ V \ {s, t}∑
j∈1..m wt,j ∗ xj = −1 sink t

pars: wi∈1..n,j∈1..m ∈ {−1, 0, 1}, cj∈1..m ∈ R+
0

vars: xj∈1..m ∈ R+
0

The returned values of xj are integers (binary) even though it is LP. Why?
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Totally Unimodular Matrix leads to Integral Polyhedron

Polynomial time algorithm for general ILP is not known, however there are
special cases which can be solved in polynomial time.

Definition - Totally unimodular matrix

Matrix A = [aij ] of size m/n is totally unimodular if the determinant of
every square submatrix of matrix A is equal 0, +1 or -1.

Necessary condition: if A is totally unimodular then aij ∈ {0, 1,−1} ∀i , j .

Lemma - Integral Polyhedron

Let A be a totally unimodular m/n matrix and let b ∈ Zm. Then each
vertex of the polyhedron P := {x ; Ax ≤ b} is an integer vector.

Proof: [Schrijver] Theorem 8.1.
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Integer Solution by Polynomial Algorithm

Lemma - Integer solution by simplex algorithm

If the ILP problem is given by a totally unimodular matrix A and integer
vector b then every feasible solution by a simplex algorithm is an integer
vector.

Proof: From the Lemma on previous slide - the simplex algorithm inspects
vertices that are integer vectors.
Unfortunately, the simplex algorithm does not have polynomial complexity.

Fortunately, there are polynomial algorithms able to solve the LP problems
and to find the vertex in the facet with optimal solutions. But this subject
is studied in Linear Programming and Polyhedral Computation.
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Sufficient Condition for Totally Unimodular Matrix

Lemma - Sufficient Condition

Let A be matrix of size m/n such that

1 aij ∈ {0, 1,−1}, i = 1, ...,m, j = 1, ..., n

2 each column in A contains one non-zero element or exactly two
non-zero elements +1 and −1

Then matrix A is totally unimodular.

Proof: [Ahuja] Theorem 11.12. [KorteVygen] Theorem 5.26.
Example: ILP constraints of the Shortest Paths problem are: W ∗ x = b

e2e1

e3 e4

e5 v4

v3

v1

v2

W =

e1 e2 e3 e4 e5

v1 1 0 1 0 1
v2 −1 1 0 0 0
v3 0 0 −1 1 0
v4 0 −1 0 −1 −1

x =

x1

x2

x3

x4

x5

b =

1
0
0
−1
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Problem Formulation Using ILP - Real Estate Investment

We consider 6 buildings for investment.
The price and rental income for each of them are listed in the table.

building 1 2 3 4 5 6

price[mil. Kč] 5 7 4 3 4 6
income[thousands Kč] 16 22 12 8 11 19

Goal:

maximize income

Constraints:

investment budget is 14 mil Kč

each building can be bought only once

Formulation

xi = 1 if we buy building i

max z = 16x1+22x2+12x3+ 8x4+11x5+19x6

s.t. 5x1 + 7x2 + 4x3+ 3x4 + 4x5 + 6x6≤ 14
xi∈1···6 ∈ {0, 1}
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Adding Logical Formula x1 ⇒ x2

Another constraint:

if building 1 is selected, then building 2 is selected too

x1 x2 x1 ⇒ x2

0 0 1
0 1 1
1 0 0
1 1 1

x
1

x
2

0
0

1

1

max z = 16x1+22x2+12x3+ 8x4+11x5+19x6

s.t. 5x1 + 7x2 + 4x3+ 3x4 + 4x5 + 6x6≤ 14
x2≥ x1

xi∈1···6 ∈ {0, 1}
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Adding Logical Formula x3 ⇒ x4

Another constraint:

If building 3 is selected, then building 4 is not selected.

x3 x4 x3 ⇒ x4

0 0 1
0 1 1
1 0 1
1 1 0

x
3

x
4

0
0

1

1

max z = 16x1+22x2+12x3+ 8x4+11x5+19x6

s.t. 5x1 + 7x2 + 4x3+ 3x4 + 4x5 + 6x6≤ 14
x3 + x4 ≤ 1

xi∈1···6 ∈ {0, 1}
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Adding Logical Formula x5 XOR x6

Another constraint:

either building 5 is chosen or building 6 is chosen, but not both

x5 x6 x5 XOR x6

0 0 0
0 1 1
1 0 1
1 1 0

x
5

x
6

0
0

1

1

max z = 16x1+22x2+12x3+ 8x4+11x5+19x6

s.t. 5x1 + 7x2 + 4x3+ 3x4 + 4x5 + 6x6≤ 14
x5 + x6 = 1

xi∈1···6 ∈ {0, 1}
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Adding Logical Formula - Homework

Formulate:

building 1 must be chosen but building 2 can not

at least 3 estates must be chosen

exactly 3 estates must be chosen

if estates 1 and 2 have been chosen, then estate 3 must be chosen
too (x1 AND x2)⇒ x3

exactly 2 estates can not be chosen
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At least One of Two Constraints Must be Valid

While modeling problems using ILP, we often need to express that the
first, the second or both constraints hold. For example, xi∈1...4 ∈ 〈0, 5〉,
xi∈1...4 ∈ R

holds 2x1 + 2x2 ≤ 8
or 2x3 − 2x4 ≤ 2

or both

This can be modeled by a big M, i.e. big positive number (here 15), and
variable y ∈ {0, 1} so it can “switch off” one of the inequalities.

2x1 + 2x2 ≤ 8 + M · y
2x3 − 2x4 ≤ 2 + M · (1− y)
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At least One of Two Constraints Must be Valid

for y = 0 inequalities:

2x1 + 2x2 ≤ 8 + M · y
2x3 − 2x4 ≤ 2 + M · (1− y)

reduce to:

2x1 + 2x2 ≤ 8

for y = 1 inequalities:

2x1 + 2x2 ≤ 8 + M · y
2x3 − 2x4 ≤ 2 + M · (1− y)

reduce to:

2x3 − 2x4 ≤ 2
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Z. Hanzálek (CTU) Integer Linear Programming (ILP) April 9, 2018 34 / 42



At least One of Two Constraints Must be Valid

for y = 0 inequalities:

2x1 + 2x2 ≤ 8 + M · y
2x3 − 2x4 ≤ 2 + M · (1− y)

reduce to:

2x1 + 2x2 ≤ 8

for y = 1 inequalities:

2x1 + 2x2 ≤ 8 + M · y
2x3 − 2x4 ≤ 2 + M · (1− y)

reduce to:

2x3 − 2x4 ≤ 2

0 1 2 3 4 5

0

1

2

3

4

5

x₁

x₂

2 3 4 5

0

1

2

3

4

5

x₃

x₄

0 1

0 1 2 3 4 5

0

1

2

3

4

5

x₁

x₂

2 3 4 5

0

1

2

3

4

5

x₃

x₄

0 1
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At least One of Two Constraints Must be Valid -
Homework

In 2D draw the solution space of the system of inequalities:

2x1 + x2 ≤ 5 + M · y
2x1 − x2 ≤ 2 + M · (1− y)

y ∈ {0, 1}

In 2D draw the solution space of the system of inequalities. Note that
the equations correspond to parallel lines. Is it possible to find x1, x2

such that both equations are valid simultaneously?

2x1 + x2 ≤ 5 + M · y
M · (1− y) + 2x1 + x2 ≥ 10

y ∈ {0, 1}
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At least One of Two Constraints Must be Valid
Example: Non-preemptive Scheduling

1
∣∣∣rj , d̃j ∣∣∣Cmax ... NP-hard problem

Instance: A set of non-preemptive tasks T = {T1, . . . ,Ti , . . .Tn}
with release date r and deadline d̃ should be executed on one
processor. The processing times are given by vector p.

Goal: Find a feasible schedule represented by start times s that
minimizes completion time Cmax = maxi∈〈1,n〉 si + pi or decide that it
does not exist.

Example:

Ti - chair to be produced by a joiner

ri - time, when the material is available

d̃i - time when the chair must be completed

si - time when the chair production starts

si + pi - time when the chair production ends
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At least One of Two Constraints Must be Valid
Example: Non-preemptive Scheduling

Since at the given moment, at most, one task is running on a given
resource, therefore, for all task pairs Ti ,Tj it must hold:

1 Ti precedes Tj (sj ≥ si + pi )

2 or Tj precedes Ti (si ≥ sj + pj)

Note that (for pi > 0) both inequalities can’t hold simultaneously.
We need to formulate that at least one inequality holds. We will use
variable xij ∈ {0, 1} such that xij = 1 if Ti preceds Tj .
For every pair Ti ,Tj we introduce inequalities:

sj + M · (1− xij) ≥ si + pi “switched off” when xij = 0
si + M · xij ≥ sj + pj “switched off” when xij = 1
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Scheduling - Illustration of Non-convex Space

si ≥ ri i ∈ 1..n release date

d̃i ≥ si + pi i ∈ 1..n deadline
sj + M · (1− xij) ≥ si + pi i ∈ 1..n, j < i Ti precedes Tj GREEN

si + M · xij ≥ sj + pj i ∈ 1..n, j < i Tj precedes Ti VIOLET

For example: pi = 2, pj = 3, ri = rj = 0, d̃i = 10, d̃j = 11,M = 11
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Non-convex 2D space is a projection of two cuts of a 3D polytope
(determined by the set of inequalities) in planes xij = 0 and xij = 1.
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At least K of N Constraints Must Hold

We have N constraints and we need at least K of them to hold.
Constraints are of type:

f (x1, x2, . . . , xn) ≤ b1

f (x1, x2, . . . , xn) ≤ b2
...

f (x1, x2, . . . , xn) ≤ bN

Can be solved by introducing N variables yi∈1...N ∈ {0, 1} such that

f (x1, x2, . . . , xn) ≤ b1 + M · y1

f (x1, x2, . . . , xn) ≤ b2 + M · y2
...

f (x1, x2, . . . , xn) ≤ bN + M · yN∑N
i=1 yi = N − K

If K = 1 and N = 2 we can use just one variable yi and represent its
negation as a (1− yi ), see above slides for details.
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ILP Solvers

CPLEX - proprietary IBM http://www-03.ibm.com/software/

products/en/ibmilogcpleoptistud

MOSEK - proprietary http://www.mosek.com/

GLPK - free http://www.gnu.org/software/glpk/

LP SOLVE - free http://groups.yahoo.com/group/lp_solve/

GUROBI - proprietary http://www.gurobi.com/

YALMIP - Matlab toolbox for modelling ILP problems
CVX - modeling framework
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ILP - Conclusion

NP-hard problem.

Used to formulate majority of combinatorial problems.

Often solved by branch and bound method.
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