
Scheduling

Zdenek Hanzalek
zdenek.hanzalek@cvut.cz

CTU in Prague

April 9, 2018

Z. Hanzalek (CTU) Scheduling April 9, 2018 1 / 83

Scheduling - Basic Terminology

set of n tasks T = {T1,T2, . . . ,Tn}
set of m types of resources (processors, machines, employees,...) with
capacities Rk , P =

{
P1
1 , . . . ,P

1
R1
,P2

1 , . . . ,P
2
R2
, ,Pm

1 , . . . ,P
m
Rm

}

Scheduling is an assignment of a task to a resources in time

Each task must be completed
this differs from planning which decides which task will be scheduled
and processed

Set of tasks is known when executing the scheduling algorithm (this is
called off-line scheduling)

this differs from on-line scheduling - OS scheduler, for example,
schedules new tasks using some policy (e.g. priority levels)

A result is a schedule which determines which task is run on which
resource and when. Often depicted as a Gantt chart.

Z. Hanzalek (CTU) Scheduling April 9, 2018 6 / 83

General and Specific Constraints

General constraints:

Each task is to be processed by at most one resource at a time
(task is sequential)

Each resource is capable of processing at most one task at a time

Specific constraints:

Task Ti has to be processed during time interval
〈
ri , d̃i

〉

When the precedence constraint is defined between Ti and Tj , i.e.
Ti ≺ Tj , then the processing of task Tj can’t start before task Ti was
completed

If scheduling is non-preemptive, a task cannot be stopped and
completed later

If scheduling is preemptive, the number of preemptions must be finite

Z. Hanzalek (CTU) Scheduling April 9, 2018 7 / 83

Task Parameters and Variables

Parameters

release time rj

processing time pj

due date dj , time in which task
Tj should be completed

deadline d̃j , time in which task
Tj has to be completed

Variables

start time sj

completion time Cj

waiting time wj = sj − rj

flow (lead) time Fj = Cj − rj

lateness Lj = Cj − dj

tardiness Dj = max{Cj − dj , 0}

Tj

0 rj sj dj d̃jcj

Dj

Lj

pjwj

Fj +−

t
C

Z. Hanzalek (CTU) Scheduling April 9, 2018 8 / 83

Graham’s Notation α |β| γ

Classify scheduling problems by
resources | tasks | criterion

Example: P2 |pmtn|Cmax represents scheduling on two parallel identical
resources, and preemption is allowed. The optimization criterion is the
completion time of the last task.

α - resources

Parallel resources - a task can run on any resource (only one type of
resource exists with capacity R, i.e. P =

{
P1, . . . ,PR

}
).

Dedicated resources - a task can run only on one resource (m
resource types with unit capacity, i.e. P =

{
P1,P2 . . . ,Pm

}
).

Project Scheduling - m resource types, each with capacity Rk , i.e.
P =

{
P1
1 , . . . ,P

1
R1
,P2

1 , . . . ,P
2
R2
, ,Pm

1 , . . . ,P
m
Rm

}
.

Z. Hanzalek (CTU) Scheduling April 9, 2018 9 / 83

Resources Characteristics α1, α2

α1 = 1 single resource
P parallel identical resources
Q parallel uniform resources, computation time is inversely

related to resource speed
R parallel unrelated resources, computation times are

given as a matrix (resources x tasks)
O dedicated resources - open-shop - tasks are independent
F dedicated resources - flow-shop - tasks are grouped in

the sequences (jobs) in the same order, each job visits
each machine once

J dedicated resources - job-shop - order of tasks in jobs is
arbitrary, resource can be used several times in a job

PS Project Scheduling - most general (several resource
types with capacities, general precedence constraints)

α2 = ∅ arbitrary number of resources
2 2 resources (or other specified number)
m,R m resource types with capacities R (Project Scheduling)

Z. Hanzalek (CTU) Scheduling April 9, 2018 10 / 83

Task Characteristics β1, β2, β3, β4, β5, β6, β7, β8

β1 = pmtn preemption is allowed
∅ preemption is not allowed

β2 = prec precedence constraints
in-tree,out-tree tree constraints
chain chain constraints
tmpn temporal constraints (for Project Sched.)
∅ independent tasks

β3 = rj release time

β4 = pj = k uniform processing time
pL ≤ pj ≤ pU restricted processing time
∅ arbitrary processing time

β5 = d̃j , dj deadline, due-date

β6 = nj ≤ k maximal number of tasks in a job

β7 = no-wait buffers of zero capacity

β8 = set-up time for resource reconfiguration

Z. Hanzalek (CTU) Scheduling April 9, 2018 11 / 83

Optimality Criterion γ

γ = Cmax minimize schedule length Cmax = max {Cj}
(makespan, i.e. completion time of the last task)∑

Cj minimize the sum of completion times∑
wjCj minimize weighted completion time

Lmax minimize max. lateness Lmax = max {Cj − dj}
∅ decision problem
· · ·

An Example: P ||Cmax means:
Scheduling on an arbitrary number of parallel identical resources, no
preemption, independent tasks (no precedence), tasks arrive to the system
at time 0, processing times are arbitrary, objective is to minimize the
schedule length.

Z. Hanzalek (CTU) Scheduling April 9, 2018 12 / 83

Scheduling on One Resource
Minimizing Makespan (i.e. schedule length Cmax)

1 |prec |Cmax - easy
the tasks are processed in an arbitrary order that satisfies the
precedence relation (i.e. topological order), Cmax =

∑n
j=1 pj

1 ||Cmax - easy

1 |rj |Cmax - easy
the tasks are processed in a non-descending order of rj (Tj with the
lowest rj first)

1
∣∣∣d̃j
∣∣∣Cmax - easy

the tasks are processed in a non-descending order of d̃j
can be solved by EDF - Earliest Deadline First
the feasible schedule doesn’t have to exist

1
∣∣∣rj , d̃j

∣∣∣Cmax - NP-hard

NP-hardness proved by the pol. reduction from 3-Partition problem
for pj = 1 there exists a polynomial algorithm

Z. Hanzalek (CTU) Scheduling April 9, 2018 13 / 83

1
∣∣∣rj , d̃j

∣∣∣Cmax Problem is NP-hard

Theorem

The 1
∣∣∣rj , d̃j

∣∣∣Cmax problem is NP-hard in the strong sense.

By reduction from the 3-Partition problem, which is strongly NP-complete.

3-Partition decision problem instance, I3P = (A,B), is given as:

a multiset A of 3m integers a1, a2, . . . , a3m (sizes of items), and

a positive integer B (size of bins) such that
∀i ∈ {1, 2, . . . , 3m} : B

4 < ai <
B
2 and

∑3m
i=1 ai = mB.

The problem is to determine whether A can be partitioned into m disjoint
subsets A1,A2, . . . ,Am such that, ∀j ∈ {1, 2, . . . ,m} :

∑
ai∈Aj

ai = B.

Note: if we show that there is a subset Aj which contains integers
summing to B, then it must contain three integers. This follows from the
assumption B

4 < ai <
B
2 (try to sum-up 4 integers or 2 integers).

Z. Hanzalek (CTU) Scheduling April 9, 2018 14 / 83

Reduction from 3-Partition to 1
∣∣∣rj , d̃j

∣∣∣Cmax

From the given instance of the 3-Partition problem I3P = (A,B), we build

1
∣∣∣rj , d̃j

∣∣∣Cmax scheduling problem instance ISCH comprised of 4m tasks

Tj = (pj , rj , d̃j) as follows:

∀j ∈ {1, . . . ,m} : Tj = (1, (B+1) · (j−1), (B+1) · (j−1)+1). These
are “additional/artificial” tasks used to separate the subsets.

∀j ∈ {m + 1, . . . , 4m} : Tj = (ai , 0,∞), i = j −m.
Each of these tasks Tj corresponds to the element ai of I3P .

0 1 2B+1 (B+1) (m-1)(B+1) C =m(B+1) timemax

T1

Ta Tb Tc

T2

Td Te Tf

T3 T4

Tx Ty Tz

B B B

. . .

It is easy to prove that the I3P = (A,B) has a solution if and only if the
optimal solution of the related ISCH has value of Cmax = m · (B+1).

Z. Hanzalek (CTU) Scheduling April 9, 2018 15 / 83

Position based ILP formulation for 1
∣∣∣rj , d̃j

∣∣∣Cmax

xiq = 1 iff task i is at the q-th position in the sequence of tasks

minCmax

subject to:∑n
q=1 xiq = 1 i = 1..n∑n
i=1 xiq = 1 q = 1..n

tq ≥∑n
i=1 ri · xiq q = 1..n

tq ≥ tq−1 +
∑n

i=1 pi · xi ,q−1 q = 2..n

tq ≤∑n
i=1 d̃i · xi ,q −

∑n
i=1 pi · xi ,q q = 1..n

Cmax ≥ tn +
∑n

i=1 pi · xin

variables: xi∈1..n,q∈1..n ∈ {0, 1}, Cmax ∈ 〈0,UB〉, tq∈1..n ∈ 〈0,UB〉

Z. Hanzalek (CTU) Scheduling April 9, 2018 16 / 83

Bratley’s Algorithm for 1
∣∣∣rj , d̃j

∣∣∣Cmax

A branch and bound (B&B) algorithm.
Branching - without bounding it is an enumerative method that creates
a solution tree (some of the nodes are infeasible). Every node is labeled by:
(the order of tasks)/(completion time of the last task).

Z. Hanzalek (CTU) Scheduling April 9, 2018 17 / 83

Reduction of the Tree - Bounding

(i) eliminate the node exceeding the deadline (and all its “brothers”)

If there is a node which exceeds
any deadline, all its descendants
should be eliminated

Critical task (here T3) will have
to be scheduled anyway -
therefore, all of its “brothers”
should be eliminated as well

T

d
1

1

T
2

2
d

T
1 T

1 4
T

d
4

T T
1 3

d
3

due to this node we can

eliminate its others„br ”

Z. Hanzalek (CTU) Scheduling April 9, 2018 18 / 83

Tree Size Reduction - Decomposition

(ii) problem decomposition due to idle waiting - e.g. when the employee
waits for the material, his work was optimal

Consider node v on level k . If Ci of the
last scheduled task is less than or equal
to ri of all unscheduled tasks, there is
no need for backtrack above v

v becomes a new root and there are
n − k levels (n − k unscheduled tasks)
to be scheduled

Z. Hanzalek (CTU) Scheduling April 9, 2018 19 / 83

Optimality Test - Termination of Bratley’s Algorithm

Definition: BRTP - Block with Release Time Property

BRTP is a set of k tasks that satisfy:

first task T[1] starts at it’s release time

all k tasks till the end of the schedule run without “idle waiting”

r[1] ≤ r[i] for all i = 2 . . . k

Note: “till the end of the schedule” implies there is at most one BRTP

Lemma: sufficient condition of optimality

If BRTP exists, the schedule is optimal (the search is finished).

t

T[k]k = 1

r[k] Cmax

T[2]

r[i] ≥ r[1] ∀ i = 2 · · · k t

T[3] · · · T[k]T[1]

r[1] Cmax

Proof:

this schedule is optimal since the last task T[k]

can not be completed earlier

order of prec. tasks is not important - see (ii)

no task from BRTP can be done before r[1]

there is no task after Cmax

Z. Hanzalek (CTU) Scheduling April 9, 2018 20 / 83

BRTP is not Necessary Condition of Optimality

Example:

T[2]T[1]
r[1]r[2] Cmax = d̃[2]d̃[1]

In this particular case, the schedule is optimal, but it does not have BRTP.

Tightening the bounds:
In general, Cmax found without BRTP could be used for bounding further
solutions while setting all deadlines to be at most Cmax − ε.
This ensures that if other feasible schedules exist, only those that are
better by ε than the solution at hand, are generated.

Z. Hanzalek (CTU) Scheduling April 9, 2018 21 / 83

Bratley’s Algorithm - Example

r =(4,1,1,0), p =(2,1,2,2), d̃ =(8,5,6,4)

Z. Hanzalek (CTU) Scheduling April 9, 2018 22 / 83

Scheduling on One Resource
Minimizing

∑
wjCj

1 ||∑Cj - easy
SPT rule (Shortest Processing Time first) - schedule the tasks in a
non-decreasing order of pj

1 ||∑wjCj - easy
Weighted SPT - schedule the tasks in a non-decreasing order of

pj
wj

1 |rj |
∑

Cj - NP-hard

1 |pmtn, rj |
∑

Cj - can be solved by modified SPT

1 |pmtn, rj |
∑

wjCj - NP-hard

1
∣∣∣d̃j
∣∣∣
∑

Cj - can be solved by modified SPT

1
∣∣∣d̃j
∣∣∣
∑

wjCj - NP-hard

1 |prec|∑Cj - NP-hard

Z. Hanzalek (CTU) Scheduling April 9, 2018 23 / 83

Branch and Bound with LP for 1 |prec|∑wjCj

First, we formulate the problem as an ILP:

we use variable xij ∈ {0, 1} such that xij = 1 iff Ti precedes Tj or
i = j

we encode precedence relations into eij ∈ {0, 1} such that eij = 1 iff
there is a directed edge from Ti to Tj in the precedence graph G or
i = j

criterion - completion time of task Tj consists of pj and the
processing time of its predecessors:

Cj =
∑n

i=1 pi · xij
wj · Cj =

∑n
i=1 pi · xij · wj

J =
∑n

j=1 wj · Cj =
∑n

j=1

∑n
i=1 pi · xij · wj

from all feasible schedules x we look for the one that minimizes J(x),
i.e. minx J(x)

Z. Hanzalek (CTU) Scheduling April 9, 2018 24 / 83

ILP formulation for 1 |prec|∑wjCj

min
∑n

j=1

∑n
i=1 pi · xij · wj

subject to:

xi ,j ≥ ei ,j i , j ∈ 1..n if Ti precedes Tj in G ,
then it precedes Tj

in the schedule
xi ,j + xj ,i = 1 i , j ∈ 1..n, i 6= j eitherTi precedesTj ,

or vice versa
1 ≤ xi ,j + xj ,k + xk,i ≤ 2 i , j , k ∈ 1..n, no cycle exists in the

i 6= j 6= k digraph of x
xi ,i = 1 i ∈ 1..n

parameters: wi∈1..n, pi∈1..n ∈ R+
0 ei∈1..n,j∈1..n ∈ {0, 1}

variables: xi∈1..n,j∈1..n ∈ {0, 1}

Z. Hanzalek (CTU) Scheduling April 9, 2018 25 / 83

Branch and Bound with LP Bounding

We relax on the integrality of variable x :

0 ≤ xij ≤ 1 and xi∈1..n,j∈1..n ∈ R
This does not give us the right solution, however we can use the
JLP(remaining tasks) value of this LP formulation as a lower bound
on the “amount of remaining work”

The Branch and Bound algorithm creates a similar tree as Bradley’s
algorithm.

root

(T)/w C
1 11

(T ,T)/w + wC C
1 2 21 1 2

. . .

.

.

.

(T ,T)/J =w + wC C
1 n 11 n n

(T ,...,T)/J = wS C
1 n 1n jj

2

J(remaining tasks)

Let J1 be the value of the best solution known
up to now

We discard the partial solution of value J2 not
only when J2 ≥ J1, but also when
J2 + JLP(remaining tasks) ≥ J1.
Since the solution space of ILP is a subspace of
LP we know:
J(remaining tasks) ≥ JLP(remaining tasks).

Z. Hanzalek (CTU) Scheduling April 9, 2018 26 / 83

Project Scheduling - Minimizing Cmax

PS1 |temp|Cmax - NP-hard

PS1 stands for single resource, temp stands for temporal constraints
Input: The number of non-preemptive tasks n and processing times
(p1, p2, ..., pn). The temporal constraints defined by digraph G .
Output: n-element vector s, where si is the start time of Ti

We will show Time-indexed and Relative-order ILP formulations

PSm, 1 |temp|Cmax - NP-hard

PSm, 1 stands for m resource types, each of capacity 1
Input: The number of non-preemptive tasks n and processing times
(p1, p2, ..., pn). The temporal constraints defined by digraph G .
The number of dedicated resources m and the assignment of the tasks
to the resources (a1, a2, ..., an).
Output: n-element vector s, where si is the start time of Ti

We show the Relative-order ILP formulation

extensions to general scheduling model

multi-processor tasks
sequence dependent set-up times

Z. Hanzalek (CTU) Scheduling April 9, 2018 54 / 83

Motivation Example: Message Scheduler for Profinet IO
IRT - Specification

Profinet IO IRT is an Ethernet-based hard-real time communication
protocol, which uses static schedules for time-critical data. Each node
contains a special hardware switch that intentionally breaks the standard
forwarding rules for a specified part of the period to ensure that no
queuing delays occur for time-critical data.

Goal: Minimize the makespan (the schedule length) for time critical
messages.

P1 P2 P3 P4

N1

CP-1616

P1 P2 P3 P4

N5

CP-1616

P1 P2 P3 P4

N4

Sinamics S120

P1 P2 P3 P4

N3

PN-IO/CP-1616

P1 P2

N2

IM151-3

link N3-N1

link N1-N3

link N5-N3

link N3-N5

link N1-N2

link N2-N1
link N1-N4

link N4-N1

line N1 → N3 N1 → N4 N1 → N2 N2 → N1 N3 → N1 N4 → N1 N3 → N5 N5 → N3

line delay [ns] 4875 5130 5862 3841 4875 4895 4875 4875

Z. Hanzalek (CTU) Scheduling April 9, 2018 55 / 83

Motivation Example: Message Scheduler for Profinet IO
IRT - Specification

Constraints:

tree topology ⇒ fixed routing

release date r - earliest time the message can be sent

deadline d̃ - latest time the message can be delivered

maximal allowed end-to-end time delay

ID source → target length [ns] r [ns] d̃ [ns] end2end delay [ns]
256 N2 → N3 5760 5000 20000 11000
257 N3 → N2 5760 15000 40000 15000
258 N1 → N3 5760 15000 – –
259 N3 → N1 5760 20000 35000 –
128 N3 → {N1,N2,N4,N5} 11680 5000 {–,–,–,18000} {–,17675,17675,15000}

Z. Hanzalek (CTU) Scheduling April 9, 2018 56 / 83

Motivation Example: Message Scheduler for Profinet IO
IRT - Formalization

Can be formulated as
PSm, 1 |temp|Cmax problem.

task = message on a given line

positive cost edge = r ,
precedence relations

negative cost edge = d̃ ,
end-to-end delay

unicast message = chain of
tasks (assuming positive edges)

multicast message = out-tree of
tasks (assuming positive edges)

T3

1 - 3

6880

T2

2 - 1

6880

3841

4875

5000

- 4120

- 8120

- 13120

- 33120

- 28120

15000

15000

20000

T5

1 - 2

6880

T4

3 - 1

6880

T6

1 - 3

6880

T7

3 - 1

6880

T1

0

256

257

258

259

4875

4875

- 4875

- 4875
- 2200

- 5200

0

0

T11

1 - 2

12800

T12

1 - 4

12800

T9

3 - 1

12800

T10

3 - 5

12800

T8

0

128

Z. Hanzalek (CTU) Scheduling April 9, 2018 57 / 83

Motivation Ex.: Message Sch. for Profinet IO IRT - Result

N1 - N2

N1 - N3

N2 - N1

N3 - N1

N3 - N5

10 20 30

10 20 30

10 20 30

10

5

20 30

N1 - N4

10 20 30

10 20 30 t [µs]

Cmax

Class 3 Class 2 Class 1/NRT reserve

communication cycle

T
11

: 128, 11.68

T
9
: 128, 11.68

T
5
: 257, 5.76

T
12

: 128, 11.68

T
6
: 258, 5.76

T
7
: 259, 5.76

T
2
: 256, 5.76

T
4
: 257, 5.76

T
3
: 256, 5.76

T
10

: 128, 11.68

Z. Hanzalek (CTU) Scheduling April 9, 2018 58 / 83

Temporal Constraints

Set of non-preemptive tasks T = {T1,T2, ...,Tn} is represented by
the nodes of the directed graph G (may include negative cycles).

Processing time pi is assigned to each task.

The edges represent temporal
constraints. Each edge from Ti to Tj

has the length lij .

Each temporal constraint is
characterized by one inequality
si + lij ≤ sj .

Z. Hanzalek (CTU) Scheduling April 9, 2018 59 / 83

Temporal Constraints si + lij ≤ sj with Positive lij

Temporal Constraints (also called a generalized precedence constraint
or a positive-negative time lag)
- the start time of one task depends on the start time of another task

a) lij = pi

“normal” precedence relation

the second task can start when
the previous task is finished

Tj

l ij

Ti

pi

Tj
l ij

t

Ti

b) lij > pi

the second task can start some
time after the completion of
previous task

b.1) example of a dry operation
performed in sufficiently large
space

Tj

l ij

Ti

packpaint dry

Ti Tj
l ij

t

pi

Z. Hanzalek (CTU) Scheduling April 9, 2018 60 / 83

Temporal Constraints si + lij ≤ sj with Positive lij

b.2) another example with lij > pi - pipe-lined ALU

We assume the processing time
to be equal in all stages

Result is available l1f tics
after stage 1 reads operands

Stage 1 reads new operands
each p1 tics

Stages 2 and 3 are not
modeled since we have enough
of these resources and they are
synchronized with stage 1

l1f

delay1

stage 3

res

op11

stage 1

stage 2

T21

following
proc T1f

op21

...

op12

op22

...

T11

T12

T23

T22

T13

in st.2&3in st.1

. . .

. . .

. . .

T11 T1f
l1f

tdelay1

p1

Z. Hanzalek (CTU) Scheduling April 9, 2018 61 / 83

Temporal Constraints si + lij ≤ sj with Positive lij

c) 0 < lij < pi

Partial results of the previous task may be used to start the execution
of the following task.
E.g. the cut-through mechanism, where the switch starts transmission on
the output port earlier than it receives the complete message on the input
port.

time-triggered protocol

resources are communication
links

lab represents the delay in the
switch

different parts of the same
message are transmitted by
several communication links at
the same time

lab

processingswitch 3

line a

message1b

in switch 2

switch 1

switch 2

line b

message1a

T1a T1b
lab

t

pa
Z. Hanzalek (CTU) Scheduling April 9, 2018 62 / 83

Temporal Constraints si + lij ≤ sj with Zero or Negative lij

d) lij = 0

Task Ti has to start earlier or at
the same time as Tj Tj

Ti

Ti Tj
l ij = 0

t

pi

e) lij < 0

Task Ti has to start earlier or at
most |lij | later than Tj

It loses the sense of “normal ”
precedence relation, since Ti

does not have to precede Tj

It represents the relative
deadline of Ti related to the
start-time of Tj

Tj

Ti

Ti Tj

l ij

t

l ij < 0

Z. Hanzalek (CTU) Scheduling April 9, 2018 63 / 83

Cycles and Relative Time Windows

Absence of a positive cycle in graph G

is a necessary condition for schedulability of PS1 |temp|Cmax

is a necessary and sufficient condition for schedulability of the
instance with unlimited capacity of resources. The schedule, which
is restricted only by the temp. constraints, can be found in pol. time

by LP or
by the longest paths. For G we can create G ′, a complete digraph of
longest paths, where weight lij is the length of the longest directed
path from Ti to Tj in G (if no directed path in G exists, the weight is
lij = −∞). A start time of Tj is lower bounded by the longest path
from arbitrary node, i.e. sj ≥ max∀i∈1...n lij .

Example - relative time window, e.g. when applying
a catalyst to the chemical process
If finite lij ≥ 0 and lji < 0 do exist, tasks Ti and Tj are
constrained by the relative time window.

the length of the negative cycle determines the
“clearance” of the time window

T1

T2

T1 T2

l21

t
2

-3

l12

Z. Hanzalek (CTU) Scheduling April 9, 2018 64 / 83

ILP formulation of PS1 |temp|Cmax

Task can be represented in two ways:

Time-indexed - ILP model is based on variable xit , which is equal to
1 iff si = t. Otherwise, it is equal to zero. Processing times are
assumed to be positive integers.

Relative-order - ILP model is based on the relative order of tasks
given by variable xij , which is equal to 1 iff task Ti precedes task Tj .
Otherwise, it is equal to zero. The processing times are nonnegative
real numbers (tasks with zero processing time may be used to
represent events).

Both models contain two types of constraints:

temporal constraints

resource constraints - prevent overlapping of tasks

Z. Hanzalek (CTU) Scheduling April 9, 2018 65 / 83

Time-indexed Model for PS1 |temp|Cmax

minCmax

∑UB−1
t=0 (t · xit) + lij ≤

∑UB−1
t=0 (t · xjt) ∀lij 6= −∞ a i 6= j (temp. const.)

∑n
i=1

(∑t
k=max(0,t−pi+1) xik

)
≤ 1 ∀t ∈ {0, . . .UB − 1} (resource)

∑UB−1
t=0 xit = 1 ∀i ∈ {1, . . . n} (Ti is scheduled)∑UB−1
t=0 (t · xit) + pi ≤ Cmax ∀i ∈ {1, . . . n}

variables: xit ∈ {0, 1}, Cmax ∈ {0, . . .UB}

UB - upper bound of Cmax (e.g. UB =
∑n

i=1 max
{
pi ,maxi ,j∈{1,...,n} lij

}
).

Start time of Ti is si =
∑UB−1

t=0 (t · xit).

Model contains n · UB + 1 variables and |E |+ UB + 2n constraints.
Constant |E | represents the number of temporal constraints (edges in G).

Z. Hanzalek (CTU) Scheduling April 9, 2018 66 / 83

Time-indexed Model for PS1 |temp|Cmax

T = {T1,T2,T3}, p = (1, 2, 1), UB = 5

T1 is scheduled:

Resource constr. at time 2:

T1

T2

T3

x10 x11 x12 x13 x14

x20 x21 x22 x23 x24

x30 x31 x32 x33 x34

T1

T2

T3

x10 x11 x12 x13 x14

x20 x21 x22 x23 x24

x30 x31 x32 x33 x34

S = 1

S 1£

Z. Hanzalek (CTU) Scheduling April 9, 2018 67 / 83

Relative-order Model for PS1 |temp|Cmax

Resource constraint for couple of tasks:
pj ≤ si − sj + UB · xij ≤ UB − pi

The constraint uses “big M” (here UB - upper bound on Cmax).

If xij = 1, Ti precedes task Tj and
the constraint is formulated as
si + pi ≤ sj .

If xij = 0, Ti follows task Tj and the
constraint is formulated as
sj + pj ≤ si .

Z. Hanzalek (CTU) Scheduling April 9, 2018 68 / 83

Relative-order Model for PS1 |temp|Cmax

minCmax

si + lij ≤ sj ∀lij 6= −∞ and i 6= j
(temporal constraint)

pj
blue
≤ si − sj + UB · xij

green
≤ UB − pi ∀i , j ∈ {1, . . . , n} and i < j

(resource constraint)

si + pi ≤ Cmax ∀i ∈ {1, . . . , n}

variables: xij ∈ {0, 1}, Cmax ∈ 〈0,UB〉, si ∈ 〈0,UB − pi 〉

The model contains n +
(
n2 − n

)
/2 + 1 variables

and |E |+
(
n2 − n

)
+ n constraints.

|E | is a number of temporal constraints (edges in G).
Z. Hanzalek (CTU) Scheduling April 9, 2018 69 / 83

Relative-order Model for PS1 |temp|Cmax

Example: no temporal constraints, two tasks Ti , Tj with pi = 2 and
pj = 3. We set UB = 11 and we study si ∈ 〈0, 8〉.
3D polytope (left) is determined by the resource constr. given by blue and
green hyperplanes (see colors on the previous slide). Its projection to 2D
space (right) shows both sequences of tasks. When we change UB, the
hyperplanes in 3D decline -each of the moves the vertex with acute angle.

0

2

4

6

8

0
2

4
6

8

0

0.2

0.4

0.6

0.8

1

si

sj

xij

0

1

2

3

4

5

6

7

8

0

2

4

6

8

sj

si

s
i −

s
j +

11 ∗
1 ≤

11−
2

3 ≤
s
i −

s
j

Z. Hanzalek (CTU) Scheduling April 9, 2018 70 / 83

Comparison of the Two Models

Each model is suitable for different types of tasks:

Time-indexed model:

(+) Can be easily extended for parallel identical processors.

(+) ILP formulation does not need many constraints.

(-) The size of the model grows with the size of UB.

Relative-order model:

(+) The size of ILP model does not depend on UB.

(-) Requires a big number of constraints.

Z. Hanzalek (CTU) Scheduling April 9, 2018 71 / 83

Feasibility Test for Heuristic Algorithms

If the partial schedule (found for example by a greedy algorithm which
inserts tasks in a topological order of edges with positive weight, or the
partial result during the Branch and Bound algorithm) violates some time
constraints, the order of tasks does not need to be infeasible.

T
1

1

T
1

1

T
2

1

T
2

1

T
3

1

T
3

1

1 1

-1

3
T

1
T

2
T

3

t0 1 2 3 4 5

l
32

> -1

T
1

T
3

t0 1 2 3 4 5

T
2

l
32

= -1

Feasible

Infeasible

When the optimal order of the tasks in the schedule is known (variables xij
are constants), it is easy to find the start time of the tasks (for example by
LP formulation involving time constraints only).

Z. Hanzalek (CTU) Scheduling April 9, 2018 72 / 83

Relative-order Model for Project Scheduling with
Dedicated Resources of Unit Capacity PSm, 1 |temp|Cmax

Part of the input parameters are the number of resources m and
assignment of the tasks to the resources (a1, ..., ai , ..., an), where ai is
index of the resource type on which task Ti will be running.

minCmax

si + lij ≤ sj ∀lij 6= −∞ and i 6= j
(temporal constraints)

pj ≤ si − sj + UB · xij ≤ UB − pi ∀i , j ∈ {1, . . . , n}, i < j and ai = aj
(on the same resource type)

si + pi ≤ Cmax ∀i ∈ {1, . . . , n}

variables: xij ∈ {0, 1}, Cmax ∈ 〈0,UB〉, si ∈ 〈0,UB〉

Model consists of less than n +
(
n2 − n

)
/2 + 1 variables (exact number

depends on the number of tasks scheduled on each resource type).
Z. Hanzalek (CTU) Scheduling April 9, 2018 73 / 83

Modeling with Temporal Constraints

Using PS1 |temp|Cmax we will model:

1
∣∣∣rj , d̃j

∣∣∣Cmax

scheduling on dedicated resources PSm, 1 |temp|Cmax

Using PSm, 1 |temp|Cmax we will model:

scheduling of multiprocessor task - task needs more than one
resource type at a given moment,

scheduling with setup times - two subsequent tasks executed on one
resource need to be separated by idle waiting, for example to change
the tool.

Z. Hanzalek (CTU) Scheduling April 9, 2018 74 / 83

Reduction from 1
∣∣∣rj , d̃j

∣∣∣Cmax to PS1 |temp|Cmax

This polynomial reduction proves that PS1 |temp|Cmax is NP-hard, since
Bratley’s problem is NP-hard.

Instance 1
∣∣∣rj , d̃j

∣∣∣Cmax

r = (r1, r2, . . . , rn)
p = (p1, p2, . . . , pn)
d̃ = (d̃1, d̃2, . . . , d̃n)

Z. Hanzalek (CTU) Scheduling April 9, 2018 75 / 83

Reduction from PSm, 1 |temp|Cmax to PS1 |temp|Cmax

Reduction from PSm, 1 |temp|Cmax to PS1 |temp|Cmax is based on the
projection of each resource to the independent time window. In other
words, the schedule of tasks on P j is projected into interval
〈(j − 1) · UB, j · UB〉

Transformation consists of two steps:

Add dummy tasks T0 and Tn+1 with p0 = pn+1 = 0.

Task T0, processed on P1, precedes all tasks Ti ∈ T , ie. s0 ≤ si .
Task Tn+1, processed on Pm, follows all task Ti ∈ T , tj. si + pi ≤ sn+1.

Transform the original temporal constraints to
l ′ij = lij + (aj − ai) · UB.

Z. Hanzalek (CTU) Scheduling April 9, 2018 76 / 83

Reduction from PSm, 1 |temp|Cmax to PS1 |temp|Cmax

The new start time s ′i of each task on processor ai is:
s ′i = si + (ai − 1) · UB.

Temporal constraints si + lij ≤ sj are transformed to:

s ′i − (ai − 1) · UB + lij ≤ s ′j − (aj − 1) · UB
s ′i + lij + (aj − ai) · UB ≤ s ′j

The transformed temporal constraint will look like s ′i + l ′ij ≤ s ′j , where:

l ′ij = lij + (aj − ai) · UB

Z. Hanzalek (CTU) Scheduling April 9, 2018 77 / 83

Reduction from PSm, 1 |temp|Cmax to PS1 |temp|Cmax

T
1

2

T
1

2

T
2

3

T
2

3

T
3

4

T
3

4

3

2

-4

T
1

2

T
1

2

T
2

3

T
2

3

T
3

4

T
3

4

3+10

2+10

-4-10

T
0

0

T
0

0

T
n+1

0

T
n+1

0

2+10

3

4

0

10

10

two cated resourcesdedi

T on P and T ,T on P1 2 3

1 2

one resource

-20+3

-20+4

-10+2

While minimizing the completion time of Tn+1, we push tasks T1,T2 and
T3 “to the left” due to the edges entering Tn+1

Z. Hanzalek (CTU) Scheduling April 9, 2018 78 / 83

Multiprocessors Task

Transformation of multiprocessor task problem to PSm, 1 |temp|Cmax

create as many virtual tasks as there are processors needed to execute
the physical tasks

ensure that the virtual tasks of the given physical task start at the
same time - this is done by two edges with weight lij = lji = 0.
Consequently si ≤ sj and sj ≤ si .

Example: Task Ti needs resources (P1,P2,P3).

T
i

1
T

i

1

pi

T
i

2
T

i

0

0 0

0

3

P
1 2 3

pi pi

PP

Z. Hanzalek (CTU) Scheduling April 9, 2018 79 / 83

Project Scheduling with Dedicated Resources of Different
Capacity PSm,R |temp|Cmax

Resource k ∈ {1, 2, ...,m} has a capacity of Rk ∈ Z+ ∪ {∞} units.
Task i requires rik ∈ Z+

0 units of resource k , with 0 ≤ rik ≤ Rk .
Multiprocessor tasks - Multiple resources may be required by one task.

Example:
m = 3
capacities of resources:
R = (2, 1,∞)

r =[0,0,1]1,k

[1,1,0]

[0,1,0]

[0,0,1]

[2,1,0] [1,0,0]

[1,0,0] [1,1,0] [1,0,0] [0,1,0] [1,0,0]

[1,1,0] [1,1,0] [2,0,0] [1,0,0]

[0,0,1]

p =01

2 2

0

4 3

6 5
5 5

6

0

0

5 2 9 10

[0,0,1]
0 0

l1,2=

11

12

10

13 14 15

17

16

13

13

14

14

15

15 2

2 3

5

5

5

4

8

8 9

16 6

11

10

1 12 17

7

t

k=1

v=1

k=1

v=2

k=2

v=1

k=3

r
e
s
o

u
r
c
e
s

Z. Hanzalek (CTU) Scheduling April 9, 2018 80 / 83

Relative-order ILP Model for PSm,R |temp|Cmax

The assignment zivk ∈ {0, 1} is equal to 1 if task i is assigned to unit v
of resource k, and 0 otherwise.
We define {i , j} ∈ M iff task i and task j are assigned to resource k of
finite capacity (i.e., ∃k ∈ R : rik · rjk ≥ 1 and Rk <∞) and therefore we
have to avoid a collision of task i and task j . We define V = {1, . . . , n}.

minCmax (1)

subject to:

sj − si ≥ lij ∀(i , j) ∈ V2 : i 6= j (2)

si − sj + UB · xij + UB · yij ≥ pj ∀(i , j) ∈ V2 : i 6= j , {i , j} ∈ M (3)

si − sj + UB · xij − UB · yij ≤ UB − pi ∀(i , j) ∈ V2 : i 6= j , {i , j} ∈ M (4)

−xij + yij ≤ 0 ∀(i , j) ∈ V2 : i 6= j , {i , j} ∈ M (5)

zivk + zjvk − 1 ≤ 1− yij ∀(i , j) ∈ V2, ∀k ∈ {1...M} ,∀v ∈ {1, . . . ,Rk} : (6)

i 6= j , {i , j} ∈ M
Rk∑

v=1

zivk = rik ∀i ∈ V,∀k ∈ R : rik ≥ 1,Rk <∞ (7)

si + pi ≤ Cmax ∀i ∈ V (8)

Z. Hanzalek (CTU) Scheduling April 9, 2018 81 / 83

Relative-order ILP Model for PSm,R |temp|Cmax

Constraints (3), (4), (5) and binary variables xij and yij
1 When xij = 0 and yij = 0, constraints (3) and (4) reduce to

sj + pj ≤ si , i.e., j is followed by i on the same unit.
2 When xij = 1 and yij = 0, constraints (3) and (4) reduce to

si + pi ≤ sj , i.e., i is followed by j on the same unit.
3 When xij = 1 and yij = 1, constraints (3) and (4) are eliminated in

effect and the activities i and j do not share the same unit.
Combination xij = 0 and yij = 1 is not feasible due to constraint (5).

Constraint (6) states that when yij = 1 then the activities do not
share the same unit v of resource k since zivk + zjvk ≤ 1.

Constraint (7) states that each task i is assigned to the
appropriate number of units rik for each resource k .

Z. Hanzalek (CTU) Scheduling April 9, 2018 82 / 83

References

J. B lażewicz, K. Ecker, G. Schmidt, and J. Wȩglarz.
Scheduling Computer and Manufacturing Processes.
Springer, second edition, 2001.

Klaus Neumann, Christoph Schwindt, and Jürgen Zimmermann.
Project Scheduling with Time Windows and Scarce Resources.
Springer, 2003.

Sigrid Knust Peter Brucker.
Complexity results for scheduling problems.
http://www.ict.kth.se/courses/ID2204/index.html.

Z. Hanzalek (CTU) Scheduling April 9, 2018 83 / 83

http://www.ict.kth.se/courses/ID2204/index.html

	Basics notions
	Scheduling on One Resource
	Minimizing Cmax
	Minimizing wjCj
	Minimizing Lmax

	Scheduling on Parallel Identical Resources
	Minimizing Cmax

	Project Scheduling
	Temporal constraints
	Minimizing Cmax

