
MATLAB TOOLBOX FOR PETRI NETS

Martina Svádová, Zdeněk Hanzálek
Center for Applied Cybernetics, DCE FEE
Czech Technical University in Prague

Introduction

Petri Nets offer profound mathematical background
originating namely from linear algebra and graph
theory. Various Petri Net tools offer convenient
graphical environment and sometimes they provide
complex simulation and analysis of various high
level Petri Net classes. On the other hand these
tools have very limited possibility of extensions to
problems specifically needed for given application.
Some of them are accessible in source code, but
these software projects are relatively large, difficult
to modify and platform dependent.

Matlab is probably one of the most popular
software tools in the area of applied mathematics.
Namely in control engineering it became the
standard environment to interchange ideas
implemented in algorithms. Why do the students,
researchers and practitioners appreciate this
language and associated environment so much? To
answer this question it is important to notice the
following:
• Even for beginners it is quite easy to

implement and run simple algorithm (e.g.
continuous space process simulation). Matlab
manipulations are usually taught in basic
subjects from control engineering, so students
are already familiar with this environment
when they come to the subjects dealing with
Petri Nets.

• There is a wide range of toolboxes helping to
implement very sophisticated algorithms. As
these toolboxes are mainly designed for
continuous space systems it is very attractive to
use the Matlab solution for hybrid Petri Nets.

• Major part of the control theory is already
implemented in the form of Matlab functions.
So it helps to "standardize" the terminology
and it gives opportunity to the students and
practitioners to play with it. This practical
standardization procedure would be also
appreciated in Petri Net community.

• Matlab runs on many platforms (Windows,
Unix).

On the other hand Matlab does not cover (with
exception of Stateflow) discrete event systems.

Approach adopted in this article is based on the
three steps:
• Petri Net modeling in convenient graphical

design tool (e.g. PM Editeur)
• export to matrix representation in Matlab
• Matlab based Petri Net analysis and

visualization of simulation results.

This approach helps to organize a work in a
modular way, to use standard libraries and to build
own tools. In other words one is no more using a
'universal' tool but he/she is programming his/her
own tool with support in a modeling and
visualization stage. This is quite more convenient
because no tool is universal enough.

Example 1 - deadlock avoidance: Figure 1 shows
a Petri Net model of two communicating computers
in deadlock situation. The core of the problem is
that both computers are ready to receive but none
is ready to send.

Figure 1: Two communicating computers in deadlock

Matlab based analysis of PN designed in Pmediteur
is done by the following procedure:
1) In PM Editeur environment save the net as file
deadlock.rdp
2) Import the net to the Matlab using function
rdp.m:
[Post,Pre,M0,C] = rdp('deadlock.rdp')
3) Calculate incidence matrix C:
C = Post-Pre
4) Find a set of minimal standardized P-invariants
using function silva.m:
G = silva(C)
5) Check whether each minimal standardized P-
invariant contains at least one token:
d = G * M
In the case of the marked graph in Figure 1, there
is a deadlock as there is at least one zero element in
d'=(1 1 0). In other words the P-invatriant
corresponding to the conservative component
{P3,P5,P2,P6} does not contain any token.

This article is organized in two principal sections.
The first one explains separate functions of the
toolbox. The next section shows various examples

used in laboratory exercises of the subject
Distributed Control Systems.

1. Petri Net toolbox functions
Functions of Matlab Toolbox 1.0 can be
downloaded from web site
http://dce.felk.cvut.cz/cak/research/PN/Matlab_Too
lbox

1.1. Matlab import functions

Matlab Toolbox does not contain own graphical
editor. Petri Nets under assumption is drawn in
graphical editor PM Editeur. Functions rdp.m and
rdp2stpn.m import structure and parameters of Petri
Nets created in graphical editor PM Editeur.
Function rdp2stpn.m is used to import stochastic
timed Petri Net and function rdp.m is used in the
case of autonomous Petri Nets.

Syntax:
[Pre,Post,M0,C]=rdp(filename)

[Pre,Post,M0,TimeT,TypeT]=rdp2STPN(filename)

Input parameter:
Filename - name of file, in which Petri net,

drawn in graphical toolbox PM
Editeur, is saved.

Output parameters:
Pre - matrix of pre-conditions
Post - matrix of post-conditions
C - incidence matrix
M0 - column vector of initial marking

of Petri Net
TimeT - column vector of time associated

to the transitions
TypeT - column vector of transitions

types:
 0 - zero timed transition
 1 - timed transition

2 - stochastic time transition with
 uniform distribution

1.2. The graph of reachable markings

The graph of reachable markings can be use only
for analysis of properties of bounded net. Functions
for construction of this graph are two. The first
function Graph.m finds all reachable markings
given marked PN and the second function
Disp_gr.m displays the graph of reachable
markings.

Syntax:
[A,B] = graph(Pre,Post,M0)

Input parameter: same as output parameters above

Output parameters:
A - adjacency matrix; matrix, whose elements
 A(i,j) mean oriented arc from vertex i to
 vertex j. The value of numbers in this
 matrix denotes indexes of fired transitions.
B – matrix of reachable; each column of matrix
 represents marking of one statee

Syntax:
[XX]=disp_gr(A,B)

Input parameter: same as output parameters above

Output parameters:
XX - which contains information necessary to

 display the graph of reachable markings.
Information is obtained by processing of
matrix A.

Matrix XX contains ten items:
- state identity number, which corresponds to
number of column in matrix B (state);
- parent of this state (parent);
- the number of subsequent states (subs);
- index of fired transition (trans)
- initial and final X,Y positions needed for
displaying the graph of reachable markings (Xi,
 Xf, Yi, Yf)
- number of column of XX matrix corresponding
to parent of processing state (col)
- level of the graph of reachable markings (level)

1.3. Token player for T-timed and stochastic
net

Stochastic Timed Petri nets used in this article
contain either zero, timed or stochastic timed
transitions with uniform distribution. There are two
types of non-zero time transition behavior given in
literature. The definition used in the article,
considers that transition does not reserve the tokens
in input places. When “reservation” behavior is
needed, then zero time transition should precede
timed or stochastic transition.
The functionality of the model under consideration
is fully specified by the interpretation of the token
player PlaySTPN.m given in Matlab source code.
In the case of effective conflict, no token
reservation is assumed. It means that the first
fireable transition wins.
In the case of the actual conflict representing the
system non-determinism (two and more fireable
transitions in conflict) the winning transition is
chosen in random manner. It means that one
possible firing sequence is chosen among several
ones.

Syntax:
[Seq] = playSTPN(Pre,Post,M0,TimeT,TypeT,ticks)

Input parameter: same as output parameters of

function rdp2STPN.m
Ticks - integer number of simulation ticks

Output parameters:
Seq – matrix Seq have 2 rows. The first row

contains time, when some of transitions
was fired. The second row is number of the
transition, which was fired in time given in
the first row.

M - marking vector of net after simulation

1.4. Finding of minimal standardized P-
invariant

Finding of minimal standardised P-
invariants is based on the algorithm published by
Martinez&Silva.

Syntax:
[P]= silva(C)

Input parameter:
C - incidence matrix

Output parameters:
P - this matrix is a nonnegative matrix, such
that:
1) each positive P-invariant could be done as a

lambda combination of the rows of P
2) no row of P could be done as a lambda

combination of other rows of P.

2. Case studies

2.1. Token Ring

Figure 2 shows two nodes accessing the media with
the use of token ring access method. The media
activity is represented by P9 and by P10 (Bus_Idle
and Bus_busy). These two places are in fact
implicit - they do not contribute to the system
behavior. The following reasoning programmed in
Matlab proves this.
• from the minimal standartized P-invariants
M(P1)+M(P5)+M(P10) = 1
M(P1)+M(P3)+M(P5)+M(P7) = 1
• Does the following hold?
M(P10) ≥ M(P3)
• by substitution
1-M(P1)-M(P5) ≥ 1-M(P1)-M(P5)-M(P7)
M(P7) ≥ 0
• in similar way
M(P10) ≥ M(P7)
1-M(P1)-M(P5) ≥ 1-M(P1)-M(P3)-M(P5)
M(P3) ≥ 0
• as consequence P10 is implicit
• in similar way P9 is implicit too

Figure 2: Token Ring access method

Next chapters show procedure how uses Matlab
Toolbox functions for finding properties of Petri
Net.

2.2. Construction of the graph reachable
markings

Figure 3

1) Save the net as file net.rdp in PM Editeur
environment

2) Import the net structure using function Rdp.m
[Pre,Post,M0,C] = rdp(net.rdp)

3) Construction adjacency matrix A and matrix
reachable markings B

[A,B] = graph(Pre,Post,M0)

=

000000005
600000000
080000000
090000000
009800000
000000007
000040000
000003200
000000010

A

=

011000000
010100000
100000000
001010000
000110000
000001000
000000100
000000110
000001010
000000010
000000001

876543210 M

B

4) Display of the graph of reachable markings
[XX]=disp_gr(A,B)

Figure 5 - The graph of reachable markings

Properties of Petri Nets showed in the fig.5: net is
safe, bounded, live and reversible, has no deadlocks
and contains three repetitive component T1T3T7
and T1T2T4T8T9T6T5 and T1T2T4T9T8T6T5.

2.3. Using of token player

Figure 4

1) Save the net as file stpnpl.rdp in PM Editeur

environment
2) Import the net structure using function

Rdp2STPN.m
[Pre,Post,M0,TimeT,TypeT]=rdp2STPN(stpnpl.rdp)
3) Using function of token player palySTPN.m
[Seq] =playSTPN(Pre,Post,M0,TimeT,TypeT,ticks)

3. References
[1] Tadao Murata: “Petri Nets: Properties,
Analysis and Applications” Proceedings of the
IEEE, vol. 77, No. 4, April 1989.
 [2] Zhen Liu, "Performance Analysis of
Stochastic Timed Petri Nets using Linear
Programing Approach, INRIA 1997 ISSN 0249-
6399
 [3] J. Martinez, M. Silva: A Simple and Fast
Algorithm to Obtain All Invariants of a Generalised
Petri Net,
in: C. Girault, W. Reisig (eds): Application and
Theory of Petri Nets, Informatik Fachberichte
No.52, Springer (1982), 301-310.
[4] F. Kruckeberg, M. Jaxy: Mathematical
Methods for Calculating Invariants in Petri Nets,
in: G. Rozenberg (ed): Advances in Petri Nets,
LNCS 266, Springer (1987) 104-131.

x
m0

x
m1

T1 x
m2

T2

x
m3

T3

x
m4

T4

T7

x
m5

T8

x
m6

T9

x
m7

T9 x
m7

T8

x
m8

T6

T5

()
324153241532532

11111010107766633211
=Seq

()110001=′M

