
Optimality of the Tree Building Control Protocol

Ondrej Dolejs
CAK-DCE, Faculty of Electrical Engineering

Czech Technical University
Karlovo nam. 13, Prague, Czech Republic

xdolejs@lab.felk.cvut.cz

Zdenek Hanzalek,
CAK-DCE, Faculty of Electrical Engineering

Czech Technical University
Karlovo nam. 13, Prague, Czech Republic

 hanzalek@rtime.felk.cvut.cz

Abstract

This text focuses on the simulation and evaluation of
Tree Building Control Protocol (TBCP) described in [1].
The TBCP is distributed algorithm used for building a
spanning tree over TBCP entities.
In this paper, the main part of the TBCP algorithm called
join procedure is explained and the state machine of the
join procedure is presented. Then, the non-distributed
Branch and Bound algorithm finding an optimal spanning
tree is shown. Finally, the TBCP is simulated in OPNET
Modeler and compared to the optimal spanning tree.

1 Introduction

When it is needed to send the same data from the

source node to the destination group, multicast is more
efficient than unicast where separate copy is sent to each
destination. In multicast the data travel from the source
through the network and in the fork node the copies of the
data is send toward destination nodes.

The multicast reduces the transmission overhead on the
sender side and it can reduce network load, therefore the
destination nodes can receive the data earlier (depending
on implementation). The multicast is identical to a
broadcasting, if the destination group includes all the
network nodes.

The tree generated by the TBCP algorithm is used for
multicast application that belongs to the Application Level
Multicast. Therefore, no prior knowledge of the network
topology and parameters is needed for the construction of
the TBCP tree. The algorithm is based on its own
measurements of the Round Trip Time (RTT). Optimality
criterion in this article is based on the delay measured
from the source node to the last node in the destination
group.

2 Related work

The multicast routing tree algorithms can be divided
into two main parts. If the optimality criterion is a cost of
the constructed tree, this problem is called minimum
spanning tree (MST). There are many well known

algorithms to find MST e.g. Kruskal’s or Prim’s
algorithm [6].

The shortest path tree (SPT) algorithms are used, if the
optimality criterion is delay on the other hand. The delay
is the sum of link delays on the path (from the source
node to any other node). The graph algorithms (e.g.
Dikjstra [3], Bellman-Ford [8]) can be used for solving
the SPT problem.

Another classification of the multicast routing tree
algorithms is the place, where the algorithm is executed
(centralized or distributed algorithms), and the sensibility
to the network changes (e.g. link fails). The centralized
dynamic versions of the Bellman-Ford, D’Esopo-Pape and
Dijkstra algorithm are presented in [7]. The main
disadvantage of centralized algorithms is the problem with
central node failure, heavy load of the central node and a
need of network topology knowledge in the central node.

The TBCP is a distributed algorithm for constructing
multicast routing tree. It was designed in GCAP project at
Lancaster University [1].

3 TBCP protocol

A crucial part of the TBCP protocol is the JOIN

procedure: when the newcomer (N) wants to join the
TBCP tree, it sends a HELLO message to the source node.
The source sends the list of its existing children(Ci) in a
HELLO_ACK message back to the newcomer. When the
newcomer receives a HELLO_ACK message, it makes a
distance measurement (RTT) from itself to all source’s
children and between itself and the source node. The table
of the RTT measurement is sent to the source in a JOIN
message by the newcomer. If the source receives a JOIN
message from a newcomer (N), then the source first
calculates a score function (SF) based on RTTs and then
the source decides, where the newcomer will be placed.
Three configurations are possible. In the first case (SF=1)
N goes directly under the source, in the second case
(SF=2) N goes directly under the i-th child (Ci) and in the
third case (SF=3) N goes directly under the source and the
i-th child (Ci) is redirected under another child or
newcomer. In the second and third case it is needed to
send a HALLO message to a new candidate parent (P).

The whole JOIN procedure is repeated in the same way as
explained above (the candidate parent acts as the source
in the previous text and the newcomer is a newcomer or a
redirected child). The illustration of JOIN procedure is in
Fig. 1.

The TBCP is a distributed algorithm. The main
disadvantage is that the parent node has the RTTs only
from one layer (between itself and a newcomer, between
its children and a newcomer and between itself and its
children). It is clear that this algorithm is not optimal as
the parent has no RTTs from the next lower layers.

PP

NNC2C2C1C1 C3C3

PP

NN

C2C2C1C1 C3C3

PP

NN

C2C2C1C1 C3C3
…

PP

NN C2C2

C1C1

C3C3

PP

NNC2C2

C3C3

C1C1

…

PP

NN C2C2

C1C1

C3C3

PP

NNC2C2

C3C3

C1C1 …

.

.
.
.

PP

NN

C2C2C1C1 C3C3

GO

NN

C2C2C1C1 C3C3

GO_ACKPP

NN

C2C2C1C1 C3C3

WELCOMEPP

NN

C2C2C1C1 C3C3

WELCOME_ACKPP

NN

C2C2C1C1 C3C3

HELLOPP

NN

C2C2C1C1 C3C3

HELLO_ACKPP

NN

C2C2C1C1 C3C3

JOINPP

N .. newcomer
P .. parent
Ci .. i-th child of P
SF .. score function

N wants to join the tree

SF=1

SF=2

SF=3

d2)

Result of the decision

NN

C2C2C1C1 C3C3

WELCOMEPP

GO NN

C2C2C1C1 C3C3

WELCOME_ACK
PP

GO_ACK

SF=1

SF=2

SF=3

.

.

a) b) c)

d1) e1)

e2)

d3) e3)

Parent makes
a decision where
the newcomer
will be placed

Fig. 1 Join procedure of TBCP protocol

3.1 Implementation of the TBCP protocol in
OPNET Modeler

OPNET Modeler is based on a series of hierarchically

related editors e.g. Network, Node and Process editor that
directly model the structure of actual networks. For more
details on the network modelling and optimisation, please
refer to [4]. The TBCP state machine implementation in
OPNET Modeler 8.0.C. is shown in Fig. 2.

The TBCP state machine (Fig. 2) could be divided into
three main parts:

1/ The newcomer state machine: it processes the new

request to join the TBCP tree and consists of four
states:
• N_HELLO– either after events

REQUEST_FROM_API or after sending a GO_ACK
message to the previous candidate parent, the
newcomer sends a HELLO message to the candidate
parent

•

N_HELLO_ACK – after receiving a HELLO_ACK
message with a list of the candidate parent’s
children, the newcomer makes a distance
measurements (RTT) and sends the results in a JOIN
message to the candidate parent

• N_GO – after receiving a GO message, which
contains a new candidate parent, the newcomer
sends a GO_ACK message back to the last candidate
parent

N_WELC_ACK – after receiving a WELCOME
message the newcomer saves the candidate parent as its
parent and sends a WELCOME_ACK message to the
parent node

Fig. 2 The TBCP process model

2/ The parent state machine: it accepts a newcomer or
redirects the node to one of the parent children and
consists of eight states:
• HALLO_ACK – after receiving a HELLO message,

the parent sends back to the newcomer (or to the
redirected child) a HELLO_ACK message with a list
of its children

• CALCULATE – after receiving a JOIN message
with RTT table; it calculates the score function (SF)
and makes a decision, where the newcomer will be
placed; subsequent messages are send from this node
depending on the result of the score function (SF):

•

SF=1 - the newcomer goes directly under the
candidate parent

• - the candidate parent sends a WELCOME message
to the newcomer (see Fig. 1 (d1))

• SF=2 - the newcomer is redirected under one
candidate parent’s child

- the candidate parent sends a GO message
(with address of the new candidate parent)
to the newcomer (see Fig. 1 (d2))

• SF=3 - the newcomer goes directly under the
candidate parent and one of the parent
children is redirected under the newcomer

- the candidate parent sends a GO message to
the redirected child and a WELCOME
message to the newcomer (see Fig. 1 (d3))

• WELCOME – after receiving a WELCOME_ACK
message from the newcomer, the parent saves the
newcomer as a new child and goes to the WAIT state

• GO_ACK – after receiving a GO_ACK message
either from the redirected child (the parent discards
the child from the list of children) or from newcomer
it goes to the state WAIT

•

ADD_X_1 and ADD_X_2 - after receiving a
WELCOME_ACK message, the parent saves the
newcomer as its new child

•

REM_Y_2 and REM_Y_1 – after receiving a
GO_ACK from a redirected child, the parent
removes the redirected child from the list of children

3/ The redirect machine: it redirects one child under other
node, this part of TBCP state machine is similar to the
newcomer state machine described above and consists
of four state too:
• HELLO to Y – after receiving a GO message from

its parent; the redirected child sends a HELLO
message to the new candidate parent

• GET_HELLO_ACK – after receiving a
HELLO_ACK message with a list of children from
the new candidate parent; the child makes a RTT
distance measurement and sends a JOIN message to
the candidate parent with the RTT table

• GO – after receiving a GO message, which contains
new candidate parent, the redirected child goes to
the state HELLO

• WELCOME_ACK – after receiving a WELCOME
message from the candidate parent, the redirected
child saves the candidate parent as its new parent;
the child sends a WELCOME_ACK message to the
parent node and a GO_ACK message to the last
parent node

The common states for all these parts are:
•

INIT - variables and statistics initialisation
• WAIT – wait for event, no program code

4 Optimality of the TBCP algorithm

The TBCP is a distributed algorithm finding a Shortest

Path Tree (SPT) with fanout restriction. The algorithm is
not optimal mainly due to the fact that RTT values are not
completely known at one node, and the solution is just
“locally” optimal.

A value associated to any feasible solution is the
maximum delay measured from the moment when the
message is send from the source node to the moment

when the message is delivered to the last node in the
multicast group.

Static (no newcomer, no change of RTT values)
particular instance can be represented by a graph with
integer-valued length assigned to each arc. The graph
vertices correspond to the nodes. The arc length between
vertices x and y corresponds to the RTT between nodes x
and y.

Directed graph (digraph) is constructed by assigning
two oriented arcs (one from the vertex x to the vertex y
and one from the vertex y to the vertex x) to each arc
between vertices x and y of the underlying undirected
graph. A designated vertex is a root of digraph if there are
directed paths from the root to every other vertex in the
digraph in the same manner, as the multicast source is the
root of the tree spanning all members of the multicast
group. The digraph is called a directed tree if it is a tree
and if it contains a root. Thus if (x,y) is a (directed) arc in
a directed tree, then x is called the parent of y, and y is
called a child of x.

The length of the path in a digraph is the sum of the
lengths of the edges on the path. The distance from x to y
is defined as the length of the shortest path from x to y.
Maximum delay of the multicast application using a
directed tree then corresponds to D - the maximum
distance from the root to any vertex.

The maximum distance D will be the only optimality
criterion in the analysis of the TBCP algorithm in this
article, since other possible measures of optimality
(communication cost - minimum spanning tree, …) are of
limited importance with respect to the practical use of
multicast in applications requesting minimal response
time. Algorithms minimizing the maximum distance are
explained in the following text. They are indispensable in
the evaluation of the results obtained by TBCP and they
could be applied in the reshaping procedure foreseen for
the next version of TBCP.

4.1 Finding optimal directed tree without
fanout restriction

When the fanout is greater than number of outgoing

arcs (fanout(x) ≥ outbound(x)), then the new child y is
never rejected to join the parent x due to fanout(x)
restriction. The fanout restriction looses meaning if this
condition holds for all nodes taking part in the multicast
communication. So the Problem 1 can be formulated as
finding a directed spanning tree with minimal D
(maximum distance from the root) without fanout
restriction. In other words the Problem 1 is identical to the
SPT problem.

Problem 1 input data:
s the root id (source)
A[n,n] digraph adjacency matrix of lengths

A(i,j) - length of arc from vertex i to vertex j
 A(i,i) = 0 for all i
 A(i,j) = ∞ if there is no arc from i to vertex j

Problem 1 output data:
t[n] tree row vector where t(i) is parent id of vertex i

 t[s] = 0 as root has no parent
 ∀ i≠s; t[i]≠0 as each tree has n-1 arcs

d[n] d istance row vector specifying length of the path
from the root via the spanning tree

 maximum distance D = max(d(i)) for all i
Due to the algorithm architecture in the next section

(optimistic bounding in the B&B algorithm) it makes
sense to use Floyd's algorithm finding shortest paths
between any pair of vertices for given digraph. Floyd's
algorithm returns matrix of shortest distances U[n,n] and
matrix of the vertex predecessors in the shortest path
K[n,n]. It is clear that the Floyd's algorithm has time
complexity O(n3) and space complexity O(n2) due to the
efficient representation of the shortest path in the matrix
P. For detailed information like 'validity of Floyd's
algorithm' please refer to the graph theory textbooks [5],
[3].

The Problem 1 can be solved in polynomial time by
the Floyd’s algorithm:

Algorithm
1.Find shortest paths using Floyd’s

algorithm
2.Construct shortest path adjacency matrix
3 Extract directed tree from the shortest

path adjacency matrix
4.Extract distance vector

4.2 Finding an optimal directed tree with
fanout restriction

The Problem 2 can be formulated as finding a directed

spanning tree with minimal D (maximum distance from
the source s) when the number of messages sent from a
given node is limited by the fanout. In other words the
Problem 2 can be formulated as SPT with fanout
restriction.
Problem 2 input data:
s the root id - as in the Problem 1
A[n,n] digraph adjacency matrix of lengths - Problem 1
f[n] fanout - row vector of upper bounds

 f(i) specifies a maximum out-degree of the i-th
vertex in directed spanning tree

Problem 2 output data:
t[n] tree row vector - as in the Problem 1
d[n] distance row vector - as in the Problem 1

The solution of the Problem 2 adopted in this article is
based on the enumeration of a finite set F of feasible

solutions and the criterion D: F→ N with intention to find
particular solution S*∈ F such that

)(min*)(SDSD
FS∈

=
Enumeration methods find S* by enumeration of all

S∈ F through examination of increasingly smaller subsets
of F. These subsets can be treated as sets of solutions of
corresponding sub-problems of the original problem.

Branch and Bound (B&B) method is one of the
enumeration methods, which considers certain solutions
only indirectly, without actually evaluating them
explicitly. As its name implies, the B&B method consists
of two fundamental procedures: branching and bounding.
Branching is the procedure of partitioning a large problem
into two or more sub-problems. Furthermore the sub-
problems can be partitioned in similar way, etc. Bounding
calculates a lower bound on the optimal solution value D
for each sub-problem generated in the branching process.

The branching procedure can be conveniently
represented as a search tree. At level 0, the search tree
consists of a single partial solution (one vertex of the
search tree) representing the original problem, and at
further levels it consists of partial solutions representing
particular sub-problems of the problem at previous level.
Edges are introduced from each problem to each sub-
problem. A list of partial solutions is maintained.

Suppose that at some stage of the branch and bound
process a (complete) solution Si of a criterion value D(Si)
has been obtained. Suppose also that a partial solution Rj
encountered in the process has an associated lover bound
optimist(Rj). If optimist(Rj) > D(Si) then the partial
solution Rj needs not to be considered any further in the
search of S* since resulting solution can never have a
value D less than D(Si). When such partial solution is
found, it is eliminated, since it is not needed to continue
the branching process from it. The solution Si, called a
trial solution, can be found at the beginning by pursuing
the tree from the top to bottom as rapidly as possible.

In order to implement the scheme of the branch and
bound algorithm for the Problem 2, one must first decide
the branching procedure and the search strategy. As
illustrated in Fig. 3, very simple marking procedure could
be used to find one particular path in the search tree (if the
node i got the multicast message, then mark(i)>0):

Marking procedure
1.[Initialization] Root s has mark=1, other

vertices have mark=0
2.[Choice of the arc] Find a set of

candidate arcs (candidate arc A(i,j) has
unmarked end vertex j and marked start
vertex i with mark(i)≤f(i)), that could
be used for the spanning tree expansion.
Finish if such arc does not exist.

3.[Marking] Increment mark(i), increment
mark(j) and go to the step 2.

Fig. 3 Illustration of the marking procedure

 Fig. 4 Successful (a) and unsuccessful (b) result of
marking procedure

In the case of instance shown in Fig. 4(a) with fanout
f=[2 2 2 2 2 2] the marking procedure can finish in
different ways. One can find one solution (b), where 6
vertices are marked (number of marks is indicated in [])
and 5 arcs were chosen (this solution corresponds to the
spanning tree [0 3 1 1 3 4]). Or one can fail (see Fig.
4(c)), as there are unmarked vertices, and there are no
more candidate arcs (this solution corresponds to the tree
[0 1 1 0 2 3] which does not spawn over all nodes).
Bounding procedure is based on two approaches:
a) trivial bounding

Suppose that a partial solution Rj encountered in the
branching process has an associated maximum distance
from the root D(Ri) larger than D of the best solution
known up now Sbest. Then it is not needed to continue the
branching process from Rj.
b) optimistic bounding

In a given step of the branching process we can make
use of the matrix of shortest paths U calculated by Floyd's
algorithm. Paths of our interest start at set I (set of marked
vertices i with fanout(i) ≥mark(i)) and end at set J (set of
unmarked vertices j). Moreover each marked vertex has
value delay associated to it at the moment of marking and
representing distance from the root. So the optimistic
estimation of the distance of unmarked vertex j
(corresponding to the optimistic completion time) can be
calculated as completion(j) for all vertices from the set J:

)),()((min)(jiUidelayjcompletion
Ii

+=
∈

Then lover bound for D could be expressed as value
optimist:

)(max jcompletionoptimist
Jj∈

=

So if the value optimist in some partial solution is
larger than D of the best solution known up now Sbest, then
it is not needed to continue the branching process from
this partial solution. Please note that this bounding
incorporates also rejection of partial solutions with
isolated unmarked vertices. For implementation details
please refer to [9] or contact the authors to get Matlab
source code.

4.3 Discussion

When using branch and bound algorithm one should

consider the compromise between the length of the
branching process and time overhead concerned with
computing lower bounds or trial solutions. However, the
actual computational behaviour of B&B algorithm
remains unpredictable and large computational
experiments are necessary to recognize their quality. It is
obvious that the computational complexity of B&B
algorithm is exponential in problem size when we search
for optimal solution. However, the approach could be
used for finding sub-optimal solutions, and then we can
obtain polynomial time complexity by stopping the
branching process at a certain stage or after a certain time
elapsed.

From the practical point of view there are more
important issues than the time complexity of the B&B
algorithm. These issues are related to the validity of the
input data. Important question is how to fill the adjacency
matrix A corresponding to RTT between separate nodes?
First - as RTT vary in a time it is probably needed to use
some statistical data. Second - due to the Internet nature
the matrix A could be fully dense (with no ∞ at any entry).
However from the practical point of view it needs not to
be fully dense as one can make use of the geographic
distance reflected partially e.g. in domains.

A very interesting theoretical issue is related to more
general view of the multicast communication with replays
from the multicast group (sometimes called gossiping or
group multicast). In such case each node taking part in the
multicast can become a root, so each node potentially
needs its own directed spanning tree and optimization
should be done with respect to that. Here one can make
use of Floyd's algorithm finding shortest paths between
any pair of vertices for given digraph in a similar way as
routing protocols as OSPF use shortest path algorithms.

5 Simulation and evaluation

The optimal multicast routing tree is generated for
configuration that consists of three nodes. The parent
node has all needed information about network topology
(RTT between all nodes). The non/optimality problem
arises with configuration that consists of four nodes. We
assume that the source node is always Node_1.

The first non-optimal configuration and simulation
result are given in Fig. 5. The delays (RTT) between all
nodes are given by the matrix A.

1

2

3

4

C

N

child

newcomer

1

2

3

4

1

2

3

4

JOIN0 10 20 20
A[i][j] = 10 0 5 31

20 5 0 4
20 31 4 0

a) b) c)

Fig. 5 Non-optimality of TBCP algorithm - example I

The generated TBCP tree is not identical with the
optimal tree - compare Fig. 5b and Fig. 5c. This
non-optimality difference is caused by missing RTT
knowledge. The Node_4 wants to join the tree and it
makes distance measurement (RTT) to the Node_1, and to
the child of the Node_1 (to the Node_2). Therefore, it can
send to the candidate parent only these values: A[4,1] and
A[4,2] but not A[4,3]. This non-optimality appears when:

The Node_2 in the actual configuration is the child
of the Node_1 and Node_3 is the child of the
Node_2 (see Fig. 5a). This configuration occurred
in the previous run of the TBCP when:

A[3][1]>A[2][1]+A[3][2]
Now the Node_4 (as a newcomer) wants to join the
TBCP tree and RTTs among the nodes are such that
the following conditions are satisfied:

A[4][1]<A[1][2]+A[2][3] AND
A[4][1]>A[1][2]+A[2][3]+A[3][4]

For this configuration the difference between tree
generated by TBCP (delay 20ms) and optimal spanning
tree (19ms) is 1ms.

The second non-optimality example is illustrated in

Fig. 6. The configuration of three nodes before the node 4
wants to join the TBCP tree is shown in Fig. 6a, the TBCP
result after the JOIN procedure is shown in Fig. 6b and
the optimal tree is shown in Fig. 6c.

The generated TBCP tree is not identical with the
optimal tree - compare Fig. 6b) and Fig. 6a)

The missing RTT between Node_4 and Node_3 causes
this difference. This non – optimal situation occurs if:

The Node_2 in the actual configuration is the child
of the Node_1 and the Node_3 is the child of the

Node_2 (see Fig. 6 a). This configuration occurred
in the previous run of the TBCP when:

A[3][1]>A[2][1]+A[3][2]
Now the Node_4 wants to join the TBCP tree and
RTTs among the nodes are such that the following
conditions are satisfied:

A[4][1]+A[4][3]<A[1][2]+A[2][3] AND
A[4][1]<A[2][1]+A[4][2]

0 10 20 5
A[i][j] = 10 0 9 31

20 9 0 4
5 31 4 0

1

2

3

4

C

N

child

newcomer

1

2

3

4

1

2

3

4

JOIN

a) b) c)

Fig. 6 Non-optimality of TBCP algorithm – example II

Delay of this solution generated by TBCP is 19ms and
the optimal spanning tree has delay only 10ms.

If this situation occurs during the building of a
multicast routing tree, the constructed tree isn’t optimal.
Please notice there are no fanout restriction in these two
examples.

The example of configuration with fanout restriction

(nine nodes, matrix A and fanout) is given in Fig. 7. The
fanout restriction is applied for Node_1,2,3 and 4. The
fanout for other nodes is so high, that it does not have any
sense.

0 8 11 12 10 20 10 10 33
A[i,,j] = 8 0 20 20 20 44 20 5 20

11 20 0 30 30 30 30 30 30
12 20 30 0 40 17 40 15 40
10 20 30 40 0 50 42 50 50
20 44 30 17 50 0 21 60 19
10 20 30 40 42 21 0 70 70
10 5 30 15 50 60 70 0 80
33 20 30 40 50 19 70 80 0

fanout = 2 2 1 1 30 30 30 30 30
Fig. 7 The matrix A – configuration of nine nodes

The generated TBCP tree is shown in Fig. 8. The
notation e.g. 6/2 means the node and delay (Node_6/delay
2ms). The Node_1 is always the source node.

Optimal spanning tree is shown in the Fig. 9. The delay
differences are caused by non optimal behaviour of TBCP
algorithm as was explained above (configuration of 4
nodes). The tree generated by TBCP algorithm has
maximum delay 88ms (see Fig. 8) and SPT has only 40ms
(see Fig. 9).

 Example 01: Tree found by TBCP algorithm (maximum distance 88)

1/0 2/8 3/58 4/28

5/63 6/20

7/888/13

9/28

fanout = [2 2 1 1 30 30 30 30 30]

Fig. 8 Generated TBCP tree with fanout restrictions

Example 01: Tree found by optimal shotrest path algorithm (maximum distance 40)

1/0

2/15

3/40

4/37 5/356/20

7/358/10 9/39

fanout = [2 2 1 1 30 30 30 30 30]

Fig. 9 Optimal spanning tree

6 Conclusions

This document explains the simulation of the
TBCP protocol – the distributed algorithm finding the
SPT with fanout restriction. The protocol model in
OPNET allows easy maintenance of the distributed
application.

Important part of this text is devoted to the
optimality evaluation of the TBCP protocol. Two non-
distributed algorithms (without and with fanout
restriction) have been studied in order to obtain the SPT.
These algorithms can serve as a base for future
enhancements of the TBCP protocol. As shown in the
simulation examples, the TBCP algorithm finds non-
optimal solution already for 4 nodes without fanout

restriction, when the joining node is not informed about
the RTT values in the next level. This problem can be
partly solved by gathering more information about RTT
from other layres, but this still does not guarantee the tree
optimality.

Finally it is needed to mention that the Branch and
Bound centralised algorithm given in this article could be
applied in the reshaping procedure of the distributed
TBCP. Reshaping procedure can monitor the traffic of the
multicast communication during a normal run of TBCP. It
can make additional measurements of RTT especially for
critical nodes and it can continuously gather RTT values
from all nodes to the source node. Then the reshaping
procedure can completely recalculate the tree locally in
the source whenever it is needed. Interesting issue is the
mechanism of switching from the old tree to the new one

7 References

[1] L. Mathy, R. Canonico, D. Hutchison, An Overlay
Tree Building Control Protocol", in Proceedings of the
3rd International COST 264 Workshop on Networked
Group Communication (NGC), London, UK, November
2001, LNCS 2233, Springer-Verlag.
[2] J. de Rumeur, Communication dans les reseaux de
processeurs, Masson Paris 1994.
[3] J. Demel, Graphs (in Czech), SNTL Prague, 1989.
[4] OPNET Modeler 8.0C. documentation, OPNET
Technologies, Inc., Washington DC, 2000
[5] J.A., McHugh, Algorithmic Graph Theory, Prentice
Hall, 1990.
[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms, Cambridge, MA: MIT, 1992.
[7] P. Narváez , K.-Y. Siu , H.-Yi Tzeng, New dynamic
algorithms for shortest path tree computation, IEEE/ACM
Transactions on Networking (TON),Volume 8 Issue 6,
December 2000
[8] R. Bellman, "On a routing problem," Q. Appl. Math.,
vol. 16, pp. 87-90,1958.
[9] O.Dolejš, Z. Hanzálek, Simulation of Worst Case
Scenarios in Multicast, Deliverable Number 3.5.1, Project
IST-1999-10 504 GCAP, Prague, 2002

--
This work product was supported by the Ministry of

Education of the Czech Republic under project LN00B096.

