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Abstract 
 

This text focuses on the simulation and evaluation of 
Tree Building Control Protocol (TBCP) described in [1]. 
The TBCP is distributed algorithm used for building a 
spanning tree over TBCP entities.  
In this paper, the main part of the TBCP algorithm called 
join procedure is explained and the state machine of the 
join procedure is presented. Then, the non-distributed 
Branch and Bound algorithm finding an optimal spanning 
tree is shown. Finally, the TBCP is simulated in OPNET 
Modeler and compared to the optimal spanning tree. 
 

1 Introduction 
 
When it is needed to send the same data from the 

source node to the destination group, multicast is more 
efficient than unicast where separate copy is sent to each 
destination. In multicast the data travel from the source 
through the network and in the fork node the copies of the 
data is send toward destination nodes.  

The multicast reduces the transmission overhead on the 
sender side and it can reduce network load, therefore the 
destination nodes can receive the data earlier (depending 
on implementation). The multicast is identical to a 
broadcasting, if the destination group includes all the 
network nodes.  

The tree generated by the TBCP algorithm is used for 
multicast application that belongs to the Application Level 
Multicast. Therefore, no prior knowledge of the network 
topology and parameters is needed for the construction of 
the TBCP tree. The algorithm is based on its own 
measurements of the Round Trip Time (RTT). Optimality 
criterion in this article is based on the delay measured 
from the source node to the last node in the destination 
group. 
 

2 Related work 
 

The multicast routing tree algorithms can be divided 
into two main parts. If the optimality criterion is a cost of 
the constructed tree, this problem is called minimum 
spanning tree (MST). There are many well known 

algorithms to find MST e.g. Kruskal’s or Prim’s 
algorithm [6].  

The shortest path tree (SPT) algorithms are used, if the 
optimality criterion is delay on the other hand. The delay 
is the sum of link delays on the path (from the source 
node to any other node). The graph algorithms (e.g. 
Dikjstra [3], Bellman-Ford [8]) can be used for solving 
the SPT problem.  

Another classification of the multicast routing tree 
algorithms is the place, where the algorithm is executed 
(centralized or distributed algorithms), and the sensibility 
to the network changes (e.g. link fails). The centralized 
dynamic versions of the Bellman-Ford, D’Esopo-Pape and 
Dijkstra algorithm are presented in [7]. The main 
disadvantage of centralized algorithms is the problem with 
central node failure, heavy load of the central node and a 
need of network topology knowledge in the central node.  

The TBCP is a distributed algorithm for constructing 
multicast routing tree. It was designed in GCAP project at 
Lancaster University [1].  

 

3 TBCP protocol 
 
A crucial part of the TBCP protocol is the JOIN 

procedure: when the newcomer (N) wants to join the 
TBCP tree, it sends a HELLO message to the source node. 
The source sends the list of its existing children(Ci) in a 
HELLO_ACK message back to the newcomer. When the 
newcomer receives a HELLO_ACK message, it makes a 
distance measurement (RTT) from itself to all source’s 
children and between itself and the source node. The table 
of the RTT measurement is sent to the source in a JOIN 
message by the newcomer. If the source receives a JOIN 
message from a newcomer (N), then the source first 
calculates a score function (SF) based on RTTs and then 
the source decides, where the newcomer will be placed. 
Three configurations are possible. In the first case (SF=1) 
N goes directly under the source, in the second case 
(SF=2) N goes directly under the i-th child (Ci) and in the 
third case (SF=3) N goes directly under the source and the 
i-th child (Ci) is redirected under another child or 
newcomer. In the second and third case it is needed to 
send a HALLO message to a new candidate parent (P). 



The whole JOIN procedure is repeated in the same way as 
explained above (the candidate parent acts as the source 
in the previous text and the newcomer is a newcomer or a 
redirected child). The illustration of JOIN procedure is in 
Fig. 1. 

The TBCP is a distributed algorithm. The main 
disadvantage is that the parent node has the RTTs only 
from one layer (between itself and a newcomer, between 
its children and a newcomer and between itself and its 
children). It is clear that this algorithm is not optimal as 
the parent has no RTTs from the next lower layers. 
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Fig. 1 Join procedure of TBCP protocol 

 
 

3.1 Implementation of the TBCP protocol in 
OPNET Modeler 

 
OPNET Modeler is based on a series of hierarchically 

related editors e.g. Network, Node and Process editor that 
directly model the structure of actual networks. For more 
details on the network modelling and optimisation, please 
refer to [4]. The TBCP state machine implementation in 
OPNET Modeler 8.0.C. is shown in Fig. 2. 

The TBCP state machine (Fig. 2) could be divided into 
three main parts: 
 
1/ The newcomer state machine: it processes the new 

request to join the TBCP tree and consists of four 
states: 
•  N_HELLO– either after events 

REQUEST_FROM_API or after sending a GO_ACK 
message to the previous candidate parent, the 
newcomer sends a HELLO message to the candidate 
parent  

•  

N_HELLO_ACK – after receiving a HELLO_ACK 
message with a list of the candidate parent’s 
children, the newcomer makes a distance 
measurements (RTT) and sends the results in a JOIN 
message to the candidate parent 

 

•  N_GO – after receiving a GO message, which 
contains a new candidate parent, the newcomer 
sends a GO_ACK message back to the last candidate 
parent 

N_WELC_ACK – after receiving a WELCOME 
message the newcomer saves the candidate parent as its 
parent and sends a WELCOME_ACK message to the 
parent node 

 
Fig. 2 The TBCP process model 

2/ The parent state machine: it accepts a newcomer or 
redirects the node to one of the parent children and 
consists of eight states: 
•  HALLO_ACK – after receiving a HELLO message, 

the parent sends back to the newcomer (or to the 
redirected child) a HELLO_ACK message with a list 
of its children  

•  CALCULATE – after receiving a JOIN message 
with RTT table; it calculates the score function (SF) 
and makes a decision, where the newcomer will be 
placed; subsequent messages are send from this node 
depending on the result of the score function (SF): 

•  

SF=1 - the newcomer goes directly under the 
candidate parent 

•  - the candidate parent sends a WELCOME message 
to the newcomer (see Fig. 1 (d1)) 

•  SF=2 - the newcomer is redirected under one 
candidate parent’s child 

- the candidate parent sends a GO message 
(with address of the new candidate parent) 
to the newcomer (see Fig. 1 (d2)) 



•  SF=3 - the newcomer goes directly under the 
candidate parent and one of the parent 
children is redirected under the newcomer 

- the candidate parent sends a GO message to 
the redirected child and a WELCOME 
message to the newcomer (see Fig. 1 (d3)) 

•  WELCOME – after receiving a WELCOME_ACK 
message from the newcomer, the parent saves the 
newcomer as a new child and goes to the WAIT state 

•  GO_ACK – after receiving a GO_ACK message 
either from the redirected child (the parent discards 
the child from the list of children) or from newcomer 
it goes to the state WAIT 

•  

ADD_X_1 and ADD_X_2 - after receiving a 
WELCOME_ACK message, the parent saves the 
newcomer as its new child  

•  

REM_Y_2 and REM_Y_1 – after receiving a 
GO_ACK from a redirected child, the parent 
removes the redirected child from the list of children 

3/ The redirect machine: it redirects one child under other 
node, this part of TBCP state machine is similar to the 
newcomer state machine described above and consists 
of four state too: 
•  HELLO to Y – after receiving a GO message from 

its parent; the redirected child sends a HELLO 
message to the new candidate parent  

•  GET_HELLO_ACK – after receiving a 
HELLO_ACK message with a list of children from 
the new candidate parent; the child makes a RTT 
distance measurement and sends a JOIN message to 
the candidate parent with the RTT table 

•  GO – after receiving a GO message, which contains 
new candidate parent, the redirected child goes to 
the state HELLO 

•  WELCOME_ACK – after receiving a WELCOME 
message from the candidate parent, the redirected 
child saves the candidate parent as its new parent; 
the child sends a WELCOME_ACK message to the 
parent node and a GO_ACK message to the last 
parent node 

The common states for all these parts are: 
•  

INIT - variables and statistics initialisation 
•  WAIT – wait for event, no program code 

 

4 Optimality of the TBCP algorithm 
 
The TBCP is a distributed algorithm finding a Shortest 

Path Tree (SPT) with fanout restriction. The algorithm is 
not optimal mainly due to the fact that RTT values are not 
completely known at one node, and the solution is just 
“locally” optimal.  

A value associated to any feasible solution is the 
maximum delay measured from the moment when the 
message is send from the source node to the moment 

when the message is delivered to the last node in the 
multicast group.  

Static (no newcomer, no change of RTT values) 
particular instance can be represented by a graph with 
integer-valued length assigned to each arc. The graph 
vertices correspond to the nodes. The arc length between 
vertices x and y corresponds to the RTT between nodes x 
and y.  

Directed graph (digraph) is constructed by assigning 
two oriented arcs (one from the vertex x to the vertex y 
and one from the vertex y to the vertex x) to each arc 
between vertices x and y of the underlying undirected 
graph. A designated vertex is a root of digraph if there are 
directed paths from the root to every other vertex in the 
digraph in the same manner, as the multicast source is the 
root of the tree spanning all members of the multicast 
group. The digraph is called a directed tree if it is a tree 
and if it contains a root. Thus if (x,y) is a (directed) arc in 
a directed tree, then x is called the parent of y, and y is 
called a child of x.  

The length of the path in a digraph is the sum of the 
lengths of the edges on the path. The distance from x to y 
is defined as the length of the shortest path from x to y. 
Maximum delay of the multicast application using a 
directed tree then corresponds to D - the maximum 
distance from the root to any vertex. 

The maximum distance D will be the only optimality 
criterion in the analysis of the TBCP algorithm in this 
article, since other possible measures of optimality  
(communication cost - minimum spanning tree, …) are of 
limited importance with respect to the practical use of 
multicast in applications requesting minimal response 
time. Algorithms minimizing the maximum distance are 
explained in the following text. They are indispensable in 
the evaluation of the results obtained by TBCP and they 
could be applied in the reshaping procedure foreseen for 
the next version of TBCP. 

 
 

4.1 Finding optimal directed tree without 
fanout restriction 

 
When the fanout is greater than number of outgoing 

arcs  (fanout(x) ≥ outbound(x)), then the new child y is 
never rejected to join the parent x due to fanout(x) 
restriction. The fanout restriction looses meaning if this 
condition holds for all nodes taking part in the multicast 
communication. So the Problem 1 can be formulated as 
finding a directed spanning tree with minimal D 
(maximum distance from the root) without fanout 
restriction. In other words the Problem 1 is identical to the 
SPT problem. 
 
 



Problem 1 input data: 
s   the root id (source) 
A[n,n]  digraph adjacency matrix of lengths 

A(i,j) - length of arc from vertex i to vertex j 
 A(i,i) = 0 for all i 
 A(i,j) = ∞ if there is no arc from i to vertex j 

Problem 1 output data: 
t[n]   tree row vector where t(i) is parent id of vertex i  

 t[s] = 0 as root has no parent  
 ∀  i≠s; t[i]≠0 as each tree has n-1 arcs  

d[n]  d istance row vector specifying length of the path 
from the root via the spanning tree 

 maximum distance D = max(d(i)) for all i  
Due to the algorithm architecture in the next section 

(optimistic bounding in the B&B algorithm) it makes 
sense to use Floyd's algorithm finding shortest paths 
between any pair of vertices for given digraph. Floyd's 
algorithm returns matrix of shortest distances U[n,n] and 
matrix of the vertex predecessors in the shortest path 
K[n,n]. It is clear that the Floyd's algorithm has time 
complexity O(n3) and space complexity O(n2) due to the 
efficient representation of the shortest path in the matrix 
P. For detailed information like 'validity of Floyd's 
algorithm' please refer to the graph theory textbooks [5], 
[3]. 

The Problem 1 can be solved in polynomial time by 
the Floyd’s algorithm: 

  
Algorithm
1.Find shortest paths using Floyd’s

algorithm
2.Construct shortest path adjacency matrix
3 Extract directed tree from the shortest

path adjacency matrix
4.Extract distance vector

4.2 Finding an optimal directed tree with 
fanout restriction 

 
The Problem 2 can be formulated as finding a directed 

spanning tree with minimal D (maximum distance from 
the source s) when the number of messages sent from a 
given node is limited by the fanout. In other words the 
Problem 2 can be formulated as SPT with fanout 
restriction. 
Problem 2 input data:  
s   the root id  - as in the Problem 1 
A[n,n]  digraph adjacency matrix of lengths - Problem 1 
f[n]  fanout - row vector of upper bounds 

 f(i) specifies a maximum out-degree of the i-th 
vertex in directed spanning tree 

Problem 2 output data: 
t[n]   tree row vector - as in the Problem 1   
d[n]   distance row vector - as in the Problem 1 

The solution of the Problem 2 adopted in this article is 
based on the enumeration of a finite set F of feasible 

solutions and the criterion D: F→ N with intention to find 
particular solution S*∈ F such that  

)(min*)( SDSD
FS∈

=  
Enumeration methods find S* by enumeration of all 

S∈ F through examination of increasingly smaller subsets 
of F. These subsets can be treated as sets of solutions of 
corresponding sub-problems of the original problem.  

Branch and Bound (B&B) method is one of the 
enumeration methods, which considers certain solutions 
only indirectly, without actually evaluating them 
explicitly. As its name implies, the B&B method consists 
of two fundamental procedures: branching and bounding. 
Branching is the procedure of partitioning a large problem 
into two or more sub-problems. Furthermore the sub-
problems can be partitioned in similar way, etc. Bounding 
calculates a lower bound on the optimal solution value D 
for each sub-problem generated in the branching process.  

The branching procedure can be conveniently 
represented as a search tree. At level 0, the search tree 
consists of a single partial solution (one vertex of the 
search tree) representing the original problem, and at 
further levels it consists of partial solutions representing 
particular sub-problems of the problem at previous level. 
Edges are introduced from each problem to each sub-
problem. A list of partial solutions is maintained.  

Suppose that at some stage of the branch and bound 
process a (complete) solution Si of a criterion value D(Si) 
has been obtained. Suppose also that a partial solution Rj 
encountered in the process has an associated lover bound 
optimist(Rj). If optimist(Rj) > D(Si) then the partial 
solution Rj needs not to be considered any further in the 
search of S* since resulting solution can never have a 
value D less than D(Si). When such partial solution is 
found, it is eliminated, since it is not needed to continue 
the branching process from it. The solution Si, called a 
trial solution, can be found at the beginning by pursuing 
the tree from the top to bottom as rapidly as possible.  

In order to implement the scheme of the branch and 
bound algorithm for the Problem 2, one must first decide 
the branching procedure and the search strategy. As 
illustrated in Fig. 3, very simple marking procedure could 
be used to find one particular path in the search tree (if the 
node i got the multicast message, then mark(i)>0): 

 
Marking procedure
1.[Initialization] Root s has mark=1, other

vertices have mark=0
2.[Choice of the arc] Find a set of

candidate arcs (candidate arc A(i,j) has
unmarked end vertex j and marked start
vertex i with mark(i)≤f(i)), that could
be used for the spanning tree expansion.
Finish if such arc does not exist.

3.[Marking] Increment mark(i), increment
mark(j) and go to the step 2.



 
Fig. 3 Illustration of  the marking procedure 

 Fig. 4 Successful (a) and unsuccessful (b) result of  
marking procedure 

In the case of instance shown in Fig. 4(a) with fanout 
f=[2 2 2 2 2 2] the marking procedure can finish in 
different ways. One can find one solution (b), where 6 
vertices are marked (number of marks is indicated in []) 
and 5 arcs were chosen (this solution corresponds to the 
spanning tree [0 3 1 1 3 4]). Or one can fail (see Fig. 
4(c)), as there are unmarked vertices, and there are no 
more candidate arcs (this solution corresponds to the tree 
[0 1 1 0 2 3] which does not spawn over all nodes). 
Bounding procedure is based on two approaches: 
a) trivial bounding 

Suppose that a partial solution Rj encountered in the 
branching process has an associated maximum distance 
from the root D(Ri) larger than D of the best solution 
known up now Sbest. Then it is not needed to continue the 
branching process from Rj. 
b) optimistic bounding  

In a given step of the branching process we can make 
use of the matrix of shortest paths U calculated by Floyd's 
algorithm. Paths of our interest start at set I (set of marked 
vertices i with fanout(i) ≥mark(i)) and end at set J (set of 
unmarked vertices j). Moreover each marked vertex has 
value delay associated to it at the moment of marking and 
representing distance from the root. So the optimistic 
estimation of the distance of unmarked vertex j 
(corresponding to the optimistic completion time) can be 
calculated as completion(j) for all vertices from the set J:  

)),()((min)( jiUidelayjcompletion
Ii

+=
∈

 

 
 

Then lover bound for D could be expressed as value 
optimist: 

)(max jcompletionoptimist
Jj∈

=  

So if the value optimist in some partial solution is 
larger than D of the best solution known up now Sbest, then 
it is not needed to continue the branching process from 
this partial solution. Please note that this bounding 
incorporates also rejection of partial solutions with 
isolated unmarked vertices. For implementation details 
please refer to [9] or contact the authors to get Matlab 
source code. 
 
4.3 Discussion 

 
When using branch and bound algorithm one should 

consider the compromise between the length of the 
branching process and time overhead concerned with 
computing lower bounds or trial solutions. However, the 
actual computational behaviour of B&B algorithm 
remains unpredictable and large computational 
experiments are necessary to recognize their quality. It is 
obvious that the computational complexity of B&B 
algorithm is exponential in problem size when we search 
for optimal solution. However, the approach could be 
used for finding sub-optimal solutions, and then we can 
obtain polynomial time complexity by stopping the 
branching process at a certain stage or after a certain time 
elapsed. 

From the practical point of view there are more 
important issues than the time complexity of the B&B 
algorithm. These issues are related to the validity of the 
input data. Important question is how to fill the adjacency 
matrix A corresponding to RTT between separate nodes? 
First - as RTT vary in a time it is probably needed to use 
some statistical data. Second - due to the Internet nature 
the matrix A could be fully dense (with no ∞ at any entry). 
However from the practical point of view it needs not to 
be fully dense as one can make use of the geographic 
distance reflected partially e.g. in domains.  

A very interesting theoretical issue is related to more 
general view of the multicast communication with replays 
from the multicast group (sometimes called gossiping or 
group multicast). In such case each node taking part in the 
multicast can become a root, so each node potentially 
needs its own directed spanning tree and optimization 
should be done with respect to that. Here one can make 
use of Floyd's algorithm finding shortest paths between 
any pair of vertices for given digraph in a similar way as 
routing protocols as OSPF use shortest path algorithms.  
 
 
 



5 Simulation and evaluation 
 

The optimal multicast routing tree is generated for 
configuration that consists of three nodes. The parent 
node has all needed information about network topology 
(RTT between all nodes). The non/optimality problem 
arises with configuration that consists of four nodes. We 
assume that the source node is always Node_1.  

The first non-optimal configuration and simulation 
result are given in Fig. 5. The delays (RTT) between all 
nodes are given by the matrix A. 
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Fig. 5 Non-optimality of TBCP algorithm - example I 

The generated TBCP tree is not identical with the 
optimal tree - compare Fig. 5b and Fig. 5c. This 
non-optimality difference is caused by missing RTT 
knowledge. The Node_4 wants to join the tree and it 
makes distance measurement (RTT) to the Node_1, and to 
the child of the Node_1 (to the Node_2). Therefore, it can 
send to the candidate parent only these values: A[4,1] and 
A[4,2] but not A[4,3]. This non-optimality appears when: 

The Node_2 in the actual configuration is the child 
of the Node_1 and Node_3 is the child of the 
Node_2 (see Fig. 5a). This configuration occurred 
in the previous run of the TBCP when: 

A[3][1]>A[2][1]+A[3][2] 
Now the Node_4 (as a newcomer) wants to join the 
TBCP tree and RTTs among the nodes are such that 
the following conditions are satisfied:  

A[4][1]<A[1][2]+A[2][3] AND 
A[4][1]>A[1][2]+A[2][3]+A[3][4] 

For this configuration the difference between tree 
generated by TBCP (delay 20ms) and optimal spanning 
tree (19ms) is 1ms. 

 
The second non-optimality example is illustrated in 

Fig. 6. The configuration of three nodes before the node 4 
wants to join the TBCP tree is shown in Fig. 6a, the TBCP 
result after the JOIN procedure is shown in Fig. 6b and 
the optimal tree is shown in Fig. 6c.  

The generated TBCP tree is not identical with the 
optimal tree - compare Fig. 6b) and Fig. 6a) 

The missing RTT between Node_4 and Node_3 causes 
this difference. This non – optimal situation occurs if: 

The Node_2 in the actual configuration is the child 
of the Node_1 and the Node_3 is the child of the 

Node_2 (see Fig. 6 a). This configuration occurred 
in the previous run of the TBCP when: 

A[3][1]>A[2][1]+A[3][2] 
Now the Node_4 wants to join the TBCP tree and 
RTTs among the nodes are such that the following 
conditions are satisfied: 

A[4][1]+A[4][3]<A[1][2]+A[2][3] AND 
A[4][1]<A[2][1]+A[4][2] 
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Fig. 6 Non-optimality of TBCP algorithm – example II 

Delay of  this solution generated by TBCP is 19ms and 
the optimal spanning tree has delay only 10ms.  

If this situation occurs during the building of a 
multicast routing tree, the constructed tree isn’t optimal. 
Please notice there are no fanout restriction in these two 
examples. 

 
The example of configuration with fanout restriction  

(nine nodes, matrix A and fanout) is given in Fig. 7. The 
fanout restriction is applied for Node_1,2,3 and 4. The 
fanout for other nodes is so high, that it does not have any 
sense. 

0 8 11 12 10 20 10 10 33
A[i,,j] = 8 0 20 20 20 44 20 5 20

11 20 0 30 30 30 30 30 30
12 20 30 0 40 17 40 15 40
10 20 30 40 0 50 42 50 50
20 44 30 17 50 0 21 60 19
10 20 30 40 42 21 0 70 70
10 5 30 15 50 60 70 0 80
33 20 30 40 50 19 70 80 0

fanout = 2 2 1 1 30 30 30 30 30  
Fig. 7 The matrix A – configuration of nine nodes 

The generated TBCP tree is shown in Fig. 8. The 
notation e.g. 6/2 means the node and delay (Node_6/delay  
2ms). The Node_1 is always the source node.  

Optimal spanning tree is shown in the Fig. 9. The delay 
differences are caused by non optimal behaviour of TBCP 
algorithm as was explained above (configuration of 4 
nodes). The tree generated by TBCP algorithm has 
maximum delay 88ms (see Fig. 8) and SPT has only 40ms 
(see Fig. 9). 



 Example 01: Tree found by TBCP algorithm (maximum distance 88)

1/0 2/8 3/58 4/28 

5/63 6/20 

7/888/13 

9/28 

fanout = [2   2   1   1  30  30  30  30  30]

 
Fig. 8 Generated TBCP tree with fanout restrictions 

 
Example 01: Tree found by optimal shotrest path algorithm  (maximum distance 40)

1/0

2/15

3/40

4/37 5/356/20

7/358/10 9/39

fanout = [2   2   1   1  30  30  30  30  30]

 
Fig. 9 Optimal spanning tree  

6 Conclusions 
 

This document explains the simulation of the 
TBCP protocol – the distributed algorithm finding the 
SPT with fanout restriction. The protocol model in 
OPNET allows easy maintenance of the distributed 
application.  

Important part of this text is devoted to the 
optimality evaluation of the TBCP protocol. Two non-
distributed algorithms (without and with fanout 
restriction) have been studied in order to obtain the SPT. 
These algorithms can serve as a base for future 
enhancements of the TBCP protocol. As shown in the 
simulation examples, the TBCP algorithm finds non-
optimal solution already for 4 nodes without fanout 

restriction, when the joining node is not informed about 
the RTT values in the next level. This problem can be 
partly solved by gathering more information about RTT 
from other layres, but this still does not guarantee the tree 
optimality. 

Finally it is needed to mention that the Branch and 
Bound centralised algorithm given in this article could be 
applied in the reshaping procedure of the distributed 
TBCP. Reshaping procedure can monitor the traffic of the 
multicast communication during a normal run of TBCP. It 
can make additional measurements of RTT especially for 
critical nodes and it can continuously gather RTT values 
from all nodes to the source node. Then the reshaping 
procedure can completely recalculate the tree locally in 
the source whenever it is needed. Interesting issue is the 
mechanism of switching from the old tree to the new one 
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