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Abstract – This article addresses the problem of the
computation of instantaneous firing speed in Invariant
Behavior state (IB-state) of Constant speed Continu-
ous Petri Net (CCPN) with presence of actual conflicts.
The adopted approach is based on polyhedral computa-
tions applied to specify an area of possible instantaneous
firing speed. If the actual conflicts are resolved by global
priorities, the instantaneous firing speed is found in a
set of the polytop vertices or alternatively it is found by
one formulation of the linear programming problem per
each priority level. The approach shown in this article
assumes the speed maximisation being prior to priority
resolution.

Keywords: Continuous Petri Nets, polytopes, linear
programming, hybrid systems.

1 Introduction
The text is based on the Continuous Petri Net model

presented by R. David and H. Alla [3]. These authors
have obtained a continuous model by fluidization of a
discrete Petri Net. Further Continuous Petri Nets con-
stitute part of Hybrid Petri nets [4] made of a ”continu-
ous part” (continuous places and transitions) and a ”dis-
crete part” (discrete places and transitions). The con-
tinuous part can model systems with continuous flows
and the discrete part models the logic functioning. Au-
tonomous Continuous Petri Nets [10] and other mod-
els like DAE (Differential Algebraic Equations) Petri
Nets [5], Batches Petri nets [6], First-Order Hybrid Petri
Nets [7] have been studied intensively since this research
area presents important bridge to hybrid systems (a
bibliography on hybrid Petri Nets could be found at
http://bode.diee.unica.it/˜hpn). These models are sub-
ject of the algorithm development that might make use
of polyhedral computations outlined in this text.

Instantaneous firing speed needs to be determined
when evolution graph is constructed. This approach
can be particularly useful when Continuous Petri Net
is used to approximate discrete Petri Net, since evolu-
tion graph can represent the net behavior in very dense
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form. This article is motivated by the fact that the iter-
ative algorithm finding instantaneous firing speed given
in [3] may not be used when there is actual conflict.

The rest of this article is organized as follows: Sec-
tion 2 surveys basic terms and it shows the algorithm
determining enabled transitions. Section 3 presents the
model where a speed maximisation is not assumed. It
shows how the space of possible instantaneous firing
speed in the free speed model can be determined by the
polytop. Basic examples are given in order to convince
the reader about utility of polyhedral computations in
this area. Section 4 presents maximum speed area to
which instantaneous firing speed has to belong, when
the maximum speed model is assumed. Examples of
actual conflicts show how this area is constituted form
the polytop faces. Section 5 presents resolution of ac-
tual conflicts by priorities, it defines priority determined
speed and it proposes two algorithmical solutions, one
based on polytops and one based on linear program-
ming.

2 Preliminaries
This section surveys some basic terms and algorithms

from the area of CCPNs based on [3].

Definition 1 A constant speed continuous Petri Net
(CCPN) is a sextuple R = [P, T, V, Pre, Post,M(0)],
where

• The definitions of P, T, Pre, Post are similar to
those of discrete PNs. This article is only con-
cerned with CCPNs with natural valued weights
of arcs, however general case, where real positive
numbers are associated with arcs, can also be con-
sidered.

• M(0) is initial marking of continuous PN. It is a
vector of positive or zero real numbers. M(t) de-
notes the marking at time t.

• V : T −→ R+ is vector of maximal firing speeds;
Vj denotes maximal firing speed of the transition
Tj.



The fact, that Vj is a constant (independent of mark-
ing and time), gives the name to this class of continu-
ous PNs called constant speed continuous PNs. Further
vj(t) denotes instantaneous firing speed of the transition
Tj at a time t. Value of vj(t) is bounded by interval
〈0, Vj〉 and since it is dependent on M(t) it changes in
separate IB-states of the evolution graph [3].

Definition 2 A place Pi is marked at a time t if
Mi(t) > 0.

Definition 3 A transition Tj is strongly enabled at a
time t if all places Pi of oTj are marked.

Source transition is supposed to be strongly enabled,
in accordance with definition 3.

Definition 4 A place Pi is supplied at a time t if there
is at least one transition Tj in oPi , which is enabled
(strongly or weakly).

Definition 5 A transition Tj is weakly enabled at a
time t if there is a place Pi of oTj , which is not marked
and it is supplied, and remaining places of oTj are either
marked or supplied.

And finally we suppose the transition to be enabled
at a time t if it is strongly enabled or weakly enabled.

The recursive definitions of supplied place and weakly
enabled transition does not allow direct determination
of supplied places and weakly enabled transitions.

Calculation of the set of enabled transitions for a
given marking is given by Algorithm 1 in [3]. This al-
gorithm is based on iterative upgrade of vectors A (one
bit assigned to each place) and E (one bit assigned to
each transition). This iterative algorithm converges in
polynomial time.

Definition 6 The balance of Pi in CCPN is:

Bi(t) =
∑

Tj∈oPi

Post(Pi, Tj) · vj(t) (1)

−
∑

Tk∈P o
i

Pre(Pi, Tk) · vk(t)

The balance of Pi at a time t corresponds to the
derivative of its marking, i.e., m′

i(t) = Bi(t) and

mi(t + dt) = mi(t) + Bi(t) · dt (2)

If the balance of Pi is positive the marking mi in-
creases and if the balance is negative the marking mi

decreases.
Algorithm calculating instantaneous firing speed of

enabled transition in [3] is based on iterative approach
(i.e. vr+1

j (t), the value of instantaneous firing speed at
iteration step r+1, is dependent on vr

j (t), the value from
previous step). On the contrary, the approach presented

in this article is based on the analytical determination
of subspace of instantaneous firing speeds.

In order to simplify specification of instantaneous fir-
ing speeds constraints we give:

Definition 7 A place Pi is supplying if there is at least
one transition Tj in P o

i , which is enabled (strongly or
weakly).

3 Free speed CCPN
CCPN are assumed to function at maximum speed

[3], therefore vj(t) of strongly enabled transition Tj is
equal to Vj and vj(t) of weakly enabled transition is
the maximum possible one. This classical model will be
called maximum speed CCPN in this article.

On the other hand, the systems not functioning at
their maximum speed are also very interesting subject of
research (e.g. for verification problems). Therefore this
section is devoted to the analysis of free speed CCPN
(the model is formally given by the set of speed con-
straints related to the system of inequalities (3), (4),
(5)). The term ”free speed” is linked to the fact that
vj(t) of strongly enabled transition Tj is not explicitly
equal to Vj and vj(t) of weakly enabled transition is not
explicitly the maximum possible one. This model can
be used when one describes the systems with undeter-
mined but bounded firing speed (in the limit case, when
Vj = ∞ for all Tj ∈ T , the free speed CCPN is iden-
tical to the autonomous CPN). In this article the ”free
speed CCPN” model is used as an intermediate step il-
lustrating the subspace of instantaneous firing speeds.
The subspace is further used to determine the instanta-
neous firing speeds in ”maximum speed CCPN” given
in section 4.

The instantaneous firing speed vj(t) of enabled tran-
sition Tj at a time t is bounded on interval 〈0, Vj〉 as the
firing speed cannot be negative and it cannot be higher
than the maximal firing speed (see inequalities (3) and
(4)).

Further vj(t) is dependent on the marking of Pi ∈o Tj.
There is no restriction issued by marked place Pi, since
vj(t) is supposed to be finite and |P o

i | is finite as well.
As a consequence the marked place Pi remains marked
at least for a short time interval, even if its balance
Bi is negative. The situation is different for unmarked
place. As the marking of the place Pi cannot be nega-
tive, mi(t+dt) ≥ 0, the balance Bi(t) of unmarked place
has to be positive or zero due to equation (2). Among
unmarked places only the set of supplying places will be
considered (e.g. P2 in Figure 1) since the non supply-
ing ones have no influence on any instantaneous firing
speed. (Please notice: if Pi is unmarked supplying, then
there exists weakly enabled Tj in P o

i and therefore Pi

has to be supplied).
As mentioned above, the subspace of instantaneous

firing speeds for free speed CCPN , is constrained by



the following system of inequalities (3), (4), (5):
Speed limits of enabled transitions. According to the
definition 1, an instantaneous firing speed must not be
grater than its specified maximal value:

vj(t) ≤ Vj ∀j such that Tj is enabled (3)

Non-negative speeds of enabled transitions. An instan-
taneous firing speed must be positive or zero:

vj(t) ≥ 0 ∀j such that Tj is enabled (4)

Non-negative balances of unmarked supplying places. If
there is unmarked supplying place Pi then there exists
at least one weakly enabled transition in P o

i , and then
the balance of Pi must be positive or zero:

Bi(t) ≥ 0 ∀i Pi is supplying, and mi(t) = 0 (5)

All variables dependent on time, v(t), B(t),M(t), will
be denoted simply v,B,M in the rest of this article,
since they are used when a specific time is assumed.

Each Bi can be written as linear combination of in-
stantaneous firing speeds of enabled transitions, due to
equation (2). As a consequence the system of inequal-
ities (3), (4), (5) can be written in the form, where
instantaneous firing speeds of enabled transitions (de-
noted x in Polyhedral Computations) are the only vari-
ables.

Let c denotes the number of unmarked supplying
places, d denotes the number of enabled transitions and
k denotes index of enabled transition ranging from 1 to
d. The subspace Π of Rd is convex polyhedron [8, 1]
since Π is the set of solutions to the above mentioned
finite system of inequalities (exactly there are 2d + c
inequalities). Π is convex polytop, as it is convex poly-
hedron and it is bounded (due to (3) and (4)). One
given point x ∈ Π corresponds to the instantaneous fir-
ing speed vector v. If Tj is enabled then vj is equal to
xk, the k-th coordinate of this point. Otherwise vj is
equal to zero.

Let Π be a convex polytop of Rd. For a real d-vector
a and a real number b, a linear inequality aTx ≤ b is
called valid for Π if aTx ≤ b holds for all x ∈ Π. A
subset F of a polyhedron Π is called a face of Π if it is
represented as:

F = Π ∩ {x; aTx = b} ∀ valid inequality aTx ≤ b (6)

The faces of dimension 0,1,d-1 are called vertices,
edges and facets, respectively. The vertices coincide
with extreme points of Π. The extreme point is
defined as point which cannot be represented as convex
combinations of two other points in Π.

Example 1:

The system of inequalities (3), (4), (5) for a simple CCPN
in Figure 1 is shown below as system of 5 inequalities, since

there are two enabled transitions T1, T2 and one unmarked
supplying place P2. Corresponding polytop Π is given only
by 4 inequalities since the third inequality is redundant (the
corresponding edge degenerated to vertex, as the correspond-
ing inequality is just on the border of redundancy).

v1 ≤ 2 edge T1 in F igure 1

v2 ≤ 1 edge T2 in F igure 1

v1 ≥ 0 redundant − vertex T01 in F igure 1

v2 ≥ 0 edge T02 in F igure 1

v1 − v2 ≥ 0 edge P2 in F igure 1 (7)
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Figure 1: CCPN consisting of two transitions with dif-
ferent maximal firing speeds and polytop Π represent-
ing possible instantaneous firing speeds of the free speed
model

Example 2:

Figure 2 illustrates parallelism. Polytop Π in Figure 3
determines possible instantaneous firing speeds. Particular
triple of instantaneous firing speeds v1, v2, v3 is given as par-
ticular point in Π.

1

P1

P2 P3

T1

1

T2

0.8

T3

1

Figure 2: CCPN containing parallel branches with dif-
ferent maximal firing speeds

Upper bound of v1 is given by a hyperplane correspond-
ing to inequality v1 ≤ V1 and in 3-dimensional space it is



geometrically represented by a plane. This face of Π cor-
responding to upper bound of v1 is the facet (of dimension
d-1=2) labeled as T1 in Figure 3. Similar applies for V2,
upper bound of v2, and corresponding facet T2. The situa-
tion is different in the case of T3 as V3 in fact does not limit
v3. In accordance to that a hyperplane corresponding to in-
equality v3 ≤ 1 is redundant. Since this hyperplane is just
on the border of redundancy (it would not be redundant if
V3 will be decreased a little bit) it is possible to find a cor-
responding face of Π. There would be no face T3 if V3 will
be increased, since corresponding hyperplane would not have
any intersection with Π in such case. This face (labeled T3)
is not facet but it is ”only” edge due to the fact that it is on
the intersection of the facets T1 and P3.
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Figure 3: Polytop Π representing possible instantaneous
firing speeds of free speed CCPN in Figure 2

The facet P3 is determined by a hyperplane given by
Post(P3, Tj) and Pre(P3, Tj). And the same applies for a
facet P2 which corresponds to the second unmarked place P2.
Lower bounds of v2 and v3 corresponds to the facets labeled
T02 and T03 respectively (these two facets of Π are not visible
in Figure 3 due to the orientation and non transparency of
Π). Non-negative value of v2 and v3 implies non negative
value of v1 (i.e. inequality v1 ≥ 0 is redundant). Conse-
quently face T01 is ”only” vertex since it is intersection of
facets T02, T03, P2 and P3.

During the construction of evolution graph for given
CCPN we are able to derive the system of inequal-
ities (3), (4), (5). This is in fact a (halfspace) H-
representation of the polytop Π which can be given also
by the set of vertices, so called V-representation. The
transformation of H-representation to V-representation
is known as vertex enumeration and opposite transfor-
mation as facet enumeration ( the facet enumeration
reduces to the convex hull problem, as Π is bounded).
For more details like upper bounds on the numbers of
faces and complexity of enumeration algorithms please
refer to [8, 1].

Specific values of maximal firing speeds in this article
are usually chosen in such way that there are few
redundant inequalities in order to illustrate various
behavior of CCPN in 3-dimensional space.

Example 3:

Figure 4 illustrates conflict. Corresponding polytop shows,
that any possible instantaneous firing speed v1 can grow up
to its upper bound V1 as in previous example. On the other
hand, v3 can reach its upper limit V3 (facet T3) only in
the area where v1 − v2 ≥ V3 holds. In the remaining area
(v1 − v2 < V3) any possible instantaneous firing speed v3

can grow only up to v1 − v2 (facet P2). In the other words,
growth of v3 is not limited only by preceding transitions but
also by v2, which does not precede T3. This is important
difference to previous examples and it is caused by shared
resource (conflict place P2 in Figure 4).
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Figure 4: CCPN with conflict
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Figure 5: Polytop Π representing possible instantaneous
firing speeds corresponding to free speed CCPN in Fig-
ure 4



In the terms of polytop in Figure 5, due to the conflict

between transitions T2 and T3 there exists such plane given

by constant speed of remaining transition T1 (e.g. v1 = 2.5)

that by intersection of this plane with facet P2 we obtain a

line segment with negative slope (upper limit for v3 decreases

when v2 increases, since v2+v3 = 2.5 on this line segment).

In the terms of the system of inequalities (3), (4), (5),
if there is a structural conflict between two transitions
Ta and Tb we can find such 2-dimensional subspace in Π
given by constant speeds of remaining transitions that
there is at least one non-redundant inequality in (5) of
the form αava + αbvb + β ≥ 0 and αa < 0, αb < 0.
This inequality corresponds to the balance of the con-
flict place Pi. The constants αa, αb are related to
the net structure (αa = Post(Pi, Ta) − Pre(Pi, Ta),
αb = Post(Pi, Tb)− Pre(Pi, Tb)) and their negativeness
is founded on fact that each of the transitions Ta and
Tb takes more than it gives to the conflict place Pi.

Approach given in this section is very illustrative
when studying possible basic behaviors of free speed
CPPNs, but it is not sufficient when CCPN is used to
model existing system with deterministic behavior.

4 Maximum firing speed
As many existing systems run at their maximal

speeds, it is attractive to define their characteristics.
Maximum speed of any strongly enabled transition

Tj can be determined directly as vj = Vj . Consequently
new polytop Θ of Rw (w = number of weakly enabled
transitions) can be obtained by reduction of the poly-
top Π of Rd (d = w+number of strongly enabled tran-
sitions). This reduction is done by changing each in-
equality, corresponding to strongly enabled transition
in the subsystem (3), to equality (as a consequence, the
inequality is redundant). Since each equality can be
written as two inequalities (e.g. vj = Vj can be written
as vj ≤ Vj and vj ≥ Vj), the polytop Θ is convex and
bounded as required by definition.

The maximum speed area G is subset of Θ, since Θ is
specific subset of Π such that above mentioned reduction
does not eliminate any part of G.

Let us assume the CCPN in Figure 2 to run at its
maximum speed. Corresponding polytop Θ can be de-
termined as intersection of Π in Figure 3 with plane
v1 = 1, corresponding to strongly enabled transition
T1. As there is just one strongly enabled transition,
the intersection corresponds to the facet T1. Please no-
tice that speed limit inequalities (3) of strongly enabled
transitions are never redundant since their input places
are marked.

And finally, we can determine polytop Θ as facet T1

also in Figure 5, since it is obtained as intersection of
the polytop Π with the plane v1 = 3, corresponding to
strongly enabled transition T1. The polytop Θ is shown
in Figure 6.
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Figure 6: Polytop Θ used to determine instantaneous
firing speeds of weakly enabled transitions in Figure 4

Both polytopes Π and Θ can be used, when studying
maximum speed CCPN. Since dim(Θ) ≤ dim(Π), only
polytop Θ will be used in the following examples in order
to demonstrate various cases in 3-dimensional space.

Definition 8 A possible instantaneous firing speed v =
[v1, . . . , vk . . . , vd] (v ∈ Π in the sense of the polytop
given by the system of inequalities (3), (4), (5)) is said
to be possible maximum speed if there does not exist
any u ∈ Π such that uk ≥ vk for all k = 1 . . . d.

Definition 9 A subset G of a polyhedron Π is called
a maximum speed area of Π if each v ∈ G is possible
maximum speed.

Property 1: If there is no structural conflict (see
Figures 2) then there is no nondeterminism in maximum
speed CCPN and maximum speed area is always one
vertex of corresponding polytop Θ.

This unique vertex of polytop Θ can be found in poly-
nomial time by one call of linear programming [9] aim-
ing at maximisation of objective function J = sTx,
with arbitrary nonzero positive finite entries of s, i.e.
sj ∈ (0,∞) for all j = 1 . . . w.

Due to the definition 8 it is obvious that the maximum
speed area G is a subset of the set of all faces of polytop
Θ (the set is called face poset), since no interior point
of a convex polytop can reach maximum value of any
convex objective function. In order to determine the
maximum speed area it is sufficient to check all faces of
polytop Θ.

Property 2: Let Fq be a face of Θ of dimension
k ≥ 1. All points x ∈ Fq belong to the maximum speed
area if and only if all faces Fk−1 ⊂ Fq belong to the
maximum speed area.

When recursively applying Property 2 one can derive:



Property 3: Face Fq of Θ belongs to maximum speed
area (i.e. all points x ∈ Fq belong to the maximum
speed area) if and only if all vertices F0 ⊂ Fq belong to
the maximum speed area.

Due to Property 3, the maximum speed area G is fully
determined by the set of vertices belonging to G. One
can simply determine whether a vertex belongs to the
maximum speed area G by the vertex enumeration and
by the selection of vertices satisfying definition 8.

This procedure is applied to all examples in this arti-
cle. A vertex belonging to the maximum speed area is
indicated by small dot, labeled by instantaneous firing
speed. For example Figure 5 has two vertices of this
kind [v1 = 3, v2 = 1, v3 = 2] and [v1 = 3, v2 = 2, v3 = 1],
since the speed maximisation does not specify deter-
ministic behavior of maximum speed CCPN given in
Figure 4. If the value of V1 would be raised up to
4, then the facet T1 will be moved to the left and
maximum speed area will consist of only one vertex
[v1 = 4, v2 = 2, v3 = 2] and behavior of maximum speed
CCPN will be deterministic. This is due to the fact, that
Property 1 is implication but not equivalence (existence
of structural conflict is necessary but not sufficient con-
dition for existence of actual conflict).

Definition 10 Let K = [Pi, {Tj, Tk}] be a structural
conflict. There is an actual conflict between transitions
Tj and Tk if there are at least two possible maximum
speeds v and v′ such that vj < v′j and vk > v′k.

Informally we say that there is actual conflict between
two transitions when possible increase of instantaneous
firing speed of one transition must be compensated by
the decrease of instantaneous firing speed of the other
transition.

Property 4: If there exists a face Fq ∈ G such that
k ≥ 1 then there exists an actual conflict.

This property can be proved as follows:
Fq is not vertex since k ≥ 1 (i.e. Fq is at least edge)
⇒ there exist at least two vertices v ∈ Fq and v′ ∈ Fq

belonging to G
⇒ there exist two transitions Tj and Tk such that
vj < v′j and vk > v′k (otherwise v, w could not satisfy
definition 8)
⇒ actual conflict exists

Property 5: If there exists an actual conflict then
there exists a face Fq ∈ G such that k ≥ 1.

This property can be proved as follows:
due to the actual conflict, there exist two transitions
Tj and Tk such that there are two possible maximum
speeds (not necessarily vertices) v and v′ such that
vj < v′j and vk > v′k
⇒ G consists of at least two points v and v′, since they
satisfy definition 8 and the polytop is convex by defini-
tion
⇒ either both v and v′ belong to one face Fq ∈ G such

that k ≥ 1 or each of them belongs to a distinct face
Fq ∈ G such that k ≥ 1

Property 6: There is actual conflict between transi-
tions Tj and Tk when the following three conditions are
satisfied:

• (a) there is structural conflict K = [Pi, {Tj, Tk}]
and

• (b) Mi =0 and consequently Tj, Tk are weakly en-
abled transitions (vj , vk are coordinates of Θ)

• (c) a hyperplane, given by inequality (5) corre-
sponding to Pi, intersects with at least two points
belonging to the maximum speed area G.

Example 4:

Figure 7 illustrates structural conflicts K1 =
[P2, {T2, T3, T4}] and K2 = [P3, {T3, T4}]. Maximum
speed area G in Figure 8 is one face of dimension 2
(facet P2 given by vertices [v2 = 1, v3 = 0.33, v4 = 0.33],
[v2 = 0.3, v3 = 0.8, v4 = 0.1], [v2 = 0.4, v3 = 0.8, v4 = 0],
and [v2 = 1, v3 = 0.5, v4 = 0]) and one face of dimension
1 (edge given by vertices [v2 = 1, v3 = 0.33, v4 = 0.33],
[v2 = 1, v3 = 0.2, v4 = 0.4]. Both structural conflicts lead to
actual conflict. Using this example we can illustrate Property
3: the facet P3 does not belong entirely to G since vertices
[v2 = 0, v3 = 0.8, v4 = 0.1], [v2 = 0, v3 = 0.2, v4 = 0.4] does
not belong to G. Please notice that the maximum speed area
G is not convex.
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Figure 7: CCPN with two actual conflicts

5 Resolution of actual conflicts
by priorities

Deterministic behavior of maximum speed CCPN is
not given when actual conflict is present. Therefore
we propose a global priority assignment defined in the
following way:
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Figure 8: Polytop Θ used to determine instantaneous
firing speeds of weakly enabled transitions in Figure 7

Definition 11 Let R = [P, T, V, Pre, Post,M(0)]
be a maximum speed CCPN. A maximum speed
CCPN with global priorities is a seven tuple R′ =
[P, T, V,Q, Pre, Post,M(0)] where:

• The definitions of P, T, V, Pre, Post,M(0) are sim-
ilar to those in CCPN.

• Q : T −→ {0,N+} is vector of global priorities; Qj

denotes global priority of the transition Tj in the
sense that Tj has higher priority than Tl if and only
if Qj > Ql.

Definition 11 allows two transitions Tj and Tl to have
the same priority Qj = Ql, so one can use the term pri-
ority level, to which transitions with equal priority are
associated. Label on the left side of the transition des-
ignates its priority (see Figure 7). Priority is 0 (lowest
priority), if there is no number on the left side of the
transition.

Deterministic behavior of maximum speed CCPN
with global priorities R′ is given by the choice of one
possible maximum speed in the maximum speed area
G.

Definition 12 A possible maximum speed v =
[v1, . . . , vj . . . , vd], v ∈ G, is said to be priority deter-
mined speed if for any u ∈ G and for any Tj such that
vj < uj there exists some Tk such that Qk ≥ Qj and
vk > uk.

Definition 13 A subset H of G is called a priority de-
termined area of Π if each v ∈ H is priority determined
speed.

There are several priority determined speeds if actual
conflicts are not resolved. Assume priority assignment

Q = [0, 2, 1, 1, 0] in Figure 7 leading to priority deter-
mined area given by edge ([v2 = 1, v3 = 0.2, v4 = 0.4],
[v2 = 1, v3 = 0.33, v4 = 0.33]) and by edge ([v2 = 1, v3 =
0.5, v4 = 0], [v2 = 1, v3 = 0.33, v4 = 0.33]).

Priority determined area is just one priority deter-
mined speed (one vertex of Θ) if all actual conflicts are
resolved by priorities (for example see Figure 7 where
priority assignment Q = [0, 2, 1, 3, 0] leads to priority
determined speed [v2 = 1, v3 = 0.2, v4 = 0.4]). In such
case there are two algorithmic solutions :
(I) Vertex enumeration. To enumerate vertices of
Θ, then to select vertices determining maximum speed
area G using definition 9, then to choose the priority
determined speed using definition 12. There does not
exist any polynomial bound for this algorithm since the
number of vertices of Θ is proportional to 2w (w is the
number of weakly enabled transitions).
(II) Linear programming. To find the maximum
speed by calling linear programming for each transition.
Iterations are executed in the order given by the tran-
sitions priorities. First, one partial solution S is found
(for highest priority Tj) by linear programming aiming
at maximisation of objective function J = vj subject to
Θ. Then new equation vj = Sj is added to the system
of inequalities (corresponding new polytop Θ′ is inter-
section of Θ with equation vj = Sj). Then algorithm
repeats for next transition having equal or lower prior-
ity. Further all transitions are proceeded in a similar
way and the final solution S determines the instanta-
neous firing speed satisfying priority order.

6 Conclusion
This article addresses the problem of the computa-

tion of instantaneous firing speed for given IB-state of
CCPN. Two algorithmic solutions have been shown.
The vertex enumeration solution is based on the ana-
lytical determination of the subspace of instantaneous
firing speeds. The nondeterministic ”free speed CCPN”
model is used as an intermediate step to illustrate influ-
ence of speed and balance constraints on the subspace.
The subspace is further used to determine the maxi-
mum speed area G in ”maximum speed CCPN” (classi-
cal CCPN model used by other authors). If there is no
actual conflict the instantaneous firing speed is deter-
mined directly, since the maximum speed area G is just
one vertex (see Properties 4 and 5). Otherwise specific
vertex in G is chosen up to the transition priorities. The
vertex enumeration solution is very illustrative (namely
if there are less than 3 weakly enabled transitions), but
there is no polynomial bound on the algorithm execu-
tion time.

While using linear programming solution the instan-
taneous firing speed can be found by one formulation
of the linear programming problem if there is no ac-
tual conflict in given CCPN. Otherwise the actual con-
flicts have to be resolved by global priorities, and the



instantaneous firing speed is found by one formulation
of the linear programming problem per each priority
level. Prior to using this solution, it is ”safer” to re-
solve all structural conflicts by priorities since the linear
programming solution is not able to detect existence of
actual conflicts for given CCPN. The linear program-
ming solution is polynomial.

Even if the vertex enumeration solution seems to be
less efficient it is very interesting since it distinguishes
influence the three phenomena (constrains, maximisa-
tion, priorities). Consequently the subspace representa-
tion by polytopes can be used to compare the approach
adopted in this article with other approaches (see the
next paragraph). Moreover the state space represen-
tation using polyhedral computations can be applied
to solve other problems. For example an existence or
non-existence of polytop can be studied in verification
problems where positive lower bound on instantaneous
firing speed is considered (in such case the set of in-
equalities (4) changes to vj(t) ≥ Xj where Xj < Vj).
Another example is representation of the autonomous
CCPN state space by convex cone (in such case Vj is
set to ∞ for all Tj ∈ T in the set of inequalities (3), so
this set can be eliminatd; consequently the polyhedron
Π is not bounded and it is given by rays).

The approach shown in this article assumes the speed
maximisation being prior to priority resolution, since
H ⊂ G by definition of H .
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