
F2004F442

VERIFYING REAL-TIME PROPERTIES OF CAN BUS BY TIMED
AUTOMATA

Krakora Jan*, Hanzalek Zdenek
Czech Technical University in Prague, Faculty of Electrical Engineering, Department of
Control Engineering, Karlovo namesti 13, Prague 2, 121 35, Czech Republic

KEYWORDS
Controller Area Network, Real-time, Timed automata, Medium Access Control

ABSTRACT
In the last years the in-car communications play more and more important role in automotive
technology. With growing complexity of these systems, it is rather difficult to guarantee their
correct behaviour. Therefore it is needed to apply new techniques for their analysis.

This article deals with verification of a typical automotive IT equipment based on a
distributed system. Such system consists of an application SW (designed by application
developer) running under real-time operating system (e.g. OSEK) and using standard
broadcast communications based on the Controller Area Network (CAN). The crucial
problem is to verify both, the time properties (e.g. message response time) and logic
properties (e.g. deadlock) of such complex applications.

Well known Rate Monotonic Scheduling (RMS) can be used to guarantee schedulability,
when the application consisting of periodic processes is running on mono-processor with
priority based pre-emptive kernel and the processes have their deadlines at the end of their
periods. VOLCANO predicts the worst-case latencies for CAN as a direct application of the
scheduling theory where the common bus is considered as shared resource. The message
worst-case response time is influenced not only by its length but also by the maximal length
of one lower priority message since a high priority message cannot interrupt the message that
is already transmitted. Moreover due to the priority based bus arbitration method the message
worst-case response time is influenced by all higher priority messages, considering their
occurrence ratio.

This article presents an alternative approach based on model checking while using timed
automata and temporal logics. Using this approach we model parts of the distributed system
(application SW, operating system and communication bus) by automata. The automata use
synchronization primitives enabling their interconnection; therefore the model complexity
grows gradually at a design stage. Product of these automata is further used for checking of
desired model properties. Important part of this article is CAN arbitration model composed of
several timed automatons: bus automaton and transmitter automaton per each message ID.

Verification of the CAN model is compared to the results achieved by VOLCANO and it is
enlarged to deal with internal structure of the application processes, operating system
parameters in ABS case study. Moreover, while using the verification approach, one can
verify not only the schedulability, but also rather complex properties linked to logic and
timing behaviour of the distributed system. On the other hand, high complexity is a drawback
of the model checking approach in contrast to quite straightforward equations of the
scheduling theory.

1. INTRODUCTION

Let us assume the distributed real time control system consisting of application processes
(designed by application developer) running under Real-Time Operating System (RTOS e.g.
OSEK (10)) while using several processors interconnected via standard broadcast
communication based on the Controller Area Network (CAN) (8). Structure of the application
under consideration is depicted in Fig. 1. The crucial problem is to verify both, the time
properties (e.g. message response time, schedulability of periodic processes, response time)
and logic properties (e.g. deadlock, mutual exclusion, priority based access) of the
applications incorporating two kinds of shared resources - the processor and the bus. Classical
approaches deal separately either with the processor sharing (studied for example by RMS
(9)) or with the bus sharing (e.g. CAN message latency studied by Tindell (6)).

Processor 1

Application
processes

RTOS

sensor
control

actuator
control

CAN bus

Processor 2

RTOS

Processor 3

RTOS

car environment

RTCS

Application
processes

Application
processes

Fig. 1. Real time control system structure

The task schedulability on monoprocessor and multiprocessor systems is widely studied
subject (11,12). For example Rate Monotonic Scheduling (RMS) can be used to guarantee
schedulability, when the application consisting of periodic processes is running on mono-
processor with priority based pre-emptive kernel and the processes have their deadlines at the
end of period. RMS assigns fixed priorities to the processes according to their request rate
(inverse to their period deadline), therefore the highest priority is assigned to the processes
with highest frequency. Schedulability of such processes can be verified using Utilization
bound theorem or Completion time theorem.

Prediction of the worst-case message latencies for CAN was presented by Tindell and Burns
in (6). This method is a direct application of the scheduling theory where the common bus is
considered as shared resource. In similar way, CAN operates the fixed priority scheduling
algorithm and authors assume the rate monotonic priority assignment. The message worst-
case response time is influenced not only by its length but also by the maximal length of one
lower priority message since a high priority message cannot interrupt the message that is
already transmitted. Moreover due to the priority based bus arbitration method the message
worst-case response time is influenced by all higher priority messages, each of them
considering their occurrence ratio.

This article presents an alternative approach based on model checking while using timed
automata (1) and temporal logics (2). Using this approach we model parts of the distributed
system (application SW, operating system and communication bus) by automata. The
automata use synchronization primitives enabling their interconnection. Please refer to (5) on
issues related to implementation and complexity of verification algorithms.

Modelling and verification of concurrent processes sharing one processor have been shown in
(3, 4). These works incorporate priority based pre-emptive and non-pre-emptive scheduling,
inter-task communication primitives and interrupt handling. These models can be directly
combined with CAN model shown in this article while using synchronization primitives. That
is why the operating system part is neglected and one application processes per one processor
is assumed in this paper. Verification of the CAN model developed here can be directly
compared to the results in (6) and it can be simply enlarged to deal with internal structure of
the application processes, timing parameters of different operating systems, sporadic
processes etc. Moreover, while using the model checking approach, one can verify not only
the schedulability, but also rather complex properties linked to logic and timing behaviour of
the distributed system. On the other hand the complexity is a drawback of the model checking
approach in contrast to straightforward equations of the scheduling theory.

The paper is organized as follows: in Section 2 basic behaviour of CAN is modelled
incorporating models of transceiver, bus and application process. Sections 3 provides
verification of timing and logic properties and Section 4 compares this approach with
Tindell's approach on example with periodic and sporadic processes. Section 5 shows a case
study of ABS distributed real-time system.

2. BASIC CONCEPT OF CAN MODEL

The aim of this section is to model CAN by timed automata. Up to the standard the CAN is a
message oriented transmission protocol. Due to the bus topology only one processor can
transmit at a given time. Therefore the message response time (i.e. the length of time from the
release time of the message to the instant when it is completely received) is given not only by
the message length, but also by the access to the shared communication media (so called
Medium Access Control - MAC).

The message priority is given by the message ID. The priorities are laid down during the
system design in the form of corresponding binary values and cannot be changed
dynamically. The identifier with the lowest binary number has the highest priority.

MAC problem is resolved by bit-wise arbitration on the identifiers performed by each station
observing the bus level bit by bit. The resolution is in accordance with the "wired and"
mechanism, by which the dominant level overwrites the recessive level. The transmission is
denied for all processors with recessive transmission and dominant observation. All those
processors automatically become receivers of the message with the highest priority and do not
re-attempt transmission until the bus is idle again.

In contrast to the results achieved in (6) our approach can be simply enlarged to deal with
internal structure of the application processes, timing parameters of different operating
systems, and other timing and logic properties of the real time control system. Therefore it

allows checking the response time, i.e. the actuator to sensor reaction time including not only
the message latency but also the latencies introduced by RTOS and application processes.
Moreover, while using the verification approach, one can verify not only the schedulability,
but also rather complex properties linked to logic and timing behaviour of the distributed
system. The model is composed of timed automata described in the following subsections.

2.1 Bit-wise Arbitration Model

The model of CAN arbitration designed in timed automata (7) is shown in Fig. 3. The model
describes MAC mechanism for one message accessing the bus. The location no_trans_needed
represents a situation when the arbitration model is waiting for trans_request from the
application process. The locations send_bit_to_bus, listen_bus, check_next_bit represent the
arbitration process. The locations request_denied and request_success give result of the
arbitration process.

Arbitration field

Start-of-Frame-Bit (SOF)

CAN Data Frame (length Cm[s])

Control, Data, CRC, ACK etc.

Fig. 2. CAN message frame format

After processing of the Start of Frame Bit (SOF) (see the CAN message frame format in Fig.
2) the first bit from the arbitration filed is sent to the bus (transition send_bit_to_bus →
listen_bus). At the same time the transmitting processor senses the bus and both transmitted
bit (local variable id) and sensed bit (global variable signal) are compared. If they are
identical and the end of the Arbitration field (nsigi states for the length of the Arbitration
field) was not reached the next bit is proceeded (check_next_bit location) when nominal bit-
time elapses (deterministically given as tbit constant). If the sensed bit is not identical to the
transmitted one, the transmission is denied (request_denied location). If they are identical and
the end of the Arbitration field was reached the processor wins the arbitration
(request_success location). The CAN Arbitration model includes the information about the
duration of each bit-time given by invariant t <= tbit in listen_bus location and guards t>=tbit,
t>=0 on outgoing transitions. When tbit is not deterministic, i.e. tbit is bounded on interval
〈tbit_l,tbit_u〉, then the duration of each bit-time given by invariant t <= tbit_u and guard
t>=tbit_l.

send_bit_to_bus

listen_bus
t<=tbit

check_next_bit

request_denied request_success

no_trans_needed

signal[i]:=id[i]*signal[i], t:=0

t>=tbit, i<(nsigi-1), id[i]==signal[i]

t>=0, id[i]!=signal[i] t>=tbit, i==(nsigi-1), id[i]==signal[i]

trans_request?

i:=i+1

Fig. 3 Arbitration model (in UPPAAL like notation)

2.2 Transceiver Model

Above explained bit-wise arbitration is a part of the transceiver model.
The implementation of the complete transceiver model is depicted in Fig. 4, and its
interconnection with other automata is shown in Fig. 6. It is composed of the three sections:

• the arbitration section described already in Fig. 3
• synchronisation section (waiting_for_free_bus → send_bit_to_bus transition) that is

used to synchronize all transmitting processors prior to arbitration (this part realises
broadcast communication) and

• data transmission section given by trans_section, trans_section_finished and
trans_finished locations.

The function of transceiver is the following: after receiving the transmission request, the
processor is in the waiting state (waiting_for_free_bus) until the bus is free. Bus becomes
idle, the arbitration processes start (synchronization by urgent broadcast_synch channel). If
the transmission was denied (trans_denied location), the transmission request is immediately
repeated and the processor is waiting for free bus again (waiting_for_free_bus location).
Otherwise the processor’s message is sent. The duration of message is given by deterministic
time Cm. When the transmission is finished (trans_section_finished) the bus becomes idle
(bus_trans_finished channel) and the application process is informed about the end of
transmission (trans_compl_status channel).

send_bit_to_bus

listen_bus
t<=tbit

check_next_bit

request_denied request_success

trans_begun
t <= Cm

no_trans_needed

trans_section_finished

trans_finished

waiting_for_free_bus

signal[i]:=id[i]*signal[i], t:=0

t>=tbit, i<(nsigi-1),
id[i]==signal[i]

t>=tbit,
id[i]!=signal[i]

t>=tbit,
i==(nsigi-1),
id[i]==signal[i] t:=0

i:=i+1

trans_vote++,
t_response_time := 0

trans_request?

t >= Cm

bus_trans_finished!
signal[0]:=1, signal[1]:=1, signal[2]:=1

trans_compl_status!

i:=0
bus_broadcast_chan?

trans_vote++,
t_response_time := 0

Fig. 4 Transceiver model

2.3 Bus Model

Fig. 5 depicts the physical bus model. The model is in idle location when there is no activity
on the bus and it is in busy location when any processor transmits. The trans_vote global
variable is used to detect that at least one processor is willing to start the transmission. If this
is the case than the global synchronization is realized via bus_broadcast_chan from the bus
model.

idle

busy

bus_trans_finished?
trans_vote>0
bus_broadcast_chan!
trans_vote:=0

Fig. 5 Bus model

2.4 Application Process Model

As seen from Fig. 6 the case study assumes 4 processors to be connected via CAN. Each
processor is running one application process transmitting the messages of the same identifier.
The application processes 1, 2, and 3 are periodic processes transmitting messages with
identifier 1, 2, and 3 respectively. The application process 4 is a sporadic process transmitting
the lowest priority message with identifier 4.

application
process 1

transmiter 1

bus

application
process 2

transmiter 2

application
process 3

transmiter 3

�

processor 1

application
process 4

transmiter 4

CHANNEL LEGEND

� - trans_request

� - trans_finished_ack

� - bus_trans_finished

� - bus_broadcast_chan

�

� �

� �

� �

� �

� �

� �

� �

processor 2 processor 3 processor 4

Fig. 6 Case study system configuration

The periodic application process, with period Tm, is depicted in Fig. 7. Afterwards each
message is delayed by an operating system delay – the time between zero and Ji (called jitter
in (6)). Then the transmission request is done by trans_request channel. When the message is
transmitted the process is informed by trans_compl_status channel. Location
no_transmission_activity represents a situation when the process does not perform
transmission, i.e. it performs for example computations. Location init_location starts the first
task period, delayed by time between zero and Tm in order to represent the phase shift of the
task.

no_trans_activity
t_period<=Tm

message_queueing
t_jitter <= Jm

transmission

trans_finished

init_location
t_period<=Tm

t_period == Tm

t_period := 0,
t_jitter := 0,
t_response_time := 0

t_jitter >= 0
t_jitter:=0

trans_request !
trans_compl_status ?

t_response_time := 0
t_period:=0,
t_jitter:=0,
t_response_time := 0

t_period>=0

Fig. 7 Periodic application process model

The sporadic process model is depicted in Fig. 8. Locations no_trans_activity_1 and
no_trans_activity_2 represent a situation when the process does not perform any transmission.
The process resides an arbitrary time in location no_trans_activity_1, then the transmission
request is generated and when the message is transmitted the process is informed by
trans_compl_status channel, and then the process has no influence on the bus. Local variable
t_response_time in both models is used in properties to be verified.

no_trans_activity_1

transmission

trans_finished

no_trans_activity_2

trans_request!
t_response_time := 0

trans_compl_status?

t_response_time := 0

Fig. 8 Sporadic application process model

3. VERIFICATION OF THE MODEL

The section presents the case study with periodic and sporadic processes including
comparison with Tindell's approach (assuming 125kbps baud rate).

Timing and logical properties to be verified can be for example the following ones:

1. Is the system deadlock free?
2. Is there any state in which processor 1 and processor 2 are in the data transmission

section?
3. Is there any situation in which the highest priority message does not win the

arbitration?
4. Are all periodic messages transmitted prior to their deadlines?
5. What is the worst-case response time Rm of the message with identifier m (for m=1, 2

or 3)?

These properties are formulated in the temporal logic based formalism used in the UPPAAL
verification tool UPPAAL (7) as follows:

1. A � (not deadlock)
2. E ◊ (Transceiver_1.request_success and Transceiver_2.request_success)
3. E ◊ (Transceiver_1.request_denied)
4. A � (Process_m.trans_finished) ⇒ (Process_m.t_response_time < Deadline)
5. A � (Process_m.trans_finished) ⇒ (Process_m.t_response_time < Rm)

The verification results of timed automata tool are as follows:

1. Property is satisfied
2. Property is not satisfied
3. Property is not satisfied
4. See the section bellow
5. Rm found by iteration (using bisection) see the section bellow

4. COMPARISON WITH TRADITIONAL APPROACH

In this section we assume the configuration depicted in Fig. 6 where each processor is running
one application process transmitting one type of message (the message ID is equal to the
application ID is equal to the processor ID). Table 1. shows parameters of three periodic and
one sporadic process. The aim of the case study is twofold:

• to verify whether the response time satisfies a given deadline of the message
(corresponding to property 4)

• to find the worst-case response time Rm iteratively by repeating the verification for
different values of deadline (corresponding to property 5).

Msg.ID Type Per. Tm [µsec] Deadline [µsec] Cm [µsec]

1 Periodic 2000 2000 504
2 Periodic 3000 3000 504
3 Periodic 5000 4000 504
4 Sporadic - - 1040

Table 1: Process parameters table

Table 2. shows verification results of the experiment related to property 4 and 5 without the
operating system delay. The response time of each periodic message is shorter then
corresponding deadline assuming also relatively long sporadic message.

Message ID Jm formula 4 result Rm
1 0 Satisfied 1544
2 0 Satisfied 2048
3 0 Satisfied 3056
4 - - -

Table 2: Results of the experiment related to property 4 and 5

Table 3. shows results of the experiment related to property 4 and 5 with the operating system
delay Jm.

Message ID Jm formula 4 result Rm
1 456 Satisfied 2000
2 0 Satisfied 2552
3 0 Satisfied 3056
4 - - -

Table 3: Results of the experiment related to property 4 and 5 with the operating system
delay

Values of Rm in tables 2., 3. are identical to those calculated by iterative algorithm (6) based
on equation

��� ��������

where

� ����� �
� � ��� �� �

�
��� � ��	�	

� �

� �

The term Bm presents the longest time that the given message m can be delayed by lower
priority messages, the τbit is the bit time of the bus. The set hp(m) is the set of messages of
higher priority then message m.

5. CASE STUDY

This case study is example of distributed system containing timed automata models, including
the CAN model, the RT operating system model (3) and the Anti-lock Brake System (13)
realised as application process model (see Fig. 9.). The system consists of two processors (i.e.
MCUs) with pre-emptive RTOS (e.g. OSEK), communicating via CAN. The first processor
(see Fig. 12.), connected to the brake pedal (see Fig. 10), detects the pedal position and
transmits corresponding messages to the second processor. The second one (see Fig. 15)
acquires information about acceleration/deceleration from an acceleration sensor, it receives
messages from the first processor, and calculates and accomplishes a control action following
rules of ABS.

Processor 1 Processor 2

CAN bus

in
p

u
ts

in
p

u
ts

o
u
tp

u
ts

brakes

acc.sensorbrake pedal

CAR

Environment

RTCS

Fig. 9. Structure of the distributed system - ABS control

The timed automaton in Fig. 11 models typical situation - the pedal is pressed and then it is
released after some undefined time. Model consists of three locations. Variable BPPEvent is
set when the pedal is pressed (bPedalInit → bPedalPressed) and variable BPREvent is set
when when it is released (bPedalPressed → bPedalReleased). Variable BPPEvent is read by
read by a timed automaton model of Task1 (see Fig. 13) and variable BPREvent is read by
read by a timed automaton model of Task2 (see Fig. 14).

pedal pressed

pedal released

Fig. 10. Two state brake pedal

bPedalInit

bPedalPressed

bPedalReleased

BPPEvent:=1,
tBrakeActivityDelay:=0

BPREvent:=1

Fig. 11. Brake pedal model

Processor 1

CAN transmitter
in

p
u

ts

o
u
tp

u
ts

RTOS Core

Task 2

Task 1

CAN bus

Alarm 1

Alarm 2
Scheduler other

Fig. 12. Processor 1 structure

The model of the first processor is described in Fig. 12. The model consists of two automata,
modelling the application tasks (Task1, Task2) periodically triggering the inputs, group of
automata modelling RTOS including pre-emptive scheduler and periodic alarms (3), and
group of automata modelling CAN as explained in previous sections. As shown below, the
first task detects if the brake pedal is pressed and the second one if the pedal is released.

Task1RTOS1 () {
 // send message when the pedal is pressed
 if (BPPEvent) sendMsg(PedalPressed);
 // otherwise terminate the task - wait for the next activation
 TerminateTask();
};

Task2RTOS1 () {
 // send message when the pedal is released
 if (BPPEvent) sendMsg(PedalReleased);
 // otherwise terminate the task - wait for the next activation
 TerminateTask();
};

Timed automaton model of Task1 is depicted in Fig. 13. Task1 becomes ready (location
Ready1) when it is triggered by an alarm (variable nActivateBPPMT and channel wQuch) and
further it is executed (location Comp1) when it is the highest priority task in the OS queue
(array Q1). if statement (location Comp1) has execution time bounded by its lower (constant

L1) and upper bound (constant U1). When BPPevent is not set then the task terminates.
Otherwise sendMsg function (locations Waiting, Ready2, Comp2), with execution time
bounded by its lower (constant L2) and upper bound (constant U2), is executed. Similarly the
timed automaton model of Task2 is depicted in Fig. 14.

Susspended

Ready1

Comp1
w<=U1

Waiting

Ready2

Comp2
w<=U2

nActivatedBPPMT>0
wQuch1!
nActivatedBPPMT--,
Q1[wQ1]:=ID,
BPPMTisSuspended:=0

Free1==1, Q1[rQ1]==ID
Urg1!

w:=0, Free1:=0, nQ1--,
rQ1:=(rQ1<sizeQ1-1?rQ1+1:0)

w>=L1,
BPPEvent==1

w>=L1, BPPEvent==0
Free1:=1,
BPPMTisSuspended:=1

P1[ID]<P1[Q1[rQ1]]
wQch1!
Q1[wQ1]:=ID, Free1:=1

Free1==1, Q1[rQ1]==ID
Urg1!

w:=0, Free1:=0, nQ1--,
rQ1:=(rQ1<sizeQ1-1?rQ1+1:0)

P1[ID]>=P1[Q1[rQ1]]
w:=0

trans_request_1!
Free1:=1,
BPPMTisSuspended:=1,
BPPEvent:=0

w>=L2

Fig. 13. Timed automaton model of Task1

Susspended

Ready1

Comp1
w<=U1

Waiting

Ready2

Comp2
w<=U2

nActivatedBPRMT>0
wQuch1!
nActivatedBPRMT--,
Q1[wQ1]:=ID,
BPRMTisSuspended:=0

Urg1!
Free1==1, Q1[rQ1]==ID,
!(BPPMTisSuspended==1 &&
 nActivatedBPPMT>0)
w:=0, Free1:=0, nQ1--,
rQ1:=(rQ1<sizeQ1-1?rQ1+1:0)

w>=L1,
BPRMDEvent==1

P1[ID]<P1[Q1[rQ1]]
wQch1!
Q1[wQ1]:=ID, Free1:=1

Urg1!
Free1==1, Q1[rQ1]==ID,
!(BPPMTisSuspended==1 &&
 nActivatedBPPMT>0)
w:=0, Free1:=0, nQ1--,
rQ1:=(rQ1<sizeQ1-1?rQ1+1:0)

trans_request_2!
Free1:=1,
BPRMTisSuspended:=1,
BPREvent:=0

w>=L2

w>=L1, BPRMDEvent==0
Free1:=1,
BPRMTisSuspended:=1

P1[ID]>=P1[Q1[rQ1]]
w:=0

Fig. 14. Timed automaton model of Task2

Processor 2

in
p

u
ts

o
u
tp

u
ts

Task ABS

CAN bus

RTOS Core

Alarm 1
Scheduler other

CAN transmitter

Fig. 15. Processor 2 structure

The second processor, depicted in the Fig. 15, includes TaskABS which receives the messages
(the pedal position), it reads local input (acceleration sensor), it calculates ABS controller and
accomplishes a control action (brake shoes). When braking (variable BPPMEvent ==1 in Fig.
16), the ABS controller is looking for decelerations in the wheel that are out of the ordinary
(guard acceleration <= MAXdec). Right before wheel locks up, it will experience a rapid
deceleration. If left unchecked, the wheel would stop much more quickly than any car could.
The ABS controller knows that such a rapid deceleration is impossible, so it reduces the

pressure to that brake (location brake_shoes_released) until it sees an acceleration (guard
acceleration > 0), then it increases the pressure until it sees the deceleration again. It can do
this very quickly, before the tire can actually significantly change speed. The result is that the
tire slows down at the same rate as the car, with the brakes keeping the tires very near the
point at which they will start to lock up. Corresponding detailed models (in UPPAAL
notation) of ABSTask, brake shoes and acceleration sensor are depicted in Fig. 17., Fig. 18.
and Fig. 19.

idle

BPPMEvent==1

brake_shoes_pressed

brake_shoes_released

acceleration<=decMAXacceleration>0

BPRMEvent==1

Fig. 16. ABS controller state diagram

Susspended

Ready1

Comp12
w<=U1+U2

Waiting1

Ready2

CompCase2
w<=Uc

Comp78
w<=U7+U8

Waiting2

Ready3

Comp34
w<=U3+U4

CompCase1
w<=Uc

CompCase3
w<=Uc

Comp56
w<=U5+U6

nActivatedABS>0
wQuch2!
nActivatedABS--,
Q2[wQ2]:=ID

w>=L1+L2

w:=0
brake_shoes_press!

P2[ID]<P2[Q2[rQ2]]
wQch2!
Q2[wQ2]:=ID, Free2:=1

Free2==1, Q2[rQ2]==ID
Urg2!

w:=0, Free2:=0, nQ2--,
rQ2:=(rQ2<sizeQ2-1?rQ2+1:0)

P2[ID]>=P2[Q2[rQ2]] w:=0
w>=Uc,
BPRMDEvent==1
w:=0

w:=0, Free2:=1

w>=L7+L8
brake_shoes_release!

Urg2!
Free2==1, Q2[rQ2]==ID
w:=0, Free2:=0, nQ2--,
rQ2:=(rQ2<sizeQ2-1?rQ2+1:0)

w>=Lc,
BPPMDEvent==1
w:=0

w>=Lc,
acceleration<=MAXdec,
BPRMDEvent!=1w:=0

w>=L3+L4

w:=0
brake_shoes_release!

P2[ID]<P2[Q2[rQ2]]
wQch2!
Q2[wQ2]:=ID, Free2:=1

Urg2!
Free2==1, Q2[rQ2]==ID
w:=0, Free2:=0, nQ2--,
rQ2:=(rQ2<sizeQ2-1?rQ2+1:0)

w>Uc,
acceleration>0
w:=0

w:=0

w>=L5+L6
brake_shoes_press!

w>Uc,
acceleration>MAXdec,
BPRMDEvent!=1
w:=0

w>Uc,
acceleration<=MAXdec
w:=0

P2[ID]>=P2[Q2[rQ2]] w:=0

w:=0, Free2:=1

w>=Lc,
BPPMDEvent==0

Fig. 17. Timed automaton model of ABSTask algorithm

no_brake_activity

brake_shoes_active

brake_shoes_press?brake_shoes_release?
tBrakeActivityDelay:=0

Fig. 18. Timed automaton model of
brakes

NoAcceleration

Deceleration

CriticalDeceleration

Acceleration

acceleration:=Acc acceleration:=noAcc

acceleration:=oMAXdec

acceleration:=bMAXdecacceleration:=oMAXdec

acceleration:=noAcc

Fig. 19. Timed automaton model of
acceleration sensor

5.1 Verification

The system parameters are shown in Table 4, Table 5 and Table 6 for this case study.

Task name Task period [µsec] U1,U2,L1,L2 [µsec]
Task1 5000 1
Task2 5000 1

Table 4: Processor 1 RTOS system parameters

Task name Task period [µsec] U1...U8, L1...L8 [µsec]
TaskABS 5000 1

Table 5: Processor 2 RTOS system parameters

Message ID Cm [µsec] bit time [µsec]
1 504 8
2 504 8

Table 6: Message Parameters

Timing and logical properties to be verified can be for example the following ones:

1. Is the system deadlock free?
2. When the pedal was pressed and not released, the PedalReleased message would not

be received.
3. Message PedalPressed is received at least 2ms after the pedal has been pressed.
4. What is the worst case receive time for message PedalPressed?
5. Will be ever the ABS active?
6. What is the worst-case time for activation of brake shoes?

These properties are formulated in the temporal logic based formalism used in the UPPAAL
verification tool UPPAAL (7) as follows:

1. A� not deadlock
2. (BrakePedal.bPedalPressed and not BrakePedal.bPedalStillReleased) --> (not

BPRMDEvent==1)
3. A� (tBrakeActivityDelay>2000 and not BrakePedal.bPedalReleased) imply

(BPPMDEvent==1)
4. A� (tBrakeActivityDelay>X and not BrakePedal.bPedalReleased) imply

(BPPMDEvent==1)
5. E◊ (R2T1.Sheduled2)
6. A� (Brake.brake_shoes_active and not BrakePedal.bPedalReleased and not

BrakePedal.bPedalStillReleased) imply (tBrakeActivityDelay<X)

The verification results of timed automata tool are as follows:

1. Property is satisfied
2. Property is satisfied
3. Property is not satisfied
4. X=5507 - found by iteration (using bisection)
5. Property is satisfied
6. X=10007 - found by iteration (using bisection)

6. CONCLUSION AND FUTURE WORK

This article shows a way of communication protocol modelling by timed automata. Model of
entire distributed application can be obtained simply by interconnection with real-time
operation system (3) and application software automata. The resulting model is suitable for
verification of desired/undesired states in the time critical distributed applications like
automotive IT based on CAN and OSEK. Due to this modular approach, the model is simply
extensible e.g. to TT CAN.

Verification results of the CAN model can be directly compared to the results achieved by (6),
when obtaining identical results from both approaches (try to compute Rm for values in Tables
2,3). Moreover our approach can be simply extended to deal with internal logic structure of
the application processes, processor sharing managed by operating system etc. On the other
hand, high complexity is a drawback of the model checking approach in contrast to quite
straightforward equations of the scheduling theory. For example verification of system
deadlock, which is the most time consuming among tested properties, took 20 minutes for
parameters in Table 1. on AMD-Athlon XP 1,8 GHz computer with 1,3 GB RAM.

Therefore our future work is related to hierarchical modelling and verification of distributed
systems, i.e. parts of the system will be modelled and their timing parameters will be verified.
Consequently the part will be replaced by a location with upper and lower bound on its timing
parameters and it will be used for verification of upper layer. This approach certainly gives a
little pessimistic result, but when tailored to the application logic, then it can be quite
practical.

7. REFERENCE

(1) Rajeev Alur and David L. Dill, “A theory of timed automata”, Theoretical Computer

Science (vol 126) pages: 183—235, 1994

(2) Joost-Pieter Katoen, “Concepts, Algorithms, and Tools for Model Checking“, IMMD,

1999

(3) Libor Waszniowski and Zdenek Hanzalek, “Analysis of Real-Time Operating System

Based Applications“, FORMATS 2003, 2003

(4) James C. Corbett, “Timing Analysis of {A}da Tasking Programs, IEEE Transactions on

Software Engineering“, (vol 22) pages: 461—483, 1996

(5) B. Berard and M. Bidoit and A. Finkel and F. Laroussinie and A. Petit and L. Petrucci

and P. Schnoebelen, “Systems and Software Verification: Model-Checking Techniques
and Tools“, (vol 7), Springer, 2001

(6) K. Tindell and A. Burns, “Guaranteed Message Latencies for Distributed Safety

Critical Hard Real-Time Networks“, 1994

(7) Paul Pettersson and Kim Guldstrand Larsen, “UPPAAL2k“, 2000

(8) K. Etschberger and Roman Hofmann and Joachim Stolberg and Christian Schlegel and

Stefan Weiher, “Controller Area Network: Basics, Protocols, Chips and Applications“,
IXXAT Automationpress, 2001

(9) M.H. Klein and T. Ralya and B. Pollak and R. Obenza and M. Gonza and L. Harbour,

“Practitioners Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis
for Real Time Systems“, (vol), Kluwer Academic Publishers, 1993

(10) Manfred Geischeder and Klaus Gresser and Adam Jankowiak and Jochem Spohr and

Andree Zahir and Markus Schwab and Erik Svenske and Maxim Tchervinsky and Ken
Tindell and Gerhard Göser and Carsten Thierer and Winfried Janz and Volker
Barthelmann, OSEK/VDX: Specification 2.1, 2000

(11) G.C. Buttazzo, “Hard Real-Time computing systems“, Kluwer Academic Publishers,

1997

(12) Jane W.S. Liu, “Real-Time Systems“, Prentice Hall, 2000

(13) Nice Kerim, “How Anti lock Brakes works“, http://www.howstuffworks.com

