
TIMED AUTOMATA APPROACH TO CAN
VERIFICATION

Jan Krakora and Zdenek Hanzalek

Czech Technical University in Prague,
Faculty of Electrical Engineering,

Department of Control Engineering
Karlovo namesti 13, Prague 2, 121 35, Czech Republic

{krakorj,hanzalek}@fel.cvut.cz

Abstract:
This article deals with verification of real time distributed system focusing
on CAN model by timed automata and specification of verified properties by
temporal logic. Such system, based on several CPUs, consists of an application
SW running under real-time operating system (e.g. OSEK) and using standard
broadcast communications based on the Controller Area Network (CAN). The
crucial problem is to verify both, the time properties (e.g. message response time)
and logic properties (e.g. deadlock) of such complex applications. The approach
presented in this article is based on the modeling the discrete event system by
Timed Automata and on verification by model checking tool (e.g. UPPAAL). In
contrast to classical approaches dealing either with shared bus (guarantee message
latencies approached by Tindell and Burns) or shared processor (rate monotonic
analysis), our approach deals with both kinds of resources.

Keywords: Controller Area Network, Real-time, Timed automata, Medium
Access Control

1. INTRODUCTION

Let us assume the distributed real time control
system consisting of application processes (de-
signed by application developer) running under
Real-Time Operating System (RTOS e.g. OSEK
(Geischeder et al., 2000)) while using several
processors interconnected via standard broadcast
communication based on the Controller Area Net-
work (CAN) (Etschberger et al., 2001). Struc-
ture of the application under consideration is
depicted in Figure 1. The crucial problem is to
verify both, the time properties (e.g. message re-
sponse time, schedulability of periodic processes,
response time) and logic properties (e.g. deadlock,
mutual exclusion, priority based access) of the
applications incorporating two kinds of shared

resources - the processor and the bus. Classical
approaches deal separately either with the proces-
sor sharing (studied for example by RMS (Klein
et al., 1993)) or with the bus sharing (e.g. CAN
message latency studied by Tindell (Tindell and
Burns, 1994)).

The task schedulability on monoprocessor and
multiprocessor systems is widely studied subject
((Buttazzo, 1997),(Liu, 2000)). For example Rate
Monotonic Scheduling (RMS) can be used to guar-
antee schedulability, when the application con-
sisting of periodic processes is running on mono-
processor with priority based preemptive kernel
and the processes have their deadlines at the end
of period. RMS assigns fixed priorities to the
processes according to their request rate (inverse



Processor 1

Application
processes

RTOS

sensor
control

actuator
control

CAN bus

Processor 2

RTOS

Processor 3

RTOS

car environment

RTCS

Application
processes

Application
processes

Fig. 1. Real time control system structure

to their period deadline), therefore the highest
priority is assigned to the processes with highest
frequency. Schedulability of such processes can
be verified using Utilization bound theorem or
Completion time theorem.

Prediction of the worst-case message latencies
for CAN was presented by Tindell and Burns
in (Tindell and Burns, 1994). This method is a
direct application of the scheduling theory where
the common bus is considered as shared resource.
In similar way, CAN operates the fixed prior-
ity scheduling algorithm and authors assume the
rate monotonic priority assignment. The message
worst case response time is influenced not only by
its length but also by the maximal length of one
lower priority message since a high priority mes-
sage cannot interrupt the message that is already
transmitted. Moreover due to the priority based
bus arbitration method the message worst-case
response time is influenced by all higher priority
messages, each of them considering their occur-
rence ratio.

This article presents an alternative approach
based on model checking while using timed au-
tomata (Alur and Dill, 1994) and temporal logics
(Katoen, 1999). Using this approach we model
parts of the distributed system (application SW,
operating system and communication bus) by au-
tomata. The automata use synchronization prim-
itives enabling their interconnection. Please refer
to (Berard et al., 2001) on issues related to im-
plementation and complexity of verification algo-
rithms.

Modeling and verification of concurrent processes
sharing one processor have been shown in
(Waszniowski and Hanzalek, 2003), (Corbett,
1996). These works incorporate priority based
preemptive and non-preemptive scheduling, inter-
task communication primitives and interrupt han-
dling. These models can be directly combined with
CAN model shown in this article while using syn-
chronization primitives. That is why the operating
system part is neglected and one application pro-

cesses per one processor is assumed in this paper.
Verification of the CAN model developed here can
be directly compared to the results in (Tindell
and Burns, 1994) and it can be simply enlarged to
deal with internal structure of the application pro-
cesses, timing parameters of different operating
systems, sporadic processes etc. Moreover, while
using the model checking approach, one can verify
not only the schedulability, but also rather com-
plex properties linked to logic and timing behavior
of the distributed system. On the other hand the
complexity is a drawback of the model checking
approach in contrast to straightforward equations
of the scheduling theory.

The paper is organized as follows: in Section 2
basic behavior of CAN is modeled incorporating
models of transceiver, bus and application pro-
cess. Sections 3 provides verification of timing and
logic properties and Section 4 shows a case study
with periodic and sporadic processes including
comparison with Tindell’s approach.

2. BASIC CONCEPT OF CAN MODEL

The aim of this section is to model CAN by
timed automata. Up to the standard the CAN is
a message oriented transmission protocol. Due to
the bus topology only one processor can transmit
at a given time. Therefore the message response
time (i.e. the length of time from the release
time of the message to the instant when it is
completely received) is given not only by the
message length, but also by the access to the
shared communication media (so called Medium
Access Control - MAC).

The message priority is given by the message ID.
The priorities are laid down during the system
design in the form of corresponding binary values
and cannot be changed dynamically. The identifier
with the lowest binary number has the highest
priority.

MAC problem is resolved by bit-wise arbitration
on the identifiers performed by each station ob-
serving the bus level bit by bit. The resolution is in
accordance with the ”wired and” mechanism, by
which the dominant level overwrites the recessive
level. The transmission is denied for all processors
with recessive transmission and dominant obser-
vation. All those processors automatically become
receivers of the message with the highest priority
and do not re-attempt transmission until the bus
is idle again.

In contrast to the results achieved in (Tindell
and Burns, 1994) our approach can be simply
enlarged to deal with internal structure of the
application processes, timing parameters of dif-
ferent operating systems, and other timing and

2



logic properties of the real time control system.
Therefore it allows to check the response time, i.e.
the actuator to sensor reaction time including not
only the message latency but also the latencies
introduced by RTOS and application processes.
Moreover, while using the verification approach,
one can verify not only the schedulability, but
also rather complex properties linked to logic and
timing behavior of the distributed system. The
model is composed of timed automata described
in the following subsections.

2.1 Bit-wise arbitration model

The model of CAN arbitration designed in timed
automata (Pettersson and Larsen, 2000) is shown
in Figure 3. The model describes MAC mechanism
for one message accessing the bus. The location
no trans needed represents a situation when the
arbitration model is waiting for trans request
from the application process. The locations
send bit to bus, listen bus, check next bit rep-
resent the arbitration process. The locations
request denied and request success give result of
the arbitration process.

Arbitration field

Start-of-Frame-Bit (SOF)

CAN Data Frame (length Cm[s])

Control, Data, CRC, ACK etc.

Fig. 2. CAN message frame format

After processing of the Start of Frame Bit (SOF)
(see the CAN message frame format in Figure 2)
the first bit from the arbitration filed is sent to the
bus (transition send bit to bus → listen bus). At
the same time the transmitting processor senses
the bus and both transmitted bit (local variable
id) and sensed bit (global variable signal) are
compared. If they are identical and the end of the
Arbitration field (nsigi states for the length of
the Arbitration field) was not reached the next
bit is proceeded (check next bit location) when
nominal bit-time elapses (deterministically given
as tbit constant). If the sensed bit is not iden-
tical to the transmitted one, the transmission
is denied (request denied location). If they are
identical and the end of the Arbitration field
was reached the processor wins the arbitration
(request success location). The CAN Arbitration
model includes the information about the dura-
tion of each bit-time given by invariant t ≤ tbit in
listen bus location and guards t ≥ tbit, t ≥ 0 on
outgoing transitions. When tbit is not determin-
istic, i.e. tbit is bounded on interval 〈tbitl, tbitu〉
then the duration of each bit-time given by invari-
ant t ≤ tbitu and guard t ≥ tbitl.

send_bit_to_bus

listen_bus
t<=tbit

check_next_bit

request_denied request_success

no_trans_needed

signal[i]:=id[i]*signal[i], t:=0

t>=tbit, i<(nsigi-1), id[i]==signal[i]

t>=0, id[i]!=signal[i] t>=tbit, i==(nsigi-1), id[i]==signal[i]

trans_request?

i:=i+1

Fig. 3. Arbitration model (in UPPAAL like nota-
tion)

2.2 Transceiver model

Above explained bit-wise arbitration is a part of
the transceiver model. The implementation of the
complete transceiver model is depicted in Figure
4, and its interconnection with other automata is
shown in Figure 6. It is composed of the three
sections:

(1) the arbitration section described already in
Figure 3

(2) synchronisation section
(waiting for free bus → send bit to bus
transition) that is used to synchronize all
transmitting processors prior to arbitration (
this part realises broadcast communication)
and

(3) data transmission section given by
trans section, trans section finished and
trans finished locations.

The function of transceiver is the following: after
receiving the transmission request, the processor
is in the waiting state (waiting for free bus)
until the bus is free. Bus becomes idle, the
arbitration processes start (synchronization by
urgent broadcast synch channel). If the trans-
mission was denied (trans denied location), the
transmission request is immediately repeated
and the processor is waiting for free bus again
(waiting for free bus location). Otherwise the
processors message is sent. The duration of mes-
sage is given by deterministic time Cm. When the
transmission is finished (trans section finished)
the bus becomes idle (bus trans finished chan-
nel) and the application process is informed about
the end of transmission (trans compl status chan-
nel).

2.3 Bus model

Figure 5 depicts the physical bus model. The
model is in idle location when there is no activity
on the bus and it is in busy location when any
processor transmits. The trans vote global vari-
able is used to detect that at least one processor

3



send_bit_to_bus

listen_bus
t<=tbit

check_next_bit

request_denied request_success

trans_begun
t <= Cm

no_trans_needed

trans_section_finished

trans_finished

waiting_for_free_bus

signal[i]:=id[i]*signal[i], t:=0

t>=tbit, i<(nsigi-1), 
id[i]==signal[i]

t>=tbit, 
id[i]!=signal[i]

t>=tbit, 
i==(nsigi-1), 
id[i]==signal[i] t:=0

i:=i+1

trans_vote++,
t_response_time := 0

trans_request?

t >= Cm

bus_trans_finished!
signal[0]:=1, signal[1]:=1, signal[2]:=1

trans_compl_status!

i:=0
bus_broadcast_chan?

trans_vote++,
t_response_time := 0

Fig. 4. Transceiver model

is willing to start the transmission. If this is the
case than the global synchronization is realized
via bus broadcast chan from the bus model.

idle

busy

bus_trans_finished?
trans_vote>0
bus_broadcast_chan!
trans_vote:=0

Fig. 5. Bus model

2.4 Application process model

As seen from Figure 6 the case study assumes 4
processors to be connected via CAN. Each pro-
cessor is running one application process trans-
mitting the messages of the same identifier. The
application processes 1, 2, and 3 are periodic pro-
cesses transmitting messages with identifier 1, 2,
and 3 respectively. The application process 4 is a
sporadic process transmitting the lowest priority
message with identifier 4.

The periodic application process, with period Tm,
is depicted in Figure 7. Afterwards each mes-
sage is delayed by an operating system delay -
the time between zero and Ji (called jitter in
(Tindell and Burns, 1994)). Then the transmis-
sion request is done by trans request channel.
When the message is transmitted the process is in-
formed by trans compl status channel. Location
no transmission activity represents a situation
when the process does not perform transmission,
i.e. it performs for example computations. Lo-
cation init location starts the first task period,
delayed by time between zero and Tm in order to
represent the phase shift of the task.

no_trans_activity
t_period<=Tm

message_queueing
t_jitter <= Jm

transmission

trans_finished

init_location
t_period<=Tm

t_period == Tm

t_period := 0,
t_jitter := 0, 
t_response_time := 0

t_jitter >= 0
t_jitter:=0

trans_request !
trans_compl_status ?

t_response_time := 0
t_period:=0, 
t_jitter:=0, 
t_response_time := 0

t_period>=0

Fig. 7. Periodic application process model

The sporadic process model is depicted in Figure
8. Locations no trans activity 1 and
no trans activity 2 represent a situation when
the process does not perform any transmission.
The process resides an arbitrary time in lo-
cation no trans activity 1, then the transmis-
sion request is generated and when the mes-
sage is transmitted the process is informed by
trans compl status channel, and then the pro-
cess has no influence on the bus. Local variable
t response time in both models is used in prop-
erties to be verified.

no_trans_activity_1

transmission

trans_finished

no_trans_activity_2

trans_request!
t_response_time := 0

trans_compl_status?

t_response_time := 0

Fig. 8. Sporadic application process model

4



application 
process 1

transmiter 1

bus

application 
process 2

transmiter 2

application 
process 3

transmiter 3

�

processor 1

application 
process 4

transmiter 4

CHANNEL LEGEND

� - trans_request

� - trans_finished_ack

� - bus_trans_finished

� - bus_broadcast_chan

�

� �

� �

� �

� �

� �

� �

� �

processor 2 processor 3 processor 4

Fig. 6. Case study system configuration

3. VERIFICATION OF THE MODEL

The section presents the case study with periodic
and sporadic processes including comparison with
Tindell’s approach (assuming 125kbps baudrate).

Table 1. Process parameters table

Msg.ID Type Period Tm Deadline Cm

[µsec] [µsec] [µsec]

1 periodic 2000 2000 504
2 periodic 3000 3000 504
3 periodic 5000 4000 504
4 sporadic - - 1040

Timing and logical properties to be verified can
be for example the following ones:

(1) Is the system deadlock free?
(2) Is there any state in which processor 1 and

processor 2 are in the data transmission
section?

(3) Is there any situation in which the highest
priority message does
not win the arbitration?

(4) Are all periodic messages transmitted prior
to their deadlines?

(5) What is the worst-case response time Rm of
the message with
identifier m (for m=1, 2 or 3)?

These properties are formulated in the temporal
logic based formalism used in the UPPAAL ver-
ification tool UPPAAL (Pettersson and Larsen,
2000) as follows:

(1) A � (not deadlock)
(2) E � (Transceiver 1.request success and

Transceiver 2.request success)
(3) E � (Transceiver 1.request denied)
(4) A � (Process m.trans finished) ⇒

(Process m.t response time < Deadline)
(5) A � (Process m.trans finished) ⇒

(Process m.t response time < Rm )

The verification results of timed automata tool are
as follows:

(1) Property is satisfied
(2) Property is not satisfied
(3) Property is not satisfied
(4) See the section bellow

(5) Rm found by iteration (using bisection) see
the section bellow

4. CASE STUDY

In this section we assume the configuration de-
picted in Figure 6 where each processor is running
one application process transmitting one type of
message (the message ID is equal to the appli-
cation ID is equal to the processor ID). Table
1 shows parameters of three periodic and one
sporadic process. The aim of the case study is
twofold:

• to verify whether the response time satisfies a
given deadline of the message (corresponding
to property 4)

• to find the worst-case response time Rm

iteratively by repeating the verification for
different values of deadline (corresponding to
property 5).

Table 2. Results of the experiment re-
lated to property 4 and 5

Message ID Jm[µsec] formula 4 result Rm[µsec]

1 0 satisfied 1544
2 0 satisfied 2048
3 0 satisfied 3056
4 - - -

Table 2 shows verification results of the experi-
ment related to property 4 and 5 without oper-
ating system delay . The response time of each
periodic message is shorter then corresponding
deadline assuming also relatively long sporadic
message.

Table 3. Results of the experiment re-
lated to property 4 and 5 with operating

system delay

Message ID Jm[µsec] formula 4 result Rm[µsec]

1 456 satisfied 2000
2 0 satisfied 2552
3 0 satisfied 3056
4 - - -

Table 3 shows results of the experiment related
to property 4 and 5 with operating system delay
(Jm).

5



Values of Rm in tables 2, 3 are identical to those
calculated by iterative algorithm (Tindell and
Burns, 1994) based on equation

Rm = Cm + Jm + wm

where

wm = Bm +
∑

∀j∈hp(m)

⌈
wm + Jj + τbit

Tj

⌉
Cj

The term Bm presents the longest time that the
given message m can be delayed by lower priority
messages, the τbit is the bit time of the bus. The
set hp(m) is the set of messages of higher priority
then message m.

5. CONCLUSIONS AND FUTURE WORK

This article shows a way of communication proto-
col modeling by timed automata. Model of entire
distributed application can be obtained simply
by interconnection with real-time operating sys-
tem (Waszniowski and Hanzalek, 2003) and ap-
plication software automata. The resulting model
is suitable for verification of desired/undesired
states in the time critical distributed applications
like automotive IT based on CAN and OSEK. Due
to this modular approach, the model is simply
extensible to TT CAN.

Verification results of the CAN model can be
directly compared to the results achieved by
(Tindell and Burns, 1994), when obtaining identi-
cal results from both approaches (try to compute
Rm for values in Tables 2 and 3). Moreover our
approach can be simply extended to deal with
internal logic structure of the application pro-
cesses, processor sharing managed by operating
system etc. On the other hand, high complexity
is a drawback of the model checking approach
in contrast to quite straightforward equations of
the scheduling theory. For example verification
of system deadlock, which is the most time con-
suming among tested properties, took 20 minutes
for parameters in Table 1. on AMD-Athlon XP
1,8GHz computer with 1,3GB RAM.

Therefore our future work is related to hierar-
chical modelling and verification of distributed
systems, i.e. parts of the system will be mod-
elled and their timing parameters will be verified.
Consequently the part will be replaced by a loca-
tion with upper and lower bound on its timing
parameters and it will be used for verification
of upper layer. This approach certainly gives a
little pessimistic result, but when tailored to the
application logic, it can be rewarding.

Acknowledgements: This research work has
been supported by the research program
No. J04/98:212300013 ”Decision Making and Con-
trol for Manufacturing” of the Czech Technical
University in Prague and by IST project 35102
OCERA.

REFERENCES

Alur, Rajeev and David L. Dill (1994). A theory of
timed automata. Theoretical Computer Sci-
ence 126(2), 183–235.

Berard, B., M. Bidoit, A. Finkel, F. Laroussinie,
A. Petit, L. Petrucci and P. Schnoebelen
(2001). Systems and Software Verification:
Model-Checking Techniques and Tools. Vol. 7
of ISBN: 3-540-41523-8. Springer.

Buttazzo, G.C. (1997). Hard Real-Time comput-
ing systems. Kluwer Academic Publishers.

Corbett, James C. (1996). Timing analysis of
Ada tasking programs. IEEE Transactions on
Software Engineering 22(7), 461–483.

Etschberger, K., Roman Hofmann, Joachim Stol-
berg, Christian Schlegel and Stefan Wei-
her (2001). Controller Area Network: Basics,
Protocols, Chips and Applications. ISBN: 3-
00-007376-0. IXXAT Automationpress.

Geischeder, Manfred, Klaus Gresser, Adam
Jankowiak, Jochem Spohr, Andree Za-
hir, Markus Schwab, Erik Svenske, Maxim
Tchervinsky, Ken Tindell, Gerhard Gser,
Carsten Thierer, Winfried Janz and Volker
Barthelmann (2000). Osek/vdx: Specification
2.1.

Katoen, Joost-Pieter (1999). Concepts, algo-
rithms, and tools for model checking.

Klein, M.H., T. Ralya, B. Pollak, R. Obenza,
M. Gonza and L. Harbour (1993). Practition-
ers handbook for real-time analysis: Guide to
rate monotonic analysis for real time systems.

Liu, Jane W.S. (2000). Real-Time Systems. Pren-
tice Hall.

Pettersson, Paul and Kim Guldstrand Larsen
(2000). Uppaal2k.

Tindell, K. and A. Burns (1994). Guaranteed mes-
sage latencies for distributed safety critical
hard real-time networks.

Waszniowski, Libor and Zdenek Hanzalek (2003).
Analysis of real-time operating system based
applications. FORMATS 2003.

6


