
Scheduling of Iterative Algorithms on FPGA with Pipelined
Arithmetic Unit

Přemysl Š̊ucha1, Zdeněk Pohl2 and Zdeněk Hanzálek1

1Department of Control Engineering, Faculty of Electrical Engineering
Czech Technical University in Prague

{suchap,hanzalek}@fel.cvut.cz

2 Department of Signal Processing, Institute of Information Theory and Automation
xpohl@utia.cas.cz

Abstract

This paper presents a scheduling tech-
nique for a library of arithmetic loga-
rithmic modules for FPGA illustrated on
a RLS filter for active noise cancella-
tion. The problem under assumption is
to find an optimal periodic cyclic schedule
satisfying the timing constraints. The
approach is based on a transformation
to monoprocessor cyclic scheduling with
precedence delays. We prove that this
problem is NP–hard and we suggest a
solution based on Integer Linear Program-
ming that allows to minimize completion
time. Finally experimental results of
optimized RLS filter are shown.

Keywords: Cyclic scheduling, monopro-
cessor, iterative algorithms, integer linear
programming, FPGA.

1 Introduction

This paper deals with automatic parallelisation of
algorithms (for example the RLS filter) typically
found in control and signal processing applica-
tions. Dynamic properties of these applications
are characterized by their time constants. Due to
Shanon’s theorem the length of the sampling period
needs to be at maximum a half of the shortest
time constant of the system under control. These
applications have natural real–time requirements,
since the algorithm release date is at the beginning
of the sampling period and the deadline is at the
end of the sampling period. Advanced applications
usually require quite complex algorithms typically
given by the set of recurrent equations (e.g. Recur-
sive Least Squares identification used for adaptive
control and filtering).

Such an algorithm can be implemented as a
computation loop performing an identical set of
operations repeatedly. One repetition of the loop
is called an iteration. A parallel implementation of

the loop implies that each operation of the loop
is mapped on a hardware unit at a given time,
therefore the scheduling theory can be used to find
start times of these operations.

Cyclic scheduling deals with a set of operations
(generic tasks) that have to be performed infinitely
often [9]. This approach is also applicable if the
number of loop repetitions is large enough. A
schedule is called nonoverlapped if all operations
belonging to one iteration have to finish before
the next operations of the next iteration can start.
If operations belonging to different iterations can
execute simultaneously, the schedule is called over-
lapped [17]. An overlapped schedule can be more
effective especially if hardware units are pipelined.
The periodic schedule is a schedule of one iteration
that is repeated with a fixed time interval called
period. The aim is then to find a periodic schedule
with a minimum period [9, 15, 7, 8].

If the number of processors is not limited,
a periodic schedule can be build in polynomial
time [9, 7]. For a fixed number of processors
the problem becomes NP–hard [15]. If all tasks
have unit processing times, several special cases
with polynomial time complexity are available [15].
Another approaches are based on heuristics [8, 9, 6]
or approximation list scheduling algorithms [4, 5].
Some solutions are based on branch and bound
techniques or integer linear programming [8, 12, 2,
17, 3, 16].

The hardware architecture under consideration
is based on a library of arithmetic logarithmic
modules implemented in FPGA [14]. This li-
brary contains a pipelined addition/subtraction
unit, which is unique on contrary to many mul-
tiplication/division/square root units. Therefore,
our scheduling problem is different from the ones
presented above.

In this paper, we propose an optimal cyclic
scheduling method based on integer linear pro-
gramming (ILP). The presented solution is based
on a property of the logarithmic arithmetic library

1

allowing to formulate monoprocessor (pipelined ad-
dition/subtraction unit) cyclic scheduling problem
for the set of tasks constrained by the precedence
delays (representing pipelining and processing time
of tasks executed on unlimited number of multi-
plication/division/square root units). Unlike the
most frequent ILP models we suggest the model
where the number of variables does not depend on
the period length.

From the time complexity point of view, the
presented scheduling problem is NP–hard that is
shown in Section 4.

This paper is organized as follows. Section
2 describes the motivation application (an RLS
filter for active noise cancellation) implemented
on FPGA using HSLA (High–Speed Logarithmic
Arithmetic). In Section 3, the Basic Cyclic
Scheduling (BCS) problem is explained assuming
unlimited number of processors. The next Section
presents our original contribution – formulation
of the scheduling problem suited for applications
using HSLA. It is shown that the problem is NP–
hard. Optimal solution of this problem using
iterative calls of ILP is presented in Section 5 and
6. Efficiency of this solution is based on calculation
of BCS finding lower and upper bound of the
schedule period. Section 7 presents the results
– RLS filter automatic parallelisation is derived
as one instance of formulated scheduling problem
(monoprocessor cyclic scheduling with precedence
delays). This chapter includes also resulting filter
parameters, so that our solution is comparable to
other technologies (e.g. DSPs).

2 RLS Filter – Motivation Example

The studied problem is motivated by an application
of RLS (Recursive Least Squares) filter for active
noise cancellation [10] (illustrated in Figure 1).
The filter uses HSLA (High–Speed Logarithmic
Arithmetics), a library of arithmetic logarithmic
modules for FPGA [14]. The logarithmic arith-
metic is an alternative approach to floating–point
arithmetic. A real number is represented as the
fixed point value of logarithm to base 2 of its
absolute value. An additional bit indicates the
sign. Multiplication, division and square root are
implemented as fixed–point addition, subtraction
and right shift. Therefore, they are executed
very fast on a few gates. On the contrary ad-
dition and subtraction require more complicated
evaluation using look–up table with second order
interpolation. Addition and subtraction require
more hardware elements on FPGA, hence only
one pipelined addition/subtraction unit is usually
available for a given application. On the other hand
the number of multiplication, division and square
roots units can be nearly by arbitrary.

RLS filter’s algorithm is a set of equations (see
the inner loop in Figure 11) solved in an inner
and outer loop. The outer loop is repeated for
each input data sample each 1/44100 seconds. The
inner loop iteratively processes the sample up to
the N -th iteration (N is the filer order). The
quality of filtering increases with increasing the
filter order. N iterations of the inner loop need to
be finished before the end of the sampling period
when output data sample is generated and new
input data sample starts to be processed.

The scheduling method shown below applies for
cyclic scheduling on the architectures consisting of
one dedicated processor (like one pipelined addi-
tion/subtraction unit in HSLA) performing a given
set of tasks and arbitrary number of processors
performing disjunctive set of tasks (like multiplica-
tion, division, and square root simply implemented
on separate gates in HSLA). The tasks are con-
strained by precedence relations corresponding to
the algorithm data dependencies. The optimiza-
tion criterion is related to the minimization of the
cyclic scheduling period w (like in an RLS filter
application the execution of the maximum number
of inner loop periods w within a given sampling
period increases the filter quality).

Figure 1: An illustration of active noise cancella-
tion – an adaptive RLS filter estimates parameters
of changing channel in order to reconstruct original
clear sound.

3 Basic Cyclic Scheduling

Operations in a computation loop can be consid-
ered as a set of n generic tasks T = {T1, T2, ..., Tn}
to be performed N times where N is usually very
large. One execution of T labeled with integer
index k ≥ 1 is called an iteration. Let us denote
by 〈i, k〉 the kth occurrence of the generic task Ti,
which corresponds to the execution of statement i
in iteration k. The scheduling problem is to find
a start time si(k) of every occurrence 〈i, k〉 [9].
Figure 2 shows an example of a simple computation
loop with corresponding processing times.

for k=1 to N do
y(k) = (x(k − 3) + 1)2 + a
x(k) = y(k) + b
z(k) = (z(k − 2)− 2)3 + d

end

operation of HSLA proc. time p
+,− 9

∗, /,2 ,
√ 2

Figure 2: An Example of a recurrent loop and
corresponding processing times.

Data dependencies of this problem can be mod-
eled by a directed graph G. Edges eij from the
node i to j is weighted by a couple of integer
constants lij and hij . Length lij is equal to pi, the
processing time of task Ti. In fact, lij represents
minimal distance in clock cycles from a start time
of task Ti to a start time of Tj and it is always
greater than zero. On the other hand, the height
hij specifies a shift of the iteration index related
to the data produced by Ti and consumed by Tj .
Therefore, each edge eij represents the set of N
relation constraints of the type

si(k) + lij ≤ sj(k + hij), ∀k ∈ 〈1, N〉 . (1)

Figure 3 shows the data dependence graph of a
computation loop shown in Figure 2.

The aim of Basic Cyclic Scheduling algorithm
(BCS) [9] is to find a periodic schedule (with a
period w) while minimizing the schedule length
(Cmax). The problem can be formulated as min-
imization of average cycle time (Cmax divided by
k, the number of iterations). When assuming
large number of iterations, the average cycle time
minimization can be formulated as minimization of
w, since

w = lim
k→∞

maxTi∈T (si(k) + pi)
k

. (2)

The scheduling problem is simply solved when
the number of processors is not limited, i.e., it is

Figure 3: An data dependency graph G, represent-
ing operations and data of the computation loop
in Figure 2. Operation power three is realized
as power two and multiplication. The G contains
three cycles c1, c2 and c3 with average cycles times
{29/3, 22/2, 20/2}. With respect to the critical
circuit is c2 with w = 11.

sufficiently large. Thereafter the period w is given
by the critical circuit c in graph G. This is a circuit
c ∈ C(G) maximizing the ratio

w(G) = max
c∈C(G)

∑

Ti∈c

lij

∑

Ti∈c

hij

. (3)

Any schedule with a shorter period can’t be
feasible assuming that the schedule of iterations is
identical. The start time of tasks Ti in iteration k
is given as follows

si(k) = si + w · (k − 1), (4)

where si denotes the start time of task Ti in
the first iteration, i.e. occurrence 〈i, 1〉. Using
Equation (4), the set of N precedence constraints
(1) can be reformulated as one inequality

sj − si ≥ lij − w · hij . (5)

Since the tasks are repeated every w time
units, the periodic schedule is entirely given by
scalar w and vector of start times in the first
iteration s = (s1, s2, ..., sn). An optimal periodic
schedule can be provided in polynomial time, since
the time complexity to find a critical circuits is
O(n3. log(n)) and each task in the first iteration is
allocated to processors with respect to constraint
(5). Figure 4 shows a feasible periodic schedule for
the recurrent loop given in Figure 2 for N = 3.
Three iterations (each distinguished by a different
hatch) are executed in three periods and remaining
time 33–51 corresponds to the schedule tail.

Please notice that the schedule shown in Figure
4 is optimal with respect to Cmax, but not optimal
with respect to the number of processors (e.g., task

Figure 4: A feasible periodic schedule (w = 11)
optimal with respect to minmal w.

T5 can be scheduled on processor B together with
task T2).

4 Monoprocessor Cyclic Scheduling
with Precedence Delays

The basic cyclic scheduling problem, solved in
polynomial time, assumes that the number of
processors is not limited. When the number of
processors is restricted, the problem becomes NP–
hard (polynomial algorithms are known [15, 7]
only for some special sub cases). The scheduling
problem related to our motivation example is even
different, since some tasks run on one pipelined
dedicated processor and the remaining tasks run
on arbitrary number of processors. This problem
requires a different model than the graph G in the
previous chapter where lij = pi. Therefore, we
introduce the model based on so called precedence
delays.

In this new model, the length of edge eij is
greater or equal to processing time pi assigned to
node Ti. Therefore, the processor is occupied by
the task Ti during processing time pi, but the task
Tj may start at least lij time units after the start
time of Ti. Therefore, related length lij specifies
the precedence delay from task Ti to task Tj .

The precedence delays are useful when we con-
sider pipelined processors. The processing time pi

represents the time to feed the processor and length
lij represents the time of computation. Therefore,
the result of a computation is available after lij
time units.

In the case of unlimited number of processors,
the problem with precedence delays is still solv-
able using polynomial BCS. But assumption of
unlimited number of processors is not satisfied for
our application where some tasks are running on

one dedicated processor (the addition/subtraction
unit of HSLA). This problem can be formulated
as monoprocessor cyclic scheduling with precedence
delays (in the end of this chapter we show that this
problem is NP–hard).

Suggested formulation is based on the following
reduction of graph G to G′ while using calculation
of the longest paths (solved e.g. by the Floyd’s
algorithm). All nodes (tasks) except the ones
running on the dedicated processor are eliminated.
Therefore, tasks running on the dedicated proces-
sor constitute nodes of G′. There is e′ij (the edge
from Ti to Tj in G′) of height h′ij if and only if there
is a path from Ti to Tj in G of height h′ij such that
this path goes only through eliminated nodes (taks
scheduled on an arbitrary number of processors).
The value of length l′ij is the longest path from Ti

to Tj in G of height h′ij .
Such reduction allows to find the schedule

for our application by solving the problem of
monoprocessor cyclic scheduling with precedence
delays. The operations addition and subtraction
from example on Figure 3 are all processed on the
dedicated processor. The reduction performed on
graph G from illustration example is in Figure 5.

Figure 5: Reduced graph G′.

4.1 Problem Complexity

The problem of monoprocessor cyclic scheduling
with precedence delays is NP–hard, since Bratley’s
scheduling problem 1|rj , d̃j |Cmax [1] can be poly-
nomial reduced (P–reduced) to it. Therefore, each
instance of Bratley’s problem can be P–reduced to
an instance of our scheduling problem.

The P–reduction is shown in Figure 6. The
independent task set of Bratley’s problem is rep-
resented by nodes T1, ..., Tn and their release dates
and deadlines are represented using precedence
delays related to dummy task T0. The release date
rj of task Tj is the length of the edge e0j from
T0 to Tj and h0j = 0. Assuming s0 = si =
0, Inequality (5) determines restriction sj ≥ rj ,
which is effectively the only restriction given by
the release date.

Edges from Ti to T0 represent deadlines. Let
ei0 has the height hi0 = 1 and the length li0 =
w− d̃i + pi, where w is equal to value of maximum
deadline (the moment when the next iteration will
potentially start). In the same way the deadline

Figure 6: Polynomial reduction of Bratley’s prob-
lem 1|rj , d̃j |Cmax to monoprocessor cyclic schedul-
ing with precedence delays. Each independent task
of the set T = {T1, T2, ..., Tn} is linked with dummy
task T0 using precedence delays to specify task’s
release date and deadline.

restriction, i.e. si + pi ≤ d̃i, is obtained form (5)
for each of these edges assuming s0 = sj = 0.

We remind that Bratley’s problem 1|rj , d̃j |Cmax

was proven to be NP–hard by P–reduction from
3–PARTITION problem [13]. Our problem of
monoprocessor cyclic scheduling with precedence
delays is NP–hard, since each instance of Bratley’s
problem can be P–reduced to an instance of our
scheduling problem as shown above.

5 Solution of Monoprocessor Cyclic
Scheduling with Precedence De-
lays by ILP

Due to the NP–hardness it is meaningful to for-
mulate our scheduling problem as problem of ILP,
since various ILP algorithms solve instances of
reasonable size in reasonable time. The period w
is assumed to be constant in this Section, since
ILP does not allow multiplication of two decision
variables.

5.1 Precedence Constraint

Let ŝi be the remainder after division of si, the
start time of Ti in the first iteration, by w and let
q̂i be the integer part of this division. Then si can
be expressed as follows

si = ŝi + q̂i · w, ŝi ∈ 〈0, w − 1〉 , q̂i ≥ 0. (6)

This notation divides si into q̂i, the index of
execution period, and ŝi, the number of clock cycles
within the execution period. The schedule has
to obey two constraints. The first is precedence
constraint restriction corresponding to Inequality
(5). It can be formulated using ŝ and q̂

(ŝj + q̂j · w)− (ŝi + q̂i · w) ≥ l′ij − w · h′ij . (7)

Figure 7: Processor constraint illustration exam-
ple. Ti and Tj are tasks without precedence
constraint (pi = 3, pj = 2) with start times ŝi = 7
and ŝj = 3 and period w = 8.

Each edge represents one precedence constraint.
Hence, we have n′e inequalities (n′e is the number
of edges in reduced graph G′).

5.2 Processor Constraint

The second kind of restrictions are processor con-
straints. They are related to the monoprocessor re-
striction, i.e., at maximum one task is executed at a
given time. The execution period, which is neither
in the tail nor in the head of the schedule, contains
all tasks even if they are from different iterations.
See for example execution period 2 (time 22–33) in
Figure 4. Based on this observation, the processor
constrains can be simply formulated using ŝ (notice
that processor constraints do not depend on q̂).
Two disjoint cases can occur:

In the first case, we consider task Tj to be
followed by task Ti (both are from arbitrary it-
erations) within execution period (see the k′-th
occurrence of Tj and the k-th occurrence of Ti in
Figure 7). Corresponding constraint is therefore

ŝi − ŝj ≥ pj . (8)

At the same time, the (k−1)-th occurrence of Ti

is followed by the k′-th occurence of Tj , therefore

ŝj − (ŝi − w) ≥ pi. (9)

The conjunction in to one double–inequality is

pj ≤ ŝi − ŝj ≤ w − pi. (10)

In the second case, we consider task Ti to be
followed by task Tj . To derive constraints for the
second case, it is enough to exchange index i with
index j in Double–Inequality (10)

pi ≤ ŝj − ŝi ≤ w − pj ,

pi − w ≤ ŝj − ŝi − w ≤ −pj ,

pj ≤ ŝi − ŝj + w ≤ w − pi. (11)

Exclusive OR relation between first case and
second case, i.e., either (10) holds or (11) holds,
disables to formulate the problem directly as on
ILP program, since there is AND relation among
all inequalities in ILP program. In other words,

a) b)

Figure 8: State space of feasible schedules given by Double–Inequality (12) of the example from Figure
7. a) State space of feasible start times ŝi, ŝj . b) Equivalent convex continuous state space.

the state space of ŝj , ŝi is not convex even for
continuous values of ŝj and ŝi (see two polytops
in Figure 8a, upper–left one corresponding to (11)
and lower–right one corresponding to (10)).

The first case, constrained by (10), differs from
the opposite second case, constrained by (11), only
in w in the middle of double–inequality. This term
signals whether Ti is before Tj within execution
period or not. Therefore (10) and (11) can be
reduced into one double–inequality, while using
binary decision variable x̂ij (x̂ij = 1 when Ti is
followed by Tj and x̂ij = 0 when Tj is followed by
Ti)

pj ≤ ŝi − ŝj + w · x̂ij ≤ w − pi. (12)

The processor constraint restrictions for two
tasks Ti and Tj are illustrated in Figure 8. All fea-
sible start times on a monoprocessor are marked in
Figure 8a. Other pairs of start times cause overlap
of tasks. Introduction of x̂ij realizing exclusive OR
between (10) and (11) is demonstrated graphically
by cuts of the polytop in Figure 8b in the planes
x̂ij = 1 and x̂ij = 0. Therefore, we are able to
formulate our problem using ILP program (AND
relation among inequalities and integer restriction
on variables).

To derive feasible monoprocessor schedule,
Double–Inequality (12) must hold for each un-
ordered couple of two distinct tasks. Therefore,
there are (n′2 − n′)/2 Double–Inequalities (where
n′ is the number of tasks in reduced graph G′),
i.e., there are n′2 − n′ inequalities specifying the
processor constraints.

5.3 Objective Function

Using ILP formulation we are able to test the
schedule feasibility for given w. In addition we can
minimize the iteration overlap by formulation the

objective function as min
n∑

i=1

q̂i.

The summarized ILP program, using variables
ŝi, q̂i, x̂ij , is shown in Figure 9. It contains 2n′ +
(n′2−n′)/2 variables and n′e +n′2−n′ constraints.

If needed, this problem can be reformulated to
minimize Cmax by adding one variable cmax and n′

constraints

ŝj + q̂j + pi ≤ cmax, ∀Tj ∈ T . (13)

Such reformulated problem not only decides
feasibility of the schedule for given period w, but if
such a schedule exists, it also finds the one with a
minimal tail.

6 Minimization of the Period

We recall that the goal of the cyclic scheduling
is to find a feasible schedule with minimal period
w. Therefore, w is not constant, but due to
the periodicity of the schedule it is a positive
integer value. Lower bound of period w is given
by Equation (3) related to critical circuit of G′

(identical with circuit of G).
The schedule found by BCS of G′ (assuming

unlimited number of processors) enables two tasks
of G′ to be processed at the same time, which
results in the conflict on a monoprocessor. But
the BCS schedule can be used to derive the upper
bound of period w, by serializing conflicting tasks.
Such a schedule, with serialized conflicting tasks,
does not need to be optimal, but it is feasible,
therefore, it gives an upper bound on w.

Period w∗, the shortest period resulting in fea-
sible schedule, can be found iteratively by formu-
lating one ILP program for each iteration. These
ILP iterations need not to be performed for all w
between the lower and upper bound, but the inter-
val bisection method can be used, since w∗ is not
preceded by any feasible solution (i.e. no w ≤ w∗−
1 results in a feasible solution). Therefore, there
are at maximum log2 (upperbound− lowerbound)
iterative calls of ILP.

min
n∑

i=1

q̂i

Subject to:
ŝj + q̂j · w − ŝi − q̂i · w ≥ l′ij − w.h′ij , ∀e′ij ∈ G′

pj ≤ ŝi − ŝj + w · x̂ij ≤ w − pi , ∀i 6= j and Ti, Tj ∈ T

Where:
ŝi ∈ 〈0, w − 1〉, q̂i ≥ 0, x̂i ∈ 〈0, 1〉
ŝi, q̂i, x̂ij are integers

Figure 9: ILP program.

Figure 10: The schedule (w∗ = w(G) = 11) including inverse reduction to multiprocessor.

The above mentioned method gives the fea-
sible schedule of G′ on a monoprocessor. The
corresponding schedule of G is also feasible, since
the tasks executed on an unlimited number of
processors obey only to the precedence relation
constraints that are already included in precedence
delays of G′. Figure 10 shows the schedule of the
example depicted in Figure 2, where the dedicated
processor is shown on the bottom line.

7 Results

Presented scheduling technique was implemented
in Matlab language using ILP solver tool
LP SOLVE [11]. The specific inner loop of the
RLS filter described in Section 2 is shown in
Figure 11a where the corresponding task labels
are above each arithmetic operation. Figure 11b
shows corresponding G′, the graph after reduction.
The schedule presented in Figure 12 was found by
the first call of ILP program for w∗ = 26 (the
same period as lower bound of w given by the
critical circuit). ILP program from Figure 9 for this
instance was calculated in 2.09s on Intel Pentium
4 running at 2.4GHz.

Real–time demo application implemented
in Celoxica rc200e development board (Chip
xc2v1000–4, design clock 50MHz) using 19-bit

logarithmic number system arithmetic, HSLA
reached order of filter N = 129 on sampling
frequency 44100Hz (i.e., 129 iterations of inner
loop executed each 1/44100 s).

Figure 13 shows results of spectral analysis of
the optimized RLS filter. The horizontal axis of
each diagram represents the running time (corre-
sponding to a time interval of 5s), the vertical axis
represents the signal frequencies (up to 22kHz) and
the color represents the signal amplitude. The
lower–right diagram presents the original sound,
the upper–left diagram presents the noise, the
upper–right diagram presents corrupted sound as-
suming sinusoidal changes of the estimated channel
parameters, and finally the lower–left diagram
presents reconstructed sound. Real–time demon-
stration is ready for presentation at the conference.

8 Conclusions

This paper presents ILP–based cyclic scheduling
method used to optimize computation speed it-
erative algorithms running on HSLA [10]. The
approach is based on a transformation to mono-
processor cyclic scheduling with precedence delays.
Then an optimal periodic solution is searched
iteratively using interval bisection.

for k=1 to N
T2 T1

η(k) = η(k − 1) - (γf
old(k) * ψold(k − 1))

T3

f(k) = γold(k − 1) * η(k − 1)
T5 T4

ψ(k) = ψold(k − 1) - (γb
old(k) * η(k − 1))

T6

b(k) = γ(k − 1) * ψ(k − 1)
T8 T7

α(k) = α(k − 1) - (κold(k) * ψ(k − 1))
T10 T9

γf (k) = γf
old(k) + (bnold(k) * η(k))

T13 T11 T14 T12

F (k) = (ν + (λ * Fold(k))) + (f(k) * η(k − 1))
T17 T15 T18 T16

B(k) = (ν + (λ * Bold(k))) + (b(k) * ψ(k − 1))
T19

fn(k) = f(k) / F (k)
T20

bn(k) = b(k) / B(k)
T22 T21

γb(k) = γb
old(k) + (fn(k) * ψ(k))

T24 T23

κ(k) = κold(k) + (bn(k) * α(k))
T26 T25

γ(k) = γ(k − 1) - (bn(k) * b(k))
end

a) b)

Figure 11: a) The inner loop of RLS filter. Constant N determines the filter order. b) Cor-
responding reduced graph G′ contains four circuits c1, c2, c3 and c4 with critical circuit c1 since
w = max{26/1, 9/1, 9/1, 9/1} = 26.

The advantage of ILP program presented in
Figure 9 in comparison with common ILP programs
used for similar problems is that the number of
variables is independent of period length. Another
property of the formulation is arbitrary processing
time and precedence delay of each task. Moreover,
the ILP approach enables to incorporate additional
constraints. Therefore, the tasks can be also
constrained by release dates and deadlines related
to beginning of the period (this features were not
explained in this paper, since they are not exploited
in the RLS filter application).

Results of the scheduling applied to RLS filter
automated design are better than the ones achieved
by experienced FPGA programmer. For a given
sampling period, the filter order achieved by our
method is 129, in contrast to manual design achiev-
ing order 75. This acceleration by 70% is due to the
schedule overlap (operations belonging to different
iteration are executed simultaneously), which is
rather difficult for manual design, but it is forward
for cyclic scheduling.

Our method of algorithm modeling, transfor-
mation, scheduling is fully automated. Therefore,
it can be easily incorporated in design tools while
processing considerable simplification for rapid pro-
totyping.

In future work, we would like to develop more
general technique for another FPGA libraries dif-
fering from HSLA in the number of dedicated
processors. For the ILP acceleration it is needed
to study discrete convex optimization in order to
be able to remove integer constraints on ŝi, which
seams to be feasible.

Figure 12: The schedule of the RLS filter inner
loop on dedicated processor (w∗ = w(G) = 26).
Each task of G′ is depicted in separate line. Cor-
responding precedence delays represent pipelined
computation and operations on other processors.

References

[1] P. Bratley, M. Florian and P. Robillard.
Scheduling with earliest start and due date
constraints. Naval Res. Logist. Quart. 18,
1971.

Figure 13: Spectral analysis of input and output signals of the optimized RLS filter.

[2] N. Chabini and Y. Savaria. Methods for
optimizing register placement in synchronous
circuits derived using software pipelining tech-
niques. In ISSS, pages 209–214, 2001.

[3] C. M. Chang, C. M. Chen and C. T. King. Us-
ing integer linear programming for instruction
scheduling and register allocation in multiissue
processors. Computers and Mathematics with
Applications, 1997.

[4] P. Chrétienne. List schedules for cyclic
scheduling. In Proceedings of the third interna-
tional conference on Graphs and optimization,
pages 141–159. Elsevier Science Publishers B.
V., 1999.

[5] P. Chrétienne. On graham’s bound for cyclic
scheduling. Parallel Comput., Volume 26,
Number 9, pages 1163–1174, 2000.

[6] P. Chrétienne, E. G. Coffman, J. K. Lenstra
and Zhen Liu. Scheduling Theory and its
Applicaton. John Wiley and Sons, 1995.

[7] B. D. Dinechin. Simplex scheduling: More
than lifetime-sensitive instruction scheduling.
Proceedings of the International Conference
on Parallel Architecture and Compiler Tech-
niques, 1994.

[8] R. Govindarajan, E. R. Altman and G. R.
Gao. A framework for resource-constained
rate-optimal software pipelining. IEEE Trans-
actions on Parallel and distributed systems,
vol. 7, no. 11, 1996.

[9] C. Hanen and A. Munier. A study of the
cyclic scheduling problem on parallel proces-
sors. DAMATH: Discrete Applied Mathemat-
ics and Combinatorial Operations Research
and Computer Science, Volume 57, 1995.

[10] A. Heřmánek, Z. Pohl and J. Kadlec. Fpga
implementation of the adaptive lattice filter.
In. Proc. FPL2003, Springer, Berlin, 2003.

[11] J. C. Kantor. LP SOLVE 2.3.
ftp://ftp.es.ele.tue.nl/pub/lp solve/, 1995.

[12] I. Kazuhito, E. Lucke and K. Parhi. Ilp
based cost-optimal dsp synthesis with module
selection and data format conversion. IEEE
Transactions on Very Large Scale Integration
(VLSI) Systems, 1999.

[13] J. K. Lenstra, A. R. Kan and P. Brucker.
Complexity of machine scheduling problems.
Ann. Discrete Math. 1, 1977.

[14] R. Matoušek, M. Tichý, A. Z. Pohl, J. Kadlec
and C. Softley. Logarithmic number system

and floating-point arithmetics on fpga. Field-
Programable Logic and Applications: Re-
configurable computing Is Going Mainstream.
Lecture notes in Computer Science A 2438,
Springer, Berlin, 2002.

[15] A. Munier. The complexity of a cyclic schedul-
ing problem with identical machines. Rapport
masi, Institut Blaise Pascal, 1990.

[16] H.-J. Park and B. K. Kim. An efficient opti-
mal task allocation and scheduling algorithm
for cyclic synchronous applications. Proceed-
ings 6th International Conference on Real-
Time Computing Systems and Applications
(RTCSA ’99), 1999.

[17] S. L. Sindorf and S. H. Gerez. An integer
linear programming approach to the over-
lapped scheduling of iterative data-flow graphs
for target architectures with communication
delays. PROGRESS 2000 Workshop on Em-
bedded Systems, Utrecht, The Netherlands,
2000.

