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Abstract

This paper presents a scheduling problem for
monoprocessor without preemption with tim-
ing constraints given by a task-on-node graph.
The precedence relations are given by an ori-
ented graph where edges are related either to
the minimum time or to the maximum time
elapsed between start times of the tasks. The
processing time of a given task is associated to
a given node in the oriented graph. The prob-
lem, finding an optimal schedule satisfying the
timing constraints while minimizing makespan
Cmax, is solved by two solutions. The first is
implemented as a B&B algorithm using a Criti-
cal Path estimation and estimation of Remain-
ing Processing Time. Since the objective is
to find a feasible schedule with minimal Cmax,
the bounding procedure uses the best known
solution as a new dynamic timing constraint.
It considers also scheduling anomaly while de-
ciding feasibility of given solution. The second
solution is based on ILP. Experimental results
show comparison of the B&B and ILP solution.

1 Introduction

Many applications typically found in control and sig-
nal processing applications require quite complex algo-
rithms usually given by set of recurrent equations (for
example numeric filters). An eventuality to acceler-
ate their computation speed is using of processors with
pipelined arithmetic units. A goal of the monoprocessor
scheduling is to assign tasks (i.e. the algorithm opera-
tions) to the processor in time.
Traditional scheduling algorithms (e.g., [1]) typically

assume that deadlines are absolute, i.e., the deadlines
are related to the schedule begin. In periodic real-time
scheduling algorithms [4, 10], deadline for a given task
instance is related to the begin of the corresponding
period. However in many communication applications,
realized as algorithms running on signal processors [6]
or FPGAs, the deadline of the task Tj is related to the
start time of the task Ti. The upper bound of start time
of the task Tj is given by the start time of the task Ti

plus some given time, since preemption is not assumed in
this scheduling problem. Therefore, the absolute dead-
lines cannot be calculated aprior. Moreover we assume
precedence delays, i.e. the precedence constraints that
can be burden by some additional delays corresponding

to hidden tasks not scheduled on a given processor (e.g.,
pipeline scheduling problems [8] or hidden tasks sched-
uled on infinite number of processors in FPGA [11]).
Formulation of the scheduling problem (monoproces-

sor, precedence delays, start time related deadlines,
Cmax) is based on [6], where it is solved by an
heuristic algorithms. In this paper we propose an
optimal scheduling algorithm based on branch and
bound method and a solution using integer linear
programming (ILP). In addition multiple deadlines
are considered. Moreover, Brucker [3] has shown
that complex scheduling problems like general shop
problems, problems with multi–processor tasks,
problems with multi–purpose machines and problems
with changeover time can be reduced to our scheduling
problem.
From the time complexity point of view, the scheduling

problem presented in this article is NP-hard, since the
scheduling problem 1|rj , d̃j |Cmax [2] is reducible to it.
We remind that the problem 1|rj , d̃j |Cmax was proven
to be NP-hard by reduction from the 3-PARTITION
problem [9]. Moreover, NP-hard pipeline scheduling
problem presented in [8] is also reducible to the schedul-
ing problem presented in this article. On the other hand
the presented scheduling problem is decidable since it
can be solved by ILP [13].
This paper is organized as follows. Section 2 presents

the scheduling problem formulation. Section 3 describes
the optimal Branch and Bound algorithm using several
bounding mechanisms. The next section presents alter-
native solution of the scheduling problem by ILP. Finally
experimental results and comparison of B&B and ILP
solutions is summarized in Section 5.

2 Formulation of the Scheduling Prob-
lem

The scheduling problem under assumption (originally
defined in [6]) is given by a task-on-node graph G. Each
task Ti is represented by the node Ti in the graph G and
has a positive processing time pi. Timing constraints
between two nodes are represented by a set of directed
edges. Each edge eij from the node Ti to the node Tj is
labeled with an integer weight wij . There are two kinds
of edges: the forward edges with positive weights and
the backward edges with negative weights. The forward
edge from the node Ti to the node Tj with the positive
weight wij indicates that sj , the start time of Tj , must
be at least wij time units after si, the start time of Ti.
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The backward edge from node Tj to node Ti with the
negative weight wji indicates that sj must be no more
than |wji| time units after si. Therefore, each negative
weight wji represents dj , the deadline of Tj , such that
dj = si + |wji| + pj . So-called limited graph can be
obtained by removing all backward edges from graph
G. Limited graph is acyclic.
In this paper we are concerned with monoprocessor

non-preemptive scheduling. Therefore if si is the start
time of task Ti then no other task can be scheduled
before si + pi time units. The precedence constraints
represented in G by the forward edges allow computing
of earliest start times of the tasks. Further we assume
wij ≥ pi for each couple of tasks Ti and Tj . This
assumption is not restrictive at all in a monoprocessor
context since the tasks must be serialized. Moreover
it adds the possibility to specify the precedence delays
when wij > pi.
The scheduling problem is to find a feasible schedule,

satisfying the timing constraints given by G, while min-
imizing makespan Cmax. Let S be a schedule given as
a vector S = (s1, s2, . . . sn) such that each couple of
nodes Ti and Tj with nonzero edge wij has the start
times satisfying equation

sj − si ≥ wij . (1)

Equation (1) holds for both, forward and backward
edges. Let T be the set of n tasks to be scheduled. The
processing time vector p = (p1, p2, . . . , pn) and n × n
dimensional matrix of weights W are input parame-
ters of the addressed problem. Matrix W is composed
of timing constraints wij related to edges eij (between
tasks Ti and Tj). There is no edge from the node Ti to
the node Tj when wij = 0. There is forward edge when
wij > 0 and there is backward edge when wji < 0, and
wii = 0 by definition.
Example: One instance of the scheduling problem

containing five tasks T1,T2,. . .,T5 is given in Figure 1.
Execution times are p = (1, 3, 2, 4, 5) and delay between
start times of tasks T1 and T5 have to be less then or
equal to 10 (w5,1 = −10). Corresponding matrix W of
weights is shown in next Figure.

W =




0 2 1 3 0
0 0 0 0 4
0 0 0 0 4
0 0 0 0 4
−10 0 0 0 0
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Figure 1: An example of problem given as matrix of
weights W and corresponding graph G.

3 Solution by Branch and Bound Algo-
rithm

Process of creating schedule S defines a partitioning of
the set of tasks T into three disjoint subsets TS(S),

TC(S) and TR(S), where TS(S) is the set of scheduled
tasks, TC(S) is the set of candidate tasks and TR(S) is
the set of remaining tasks.
A task Tk is a candidate to be scheduled into the partial

schedule S if Tk has not been scheduled yet and all its
predecessors belong to TS , the set of scheduled tasks.

Tk ∈ TC ⇔ Tk /∈ TS and Ti ∈ TS

for all i such that wik > 0 (2)

If the node Tk ∈ TC is chosen to be scheduled at time
h, it is added to current partial schedule S with the start
time equal to the maximum of the current time h and
all its precedence timing constraints

sk = max(h, max
i

(wik + si))

for all i such that wik > 0. (3)

For a given partial schedule S an edge eji is called
activated backward edge if and only if wji < 0, Ti ∈ TS

and Tj /∈ TS . After scheduling task Tk sets TS(S), TC(S)
and TR(S) have to be actualized.
The scheduling problem can be solved by enumeration

of a finite set F of feasible solutions respecting tim-
ing constraints and calculation of the criterion function
Cmax : F → N with intention to find a particular
solution S∗ ∈ F such that

S∗ = arg min
S∈F

(Cmax(S)) . (4)

Branch and Bound (B&B) method is one of the
enumeration methods considering certain solutions only
indirectly, without actually evaluating them explicitly
(e.g., when some partial solution does not lead to
the optimal solution S∗). As its name implies, the
B&B method consists of two fundamental procedures:
branching and bounding. Branching is the procedure of
partitioning a large problem into two or more mutually
exclusive sub-problems. Furthermore the sub-problems
can be partitioned in similar way, etc. Bounding
calculates a lower bound on the optimal solution value
Cmax for each sub-problem generated in the branching
process.
The branching procedure can be conveniently repre-

sented as a search tree. At level 0, the search tree
consists of a single vertex representing the original prob-
lem. Each vertex in the n-th level represents one final
solution. All n tasks are scheduled in final solution. All
vertices in levels 1 to n−1 correspond to partial solution
representing uncompleted schedule.
In order to implement the scheme of the branch and

bound algorithm for our scheduling problem, one must
first describe the branching procedure and the search
strategy. Very simple recursive procedure creating the
search tree of feasible solutions (see Equation (1)) can
be stated as follows:
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B&B algorithm:

1. [Initialisation]

• Set si = ∞ ∀ Ti ∈ T .

• TS = ∅.
• Find TC , the set of schedulable tasks (tasks

without predecessors).

• SB = S, the best known final solution.

2. [Recursion] Call recursive procedure
vertex exploration(TS ,TC , S).

Recursive procedure
vertex exploration(TS , TC , S)

1. [Bounding] Will be explained later in chapter
”Bounding in the Search Tree”. If the solution is
feasible, then go to step 2, otherwise go to step 4.

2. [Test the solution]

(a) If TC = ∅, the current solution S is final so-
lution. Assign the current solution S to SB if
Cmax(S) < Cmax(SB). Go to step 4.

(b) If TC 6= ∅, the current solution is partial solu-
tion and then go to the step 3.

3. [Scheduling of candidates] For each candidate
Tk ∈ TC do:

• Schedule the task Tk by creating SN such that
sN

i = si for all i 6= k and sk is calculated using
Equation (3).

• Create new sets T N
C and T N

S such that T N
S =

TS∪Tk and T N
C contains tasks satisfying Equa-

tion (2).

• call recursive procedure
vertex exploration(T N

S ,T N
C ,SN ).

4. [Return]

Example: (continued) Complete set of solutions and
partial solutions arranged in the search tree can be found
in Figure 2. The leaves in the search tree are the final
solutions. The non-feasible solutions are crossed out.
In our case there is the only one feasible final solution
S = (0, 3, 1, 6, 10) and therefore this solution is optimal,
S = S∗.

3.1 Bounding in the Search Tree

The aim of this chapter is to find a bounding mechanism
reducing the size of the search tree (used in the step 1
of vertex exploration procedure). At the same time we
cannot eliminate any vertex on the unique path from
the root to S∗, the optimal solution.

(? ,? ,? ,? ,? )

0 ,? ,? ,? ,?

0 ,? ,1 ,? ,?0 ,2 ,? ,? ,? 0 ,? ,? ,3 ,?

0 ,2 ,5 ,? ,? 0 ,2 ,? ,5 ,?

0 ,2 ,5 ,7 ,? 0 ,2 ,9 ,5 ,?

0 ,2 ,5 ,7 ,11 0 ,2 ,9 ,5 ,13

0 ,3 ,1 ,? ,? 0 ,? ,1 ,3 ,?

0 ,3 ,1 ,6 ,? 0 ,7 ,1 ,3 ,?

0 ,3 ,1 ,6 ,10 0 ,7 ,1 ,3 ,11

0 ,7 ,? ,3 ,? 0 ,? ,7 ,3 ,?

0 ,7 ,10 ,3 ,? 0 ,9 ,7 ,3 ,?

0 ,7 ,10 ,3 ,14 0 ,9 ,7 ,3 ,13

Direction of searching

Non-feasible solution

level

0

1

2

3

4

5

Figure 2: Illustration of the branching procedure.
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Figure 3: Optimal solution from example 1.

The basic bounding, tests only whether the solution is
feasible i.e. whether Equation (1) is satisfied. In fact
Equation (1) does not need to be checked for forward
edges, since the scheduled task always satisfies the tim-
ing constraints related to forward edges (see step 3 of
vertex exploration procedure). On the other hand in the
case of backward edges it is needed to check whether
unscheduled tasks have not missed their latest possible
starting time. Since the starting time of the unscheduled
task is not known, the value of sj in Equation (1) is
substituted by h the current time. Therefore if si −
h ≥ wji is satisfied for all activated backward edges,
the corresponding solution is feasible. Otherwise it is
needed to test, whether this order of tasks with shifted
start times is feasible due to the scheduling anomaly as
explained in 3.2.
Moreover, the basic bounding can be extended. The

following text describes two bounding methods Critical
Path Bounding and Remaining Processing Time Bound-
ing reducing the number of search steps of B&B algo-
rithm. These methods are based on s̃j , the estimated
lower bound of sj . This is useful when the solution
cannot be eliminated by basic bounding but it can be
eliminated since the value of the current time plus the
time needed to complete some tasks is greater than the
deadline. Both methods are implemented as extension
of the step 1 in vertex exploration procedure.

3.2 Scheduling Anomaly

The branching mechanism determines only order
of tasks scheduled as soon as possible according to
Equation (3). This approach satisfies feasibility only
with respect to forward edges and the minimum Cmax

of the schedule. Unfortunately, this mechanism may
result in a scheduling anomaly in constructed schedule
with respect to feasibility given by backward edges. Let
us consider a backward edge eij from task Tj to Ti. If
lateness Lj = si − sj − wji of task Tj is greater then
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zero (tasks Tj missed its deadline by Lj ticks) then it
is needed to test whether task Ti can be scheduled Lj

ticks latter.
The test is performed by shifting Ti by Lj and by re-

calculation of start times of other scheduled tasks while
Equation (3) is used to satisfy feasibility with respect
to forward and backward edges. This ”shifting” can
cause increase of sj by value in < 0, Lj >. If this
value is 0, ”shifting” does not increase the start time
of Tj , the solution is feasible and branching procedure
can continue with recalculated schedule SN . Decision,
whether for given unfeasible schedule S there exists fea-
sible schedule SN such that SN has the same order of
tasks as S, can be done either by procedure shifting
outlined in Appendix A or it can be formulated as LP
problem solvable in polynomial time.

3.3 Critical Path Bounding

In this method calculation of the estimation s̃j is based
on n × n matrix F of the longest paths in the limited
graph. Floyd’s algorithm is used to calculate F once at
the initialization step of B&B algorithm. Therefore fij

denotes the longest path by forward edges from node Ti

to node Tj . If there is no path form node Ti to node Tj

then fij = ∞.

w
ji

Ti

fkj

forward edge

longest path

backward edge

p
i

Tk p
k

Tj
p

j

Figure 4: The critical path of an active backward edge
eji with a weigth wji.

Figure 4 Illustrates the situation related to a partial
schedule. When step 1 of the vertex exploration proce-
dure is performed for the last scheduled node Tk then we
need to calculate s̃j . It is performed for each activated
backward edge eji if there is a path by forward edges
from Tk to Tj .

s̃j(S) = fkj + sk

for each activated backward edge eji

such that fkj 6= ∞. (5)

Then the feasibility of the current partial solution is
checked while using adapted Equation (1) for all s̃j(S)
computed in Equation (5):

si − s̃j ≥ wji. (6)

The partial solution does not lead to any feasible so-
lution if Equation (6) is not satisfied. Moreover also its
predecessor in the search tree can be eliminated indi-
rectly since it does not lead to any feasible solution. This
follows from the fact that if any of the tasks exceeds its
deadline related to the activated backward edge at level
k (i.e., this task is at k-th position in the schedule), it
will certainly exceed its deadline if it is scheduled later.
This observation was already used in other scheduling
algorithms [1, 2].
Nevertheless, presence of anomaly caused by backward

edges must be also tested before solution elimination.
Since task Tj is not scheduled yet, the value of its back-
ward edge eji decreased by fkj is used to impose a new
constraint given by inequality

si − sk ≥ wji + fkj . (7)

3.4 Remaining Processing Time Bounding

The second method calculates the estimation s̃j in a
different way. It considers amount of work that must be
done before the deadline. If there are many parallel
edges in G, the longest path can be rather short in
contrast to the processing time of the task needed to
be executed. Critical Path Bounding method takes into
consideration the depth of the graph G related to the
weights of forward edges. On the other hand Remaining
Processing Time Bounding method considers also the
width of G, but due to the parallel branches it has to
deal only with the processing time and not with the
weighs of forward edges (please notice that pi is less
restrictive than wij - see chapter ”Formulation of the
Scheduling Problem”). In this sense the two methods
have orthogonal influence on the branching process.
Computation of s̃j begins with determination of TP ,

the set of nonscheduled tasks Tl such that flj 6= ∞ for
all l 6= j. The set TP and value of s̃j are defined per
each activated backward edge wji

Tl ∈ TP ⇔ flj 6= ∞ for all l 6= j and Tl /∈ TS . (8)

s̃j(S) = h +
∑

l∈TP

p(l)

for all activated backward edges eji (9)

The node Tj is not included in TP since the deadline
given by the correspondent backward edge is related to
the start time.
The estimation s̃j is used in the same way like in chap-

ter ”Critical Path Bounding” but Remaining Processing
Time Bounding method cannot be used to eliminate the
predecessors indirectly in the search tree. This follows
from the fact that the estimation s̃j can be smaller for
another solution at level k with the same predecessor in
the search tree.
When both methods are applied in the B&B algorithm,

the Critical Path Bounding method is applied before
Remaining Processing Time Bounding method since the
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first one can eliminate indirectly the predecessor in the
search tree and therefore its bounding has influence on
more solutions.
Similarly to (7), presence of anomaly caused by a back-

ward edge must be also tested before solution elimina-
tion. Since task Tj is not scheduled yet, the value of its
backward edge eji decreased by (pk +

∑

l∈TP

p(l)) is used

to impose a new constraint given by inequality

si − sk ≥ wji + pk +
∑

l∈TP

p(l). (10)

(? ,? ,? ,? ,? )

0 ,? ,? ,? ,?

0 ,? ,1 ,? ,?0 ,2 ,? ,? ,? 0 ,? ,? ,3 ,?

0 ,2 ,5 ,? ,? 0 ,2 ,? ,5 ,?

0 ,2 ,5 ,7 ,? 0 ,2 ,9 ,5 ,?

0 ,2 ,5 ,7 ,11 0 ,2 ,9 ,5 ,13

0 ,3 ,1 ,? ,? 0 ,? ,1 ,3 ,?

0 ,3 ,1 ,6 ,? 0 ,7 ,1 ,3 ,?

0 ,3 ,1 ,6 ,10 0 ,7 ,1 ,3 ,11

0 ,7 ,? ,3 ,? 0 ,? ,7 ,3 ,?

0 ,7 ,10 ,3 ,? 0 ,9 ,7 ,3 ,?

0 ,7 ,10 ,3 ,14 0 ,9 ,7 ,3 ,13
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~
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5

~

Critical Path Bounding

Remaining Processing
Time Bounding
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~
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~

Indirect
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Figure 5: Illustration of the bounding procedure.

Example: (continued) The two bounding methods
are demonstrated in Figure 5. The Critical Path
Bounding method eliminates five partial solutions
including (0, ?, ?, 3, ?) eliminated indirectly and solution
S = (0, 7, 1, 3, ?) that cannot be eliminated by the
second method. In this particular instance Remaining
Processing Time Bounding method is very efficient.
It eliminates two partial solutions at level 2 including
(0, 2, ?, ?, ?) that cannot be eliminated by the first
method.

3.5 Using Cmax for Bounding

Discussed bounding methods reduce state space by elim-
ination of unfeasible solutions. But the final solution of
the algorithm has to be not only feasible but in addition
it has to minimize Cmax. Hence searching in the tree
can be bounded using Cmax too. If current time h of
a partial solution is smaller than Cmax(SB) (the best
known final solution) then this partial solution can lead
to a final solution SF with smaller Cmax(SF ). Otherwise
the corresponding vertex can be eliminated. Formally
the partial solution is not eliminated if

h < Cmax(SB). (11)

Since the current time is equal to the start time plus
processing time of the latest scheduled task Tj

sj ≤ Cmax(SB)− pj . (12)

The right side of this inequality can be considered as a
new backward edge with wji = Cmax(SB)− pj from Tj

to Ti. Under condition that si = 0 previous Equation
can be convert to

si − sj ≥ wji. (13)

Inequality (13) is identical to inequality (1). This rea-
soning is similar to the basic bounding mentioned in
section ”Bounding in the Search Tree”. Moreover, it
can be extended by estimation of Cmax(SF ), computed
similarly as s̃j estimation using Critical Path Bounding
and Remaining Processing Time Bounding.
This way of bounding can by easily included into the

current algorithm by modification of original graph G
defined in chapter ”Formulation of the Scheduling Prob-
lem”. Since original graph G can have more source
nodes and more sink nodes, it is needed to modify it
to G′ by adding two new nodes. The first one, called
input node, is a unique source node in limited graph G′

and the second one, called output node, is a unique sink
node in limited graph G′. Consequently all source nodes
in original limited graph G are successors of the input
node, and all sink nodes in original limited graph G are
predecessors of the output node. Thereafter, bounding
by Cmax(SB) is a kind of new dynamic backward edge
from input node to output node.

Original graph

wout, in

Input node Output node
1

1

1

c

c

Tin1 Tout1

Figure 6: Construction of G′ by adding dynamic back-
ward edge weighted −Cmax into original graph.

Let the modified problem and all its related variables
are marked prime. Then vector p and matrix W have
to be modified as

p′ = [1,p, 1] W′ =




0 u 0
0 W v

win,out 0 0


 . (14)

Dimensions of p′ and W′ are increased by two (n+2).
u, the row vector of dimension n, represents connection
of the input node to the source nodes of the original
limited graph (um is equal to 1 if Tm is the source node
in the original limited graph, otherwise it is equal to
zero). Similarly v, the column vector of dimension n,
represents connection of the sink nodes of the original
limited graph to the output node (vm has a constant
value c if Tm is the sink node in original limited graph,
otherwise it is equal to zero). Due to assumption made
for wij in the section ”Formulation of the Scheduling
Problem” the constant value c is equal to maximum of
the processing times of sink nodes in the original limited
graph. Dynamic value of wout,in is initialized to the
upper margin of Cmax increased by one (processing time
of source node is 1). The upper margin of Cmax can by
either given by user due to its expert knowledge or it
can be calculated some heuristic [6].
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Therefore original B&B algorithm has only two slight
modifications:

• p′ and W′ are computed in the initialization step.

• The value of wout,in in matrix W′ must be actu-
alized in the step 2 of the vertex exploration pro-
cedure if some new better feasible solution S′ with
Cmax(S′) is found. The new wout,in is

win,out = Cmax(S′)− 1− 1. (15)

Value Cmax(S′) is decreased two times because first we
have to subtract the processing time of output node, and
second decrement causes the B&B algorithm to look for
a better solution (this transform of ≥ to > is possible
due to the integer values of the problem parameters).
When B&B algorithm finds the best solution S∗′, the

S∗ is extracted from S∗′ so that the first and the last
tasks are removed from the schedule and each start time
in the schedule is decremented (processing time of input
node is one).

(? ,? ,? ,? ,? )

0 ,? ,? ,? ,?

0 ,? ,1 ,? ,?0 ,2 ,? ,? ,? 0 ,? ,? ,3 ,?

0 ,2 ,5 ,? ,? 0 ,2 ,? ,5 ,?

0 ,2 ,5 ,7 ,? 0 ,2 ,9 ,5 ,?

0 ,2 ,5 ,7 ,11 0 ,2 ,9 ,5 ,13

0 ,3 ,1 ,? ,? 0 ,? ,1 ,3 ,?

0 ,3 ,1 ,6 ,? 0 ,7 ,1 ,3 ,?

0 ,3 ,1 ,6 ,10 0 ,7 ,1 ,3 ,11

0 ,7 ,? ,3 ,? 0 ,? ,7 ,3 ,?

0 ,7 ,10 ,3 ,? 0 ,9 ,7 ,3 ,?

0 ,7 ,10 ,3 ,14 0 ,9 ,7 ,3 ,13

Critical Path Bounding

Remaining Processing
Time Bounding

Cmax

Cmax Cmax

Cmax

Cmax

Figure 7: Illustration of the bounding procedure with
Cmax dynamic backward edge.

Example: (continued) In Figure 7 the example is ex-
tended by dynamic Cmax backward edge. The “Cmax”
labels are new bounds issued by the modification of the
original problem. The improvement is not so evident in
this small example, but the reduction is very efficient
in the case of more complex problems. Using of Cmax

bounding method is not very efficient at beginning of
B&B algorithm. But when the optimal solution (or so-
lution with Cmax close C∗max) is found, Cmax bounding
becomes very efficient.

4 Solution by ILP

Due to the problem NP–hardness it is meaningful to for-
mulate our scheduling problem as problem of ILP, since
various ILP algorithms solve instances of reasonable size
in reasonable time. The schedule has to obey two con-
straints. The first is precedence constraint restriction
corresponding to Inequality (1).
Each edge represents one precedence constraint.

Hence, we have ne inequalities (ne is the number of
edges in graph G).
The second kind of restrictions are processor

constraints. They are related to the monoprocessor
restriction, i.e., at maximum one task is executed at a

Figure 8: Processor constraint illustration example. Ti

and Tj are tasks without precedence constraint (pi =
2, pj = 3) with start times si = 1, sj = 5. An upper
margin of Cmax is C = 9.

given time. Two disjoint cases can occur. In the first
case, we consider task Ti to be followed by task Tj (see
Figure 8). Corresponding constraint is therefore

pi ≤ sj − si. (16)

In adition difference sj − si is certainly

sj − si ≤ C − pj (17)

where C is a upper margin of Cmax, calculated by some
polynomial algorithm. The conjunction of (16) and (17)
in to one double–inequality is

pi ≤ sj − si ≤ C − pj . (18)

In the second case, we consider task Tj to be followed
by task Ti. To derive constraints for the second case,
it is enough to exchange index i with index j in the
double–inequality (18)

pj ≤ si − sj ≤ C − pi,

pj − C ≤ si − sj − C ≤ −pi,

pi ≤ sj − si + C ≤ C − pj . (19)

Exclusive OR relation between first case and second
case, i.e., either (18) holds or (19) holds, disables to
formulate the problem directly as an ILP program, since
there is AND relation among all inequalities in ILP
program.
The first case, constrained by (18), differs from the

opposite second case, constrained by (19), only in C
in the middle of double–inequality. This term signals
whether Ti is before Tj or not. Therefore (18) and (19)
can be reduced into one double–inequality, while using
binary decision variable xij (xij = 1 when Tj is followed
by Ti and xij = 0 when Ti is followed by Tj)

pi ≤ sj − si + C · xij ≤ C − pj . (20)

To derive feasible monoprocessor schedule, double–
inequality (20) must hold for each unordered couple
of two distinct tasks. Therefore, there are (n2 − n)/2
double–inequalities specifying the processor constraints
at maximum. This restriction between tasks Ti and
Tj is redundant when there is a path in limited graph
from Ti to Tj or from Tj to Ti since order of tasks is
determined by precedence constraints.
Makespawn minimization is realized by adding one

variable Cmax satisfying
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5 backward edges
# # inspected vertices CPU time [s]

nodes B&B1 B&B2 B&B3 B&B4 ILP B&B1 B&B2 B&B3 B&B4 ILP
8 19.0 16.4 17.2 15.7 5.6 0.014 0.014 0.023 0.027 0.0016
10 99.0 17.1 75.4 36.8 28.2 0.086 0.060 0.099 0.071 0.0022
12 920.6 390.9 457.4 100.5 151.0 1.120 0.348 0.629 0.214 0.0112
14 11551.0 2307.0 3171.0 456.0 695.0 16.913 2.516 5.303 1.115 0.0604
16 65536.0 23418.0 25311.0 1595.0 5709.0 97.526 22.560 36.362 4.418 0.5930

10 backward edges
# # inspected vertices CPU time [s]

nodes B&B1 B&B2 B&B3 B&B4 ILP B&B1 B&B2 B&B3 B&B4 ILP
8 18.0 14.8 15.2 14.3 5.7 0.014 0.015 0.028 0.032 0.0025
10 50.1 32.9 36.3 25.4 19.4 0.048 0.036 0.069 0.063 0.0041
12 406.8 192.0 242.8 76.3 88.8 0.456 0.190 0.473 0.196 0.0091
14 4614.0 1222.8 1558.9 215.4 467.6 6.528 1.338 3.184 0.578 0.0437
16 30611.0 10077.0 12429.0 750.0 1366.0 42.611 10.737 24.175 2.278 0.1482

20 backward edges
# # inspected vertices CPU time [s]

nodes B&B1 B&B2 B&B3 B&B4 ILP B&B1 B&B2 B&B3 B&B4 ILP
8 16.4 13.4 13.8 13.3 4.32 0.016 0.017 0.038 0.042 0.0016
10 36.7 19.0 50.5 18.4 8.4 0.043 0.024 0.062 0.058 0.0022
12 299.9 62.3 94.8 45.6 48.2 0.421 0.088 0.295 0.154 0.0075
14 2917.8 208.7 310.6 96.7 88.6 4.927 0.312 0.993 0.341 0.0131
16 21074.0 494.0 760.0 241.0 337.0 40.515 0.788 2.515 0.918 0.0421

Table 1: Experimental results of scheduling algorithm complexity given by the number of inspected vertices and
CPU time (mean value over fifty randomly generated set of input data). B&B1 - All feasible solutions. B&B2
- Critical Path Bounding, B&B3 - Remaining Processing Time Bounding, B&B4 - All methods together, ILP -
Integer linear programming.

si + pi ≤ Cmax, ∀Ti ∈ T (21)

for all sink nodes of limited graph. Then the objective
function is to minimize Cmax. The summarized ILP pro-
gram, using variables si, xij , Cmax, is shown in Figure
9.

min Cmax

subject to
sj − si ≥ wij , ∀eij ∈ G

pi ≤ sj − si + C · xij ≤ C − pj ,
∀i 6= j and Ti, Tj ∈ T
and (fij < ∞∨ fji < ∞)

si − Cmax ≤ −pi, ∀Ti ∈ T sink node

where
si ∈

〈
0, C − pi

〉
, xi ∈ 〈0, 1〉, Cmax ∈

〈
0, C

〉
si, xij are integers.

Figure 9: ILP program.

5 Experimental Results

Presented scheduling algorithms were implemented and
tested in Matlab language (including procedure shift-
ing). Integer linear program was solved by ILP solver
tool LP SOLVE 4.0 [7] called from Matlab as an external
DLL library.
CPU times are hardly comparable, since Matlab is an

interpreter and LP SOLVE tool is compiled code. ILP
uses also a Branch and Bound algorithm while solving

linear programs in each vertex of searching tree. There-
fore, comparison of number of processed vertices allows
to examine results of both methods. Total number of
processed vertices of ILP in Table 1 is given by value
of variable total nodes declared in lpkit.h of LP SOLVE
tool.
Figure 10 shows algorithms complexity in the terms of

inspected solutions depending on the number of nodes in
G. Fifty scheduling problems have been generated per
each number of nodes (8,10,12,14 or 16) and the mean
value of number of inspected solutions in each scheduling
problem is shown in Figure 10. The scheduling problems
were generated at random manner so that the number
of forward edges was 3/2 of the number of nodes and
there was fixed number of backward edges (5,10 or 20).
When all bounding methods are combined together

(B&B4 in Table 1) the number of inspected states is
approximately 81% of all feasible solutions for 8 nodes
(with 20 backward edges) and it is 1.1% of all feasible
states for 16 nodes. ILP inspects 26% of all feasible
schedules in the case of 8 nodes and 20 backward edges
and 1,6% in the case of 16 nodes with the same number
of backward edges.
Implementation note: The computing time of schedul-

ing algorithm in seconds depends on the programming
language and the computer performance. The algorithm
was tested on a PC Intel Pentium 4, 2.4GHz in Mat-
lab 5.3 environment. Enabling of all bounding meth-
ods caused deceleration of the average vertex processing
speed (approximately twice). But with respect to the
experimental results (shown in Figure 10 - notice loga-
rithmical scale of vertical scale) in the CPU computing
time of B&B4 is much lower then one of B&B1.
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Figure 10: Diagram representation of experimental results (identical to Table 1).

6 Conclusion and Future Work

This paper presents two original solutions for the
scheduling problem with start time related deadlines,
which has been shown to be NP–hard. The first
is implemented as the B&B algorithm using the
Critical Path estimation and estimation of Remaining
Processing Time. Since the objective is to find a
feasible schedule with minimal Cmax, the bounding
procedure uses the best known solution as a new
dynamic timing constraint. It considers also scheduling
anomaly while deciding feasibility of given solution.
The second, formulated as ILP, uses elegant way of
processor constraint specification. Experimental results
show impressive power of ILP.
It is an alternative to the scheduling problem presented

in [6], which is based on heuristic algorithms. Our sug-
gested solutions have not polynomial complexity but
they are able to find the optimal solution. Further,
we considered multiple backward edges. Our suggested
solutions have higher efficiency if the backward edges are
very restrictive. In a specific case, when the scheduling
instance is too complex, a restrictive backward edge can
be given by the user due to its expert knowledge in order
to reduce the scheduling algorithm computing time.
In a mean time we have shown that the presented prob-

lem can be generalized for cyclic scheduling problems
[13], used for FPGA design of RLS (Recursive Least
Squares) filter.
In the future we would like to compare our solutions

with [3].
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Appendix

A Start time recalculation

[feasible,SN ]=shifting(S)

1. [Initialization] Create list TU containing tasks from
TS ordered in non-decreasing order of start times.
Assign SN = S.

2. [Rescheduling]

• Remove the last task Tk from list TU .

• For each backward edge eik where
Ti ∈ TU calculate maximum lateness
Lk = maxeij (sk − si − wik)

• if Lk < 0 then assign sN
k = sN

k −Lk. Recalcu-
late start times of tasks belonging to TS using
Equation (3) and calculate new current time
hN . If hN > h then feasible = FALSE and
go to step 4. Else go to step 2.

3. [Test] If SN 6= S then S = SN and go to step 1.
Else feasible = TRUE and go to step 4.

4. [Return]
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