
An algorithm for the evolution graph of extended Hybrid
Petri nets *

Martina Svadova

Center for Applied Cybernetics
Czech Technical University
Prague 2, Czech Republic

xsvadova@control.felk.cvut.cz

Zdenek Hanzalek
Center for Applied Cybernetics,

Czech Technical University
Prague 2, Czech Republic

hanzalek@control.felk.cvut.cz

* 0-7803-8566-7/04/$20.00 © 2004 IEEE.

Abstract - Extended Hybrid Petri nets (eHPNs) defined
by David & Caramihai are one of possible extensions of
Hybrid Petri nets modeling a delay on continuous flow.
The behavior of hybrid dynamic systems, modeled by
eHPNs, can be studied using an evolution graph. This
paper introduces an algorithm generating the evolution
graph consisting of IB-states. A model of hydro-system is
used as an illustrative example.

Keywords: Delay, Extended Hybrid Petri nets, Evolution
graph algotihm

1 Introduction
 Petri nets (PNs) [1],[6] are generally used to model
and analyze discrete event dynamic systems like
manufacturing systems and communication protocols.
Hybrid systems consisting of discrete and continuous
parts can be modeled by Hybrid Petri nets [2],[5].

 First-Order HPNs (FOHPNs) were studied in [7] by
Balduzzi, Guia and Seatzu. In contrast to classical HPNs
defined by David & Alla this type of PNs has two main
differences in continuous part. First, in FOHPN
continuous transitions are always strongly enabled.
Second, instantaneous firing speed can be constrained by
minimum firing speeds in FOHPN.

 Neither the classical Hybrid Petri nets [5] nor the
FOHPN do not allow to model the systems with delay on
continuous flow (e.g. the product delay on the conveyor,
the delay of fluid in pipe). Extended Hybrid Petri nets
(eHPNs) defined by David & Caramihai [3] are one of
possible extensions of Hybrid Petri nets modeling delay
on continuous flow. This article aims at algorithmisation
of this model.

 Behavior of deterministic hybrid dynamic systems,
modeled by eHPNs, can be analyzed by an evolution
graph, which is composed from so-called invariant
behavior states (IB-state) and transitions between
particular IB-states.

 This paper describes an algorithm generating an
evolution graph consisting of IB-states characterized by
constant marking of discrete places, by constant
instantaneous firing speed of continuous transitions.
Further the IB-state is characterized at its entry point by
the continuous marking and by the elapsed time of each
enabled discrete transition. The transitions between IB-
states are characterized by the event provoking the
transition and by the elapsed time in previous IB-state.
The algorithm is part of the PN Matlab Toolbox [4].

 The paper is organized as follows: Section 2 briefly
presents eHPNs. Section 3 describes the algorithm for
generating of the eHPNs. Section 4 presents an example
showing functionality of the presented algorithm. A
model of a hydro-system is used as illustrative example.

2 Extended Hybrid Petri nets
 Basic notion of an extended Hybrid Petri nets
(eHPNs) is defined in this section. The extended Hybrid
Petri nets defined by David & Caramihai [3] allow to
model systems with delays on the continuous flow. They
are extension of classical Hybrid Petri nets defined by
Alla & David [2] and they assume all their properties.

A marked timed eHPN is defined by the seven-tuple:

<P, T, Pre, Post, M0, V, d> (1)

P = P ∪ CP

T = T ∪ CT∪ eT

finite and non-empty set of
places, (P - the set of discrete
places and CP - the set of
continuous places (P and CP are
disjoint)
finite and non-empty set of
transitions, where T is the set of
discrete transitions; eT is the
set of extended transitions and
CT is the set of continuous
transitions (T, CT and eT are
disjoint)

Pre: P x T → N or
R+ ∪ 0+
Post: P x T → N or
R+ ∪ 0+
M0: P → N or R+ ∪
0+
V={eV1,.,eVm;V1,.,
Vm }

d={ed1,.,edn;d1,.,dn}

input incidence matrix

output incidence matrix

vector of initial marking

vector of maximal speeds;
speed Vj is associated with
continuous transition CTj and
speed eVj is associated with
extended transition eTj

vector of time delays, which
expresses firing delay of
transition; time delay dj is
associated with discrete
transitions Tj and edj is
associated with extended
transitions eTj

Extensions of eHPNs compared to HPNs :

• the weight of an arc, leading from or leading to
continuous place, may be infinitely small positive
real number, i.e. 0+

• the marking of continuous place can be R+ ∪ 0+
instead of R+

• presence of inhibitor arcs (not assumed in this
article)

 The extended transition in eHPN ensures delays on
the continuous flow. The extended transition can have
only one input and one output place which is the
continuous one. The output and input continuous place is
connected with extended transition by arcs with weight
0+. As well as in the case of discrete transition, the time
delay is associated to extended transition. The weight 0+
of an arc allows continuous firing of the extended
transition the time delay is elapsed. Symbol 0+ represents
infinitely small positive real number. The marking of the
input place of the extended transition can contain batches
of marks, where each batch has different time elapsed.

2.1 The evolution graph

 An evolution graph of eHPN is an oriented graph
consisting of nodes corresponding to IB-states (invariant
behavior states) and transitions between these nodes. The
IB-state characterizes the state of eHPN during certain
time. The marking of discrete places and the
instantaneous firing speed of continuous transitions
remain constant as long as the system is in the same IB-
state. The transition of the evolution graph corresponds to
an event provoking passage from one IB-state to another
IB-state. It is labeled by the name of the events and by the
time elapsed in previous IB-state (eventually by the
absolute time).

An IB-state consists of two parts in eHPNs (see Figure 1):

• the discrete part on the left side of the IB-state is
given by MD (the marking of discrete places) and
by D, the elapsed time of each enabled discrete
transition at the beginning of the IB-state.

• the continuous part on the right side of the IB-
state is given by vE, the instantaneous speed of
extended transitions, by vC, the instantaneous
firing speed of continuous transitions and by MC,
the marking of continuous places at the
beginning of the IB-state.

Figure 1 - The structure of IB-state

In eHPNs, a passage from one IB-state to the following
one can occur only if any of the following of events
occurs:

D-event: a discrete transition is fired

C-event: the marking of a continuous place with
negative balance becomes 0. The balance, the
derivative of the continuous place marking, is
constant in a given IB-state. The balance is
calculated for each continuous place and
determines dynamics of the place [1]

A-event: the marking of a continuous place, whose
balance is positive and which is input place of
discrete transition, reaches weight of arc
linking this place with the discrete transition

E-event: the continuous firing of a discrete transition
either begins or ends

3 Algorithm
 An algorithm for construction of the evolution graph
of extended Hybrid Petri nets is presented in next
paragraphs. The algorithm is designed to simulate also
behavior of systems modeled by PN, CPN and HPN. The
algorithm works with single server semantics (a firing
delay is set, when the transition is enabled and new delay
is generated upon transition firing only if the transition is
still enabled in a new marking) and it does not work with
unbounded nets. The presented algorithm solves conflicts
in continuous part of the net without the loop of

Continuous
 part

vE; vC Discrete
part

MC

MD

D

continuous transitions. Notion “conflict in continuous
part” supposes that continuous place has at least two
output continuous transitions, which are weakly enabled
and have not any output discrete transition. The conflict
of continuous place is solved by priority assignment to
output continuous transitions. It means the input stream of
the place (the sum of speeds of all CTj such that CTj
∈°CPi) is divided among the transitions up to their
priority, starting with the highest priority (corresponding
to the highest value). The instantaneous firing speed of
weakly enabled continuous transitions is calculated by
iterative algorithm 3.2 presented in [1], where equation
(2) was extended by vector Infl. The algorithm runs until
speed vector is equal to the one from previous iteration,
i.e. vr+1 = vr (r is index of iteration in the algorithm).

∑

∑

+=

−

=

++

−

+−=

t

jk

r
j

j

k

r
j

r

k

kjj

vInflkiPrekiPost

vInflkiPrekiPostVv

1

1

1

11

))*)*),(),((

)),(),(((,min(

 (2)

 The vector Inflj determines an influence of
transitions on IFS calculation of transition CTj, therefore
it is unique vector for each currently calculated transition.
The number of Boolean valued entries in the vector
corresponds to the number of continuous and extended
transitions. Since by definition extended transitions
cannot participate in a conflict, the elements of the vector
corresponding to extended transitions are set to 0. Values
of elements are set up to the priority of the calculated
transition. The entries corresponding to the transitions
with higher priority have value 1 and the entries
corresponding to the transitions with lower priority have
value 0. When the transition CTj is not in the conflict, all
entries of vector Inflj are set to 1.

Example

),min(
),min(

),min(

1433

31422

411

vvVv
vvvVv

vVv

−=
−−=

=

Figure 2- conflict in
continuous part of Petri net

),,,(Infl
),,,(Infl
),,,(Infl

0001
0101
0000

3

2

1

=

=

=

 Figure 2 illustrates continuous transitions in conflict,
calculation of their IFS by (2) and the values of vectors
Infl. Transition CT1 has maximal speed V1=2 and
priority 2, transition CT2 has V2=1 and priority 0 and
transition CT3 has V3=1 and priority 1. All of them are

weakly enabled. The CP1 input stream is equal to the
maximal speed of CT4 (V4=3).

 The model adopted in this text considers that a
discrete transition does not reserve tokens in its input
places. The case showed in Figure 3, where discrete
transition T2 is the output transition of discrete place P1
and simultaneously there is self-loop formed by discrete
place P1 with continuous transition CT1, is allowed and it
not considered as a conflict. Since the reservation of
tokens is not considered, transition CT1 can share
marking of P1 until the discrete transition is fired.

Figure 3 – Continuous transition and discrete transition

sharing one discrete place

3.1 The principle of the algorithm

 The principle of the algorithm is based on finding of
events evoking a passage from one IB-state to the
following one. First for given initial marking, the times, in
which particular events occur, are found. The times
acquired in previous step are compared and the minimal
time is found. In case that more times have the same value
as the minimal time, corresponding events are merged to
vector of events associated with the minimal time. The
new marking and new timing vector are generated at this
time. Assuming bounded net, this procedure is repeated
until a terminal node represented by stable speed state is
reached or the net gets into deadlock (type of terminal
node) or the loop of IB states is found. The block diagram
of the algorithm is illustrated in

Figure 4.

3.2 Detailed description of the algorithm:

Step 1. Variables initialization; tests of validity of a
net structure

 The algorithm is designed to be applicable to
simulate behavior of systems modeled by PN, CPN and
HPN. In this step kind of a net is identified, variables by
kind of the net are initialized and validity of the net is
tested.

Step 2. Particular calculations by kind of the net
Following calculations are divided up to kind of the net to
three parts: continuous, discrete and extended.

Continuous part:

 Enabled transitions of continuous part are calculated
by an iterative algorithm 3.1. presented in [1].
Instantaneous firing speeds (IFS) of weakly enabled
continuous transitions are calculated by algorithm 3.2.
also presented in [1].

Discrete part:

 Enabled transitions of discrete part meet a condition
M(Pi) ≥ Pre(Pi, Tj) for all places in °Tj (set of input places
of transition Tj). Minimal time of D-event is found by
comparing actual timings associated with enabled discrete
transitions.

Figure 4 – The block diagram of the algorithm

Extended part:

 Extended transition eTj is enabled if it meets
conditions M(Pi) ≥ Pre(Pi, Tj) for the place in °Tj or input

stream of °Tj is nonzero. Minimal times of extended event
are found by comparing actual timings associated with
enabled discrete transitions.

Step 3. Deadlock testing
 If the vector of enabled transitions is equal to zero,
the algorithm terminates. If not continue by Step 4.

Step 4. Variable Recalcul testing; Calculation of
minimal times of C-event and A-event:

 C-event: Markings of places, which have negative
balance, are divided by particular value of negative
balance. The minimal time is found by comparing results
of this operation.

 A-event: Marking of each place, which has positive
balance and which is input place of discrete transition and
whose previous marking was smaller than weight of arcs
linking this place with discrete transition, is divided by
particular value of positive balance. The minimal time is
found by comparing results of this operation.

 A variable Recalcul, which determines if balance
vector (C and A-event are calculated from balance vector)
is calculated with influence of the discrete transition, is
tested. In the case when Recalcul is equal to 0,
minimal times of C-events are calculated without
influence of discrete part (all elements of vector Xdfir,
determining firing of discrete transitions, are equal to 0),
then continue by Step 5. In the case when Recalcul is
equal to 1, times of C-event and A-event are calculated
with affect of discrete part (elements corresponding to
fired discrete transitions are equal to 1), then continue by
Step 6.

Step 5. Test, if discrete part of HPNs affects
continuous part

 The times of C-event and A-event calculated in
previous step are compared with minimal time of D-event.
If time of D-event is greater than times of C-event or A-
event (in this case D-event does not affect continuous
part), continue by Step 6.

 If the minimal time of D-event is equal to minimal
times of the C-event or A-event, D-event affects
continuous part, and particular times of C-event and A-
event have to be re-calculated with influence of D-event
(balance is calculated with influence of D-event). Since at
this time the new events of C-event and A-event can
occur, they have to be also related to corresponding
transition in the evolution graph (in this case there are
several kinds of events at the same time). Variable
Recalcul becomes 1. Continue by Step 4

Initial. variables up to
the kind of the net (PN,
CPN, HPN, eHPN)

calculation:
Cont: XC, XS, v
Discr: XD, time_XD, nofeld
eT: XeT, Time_XeTS, Time_XeTE,
nofeleTS, nofeleTE

while run=1

test on deadlock

 time_XD< delta
 &
time_XD< time_CX

Minimal times of all occurred
events comparison; finding the
time_sum
Calculation of new M, new
remaining timings for DT, start and
end times for eTs

End

Recalcul = 1

Recalcul = 1 Recalcul = 0

run = 0

Test of variable Recalcul

+

+

+

-

-

-

-

+

Calculation of delta,
time_CX, nofelc, nofelcx
with influence D1-event

Calculation of delta,
time_CX, nofelc, nofelcx
without influence D1-event

test on terminal node
or loopback

The reason of recalculation C and A events, when D-
event influences them:

 Figure 5 illustrates the case when calculation of
minimal time of C-event is influenced by discrete part. In
time t=0s, the transition T1 becomes enabled and its
timing is set to 2. Simultaneously the IFS of transition
CT1 (v1) is equal to 1. If C-event (the marking of CP1
becomes 0) is calculated without effect of a discrete part,
C-event would occur in time t=2s. Since in time t=2s D-
event also occurs (transition T1 is fired), marking of place
CP1 becomes 1. C-event does not occur in time t=2s, but
in time t=3s, and therefore C-event has to be recalculated
with effect of discrete transition T1.

Figure 5 – Influence of

D-event on C-event

Figure 6 – Influence of D-

event on A-event

 Figure 6 illustrates the case when calculation of
minimal time of A-event is influenced by discrete part. In
time t=0, the transition T1 becomes enabled and its timing
is set to 1. Simultaneously IFS of transition CT1 (v1) is
equal to 0.5. Without the influence of discrete part, A-
event would occur in time t=2s. However in time t=1s
transition T1 is fired and the marking of continuous place
CP1 becomes 1.5. Discrete part of the net influences
occurrence of A-event. By this A-event does not occur in
time t=2s, but earlier and therefore C-event has to be
recalculated with effect of discrete part.

Step 6. Selection of events with total minimal time;
generation of the event vector; calculation of
new marking corresponding to occurred
event/events; detection of the loopback

 The total minimal time is found by comparing
minimal times of particular kinds of events found in
previous steps. All events, which are related to total
minimal time, are merged to vector of events. The new
initial marking is calculated, the time elapsed in previous
IB-state and new timing vector are generated. Evolution
of behavior of the net can be stable, terminated by
terminal node, or cyclic, represented by loop. The
behavior is cyclic, when marking of new IB-state is equal
to the marking of existing i-th IB-state and simultaneously
timing vector is equal to i-th column vector in matrix of
timings (i.e. the evolution graph forms a loop).

 If the new marking is equal to the marking of
previous state and timing vector as well (no evolution in
the discrete part and stable instantaneous firing speeds in
the continuous part) then the terminal node is reached.
When net gets into deadlock, the last IB-state is also
supposed as terminal node. If terminal node or cyclic
behavior is found, the program terminates otherwise it
continues by Step 1.

4 Example: Model of hydro-system

Valve
V = 0.5 l/sec

V = 2 l/sec

Tank A

Tank B
Desired
level

Desired
level

Pump

Sensor
level

Sensor
level

Figure 7 – Hydro-system

 Figure 7 shows a hydro-system consisting of two
tanks (tank A, tank B), one valve and one water pump.
Each tank has Boolean valued sensor of water level. Since
both the pump and the valve work with time delay, the
levels of both tanks need to be modified. Desired level of
tank A is 90 liters, but the sensor should detect 80 liters
due to the time delay of the valve (5s ~ 10 liters of water).
Desired level of tank B is 45 liters, but the sensor should
detect 40 liters due to the time delay of the pump (10s ~ 5
liters of water). If the valve is open, the water from the
tank A flows to the tank B by gravity at speed 0.5 l/sec.
When the valve is open, the water pump does not pump
and vice versa. Water is pumped from tank B to tank A by
the pump at speed 2 l/sec. When pump stops pumping
water in pipe flow back to tank B by gravidity at speed
0.5 l/sec. Model takes in account transfer delay of water.
In the model there are two transfer delays modeled by
extended transitions. Transfer delay water of the pipe
from tank A to tank B is 4s. Transfer delay of the pipe
from tank B to tank B is 5s. In the initial state, tank A
contains 100 liters of water, tank B contains no water, the
pump is off and the valve is open.

 Figure 8 shows extended hybrid Petri net model of
hydro-system in Figure 7. Place CP1 represents tank A,
place CP2 represents tank B. Transition CT1 represents
the valve and transition CT3 represents the pump.
Transfer delay of the pipe from tank A to tank B is
represented by transitions CT3, CT4 and eT2 and by
places CP6, CP7 and CP8. Transfer delay of the pipe from
tank B to tank A is represented by transitions CT1, CT2
and eT1 and places CP3, CP4 and CP5. Transition CT5
represents discharge of water to tank B when the pump
stops pumping. Discrete part represents the control of

hydro-system when P1 is marked, the pump is on and
valve is closed; when P2 is marked, the valve is open and
the pump is off. Firing of transition T1 evokes opening of
the valve and stopping of the pump. Firing of transition
T2 evokes closing of the valve and start of pumping.

Figure 9 shows evolution graph, which represents
behavior of hydro-system. Evolution graph is constructed
from output parameters of matlab function eHPN.m.

Figure 8 – eHPN model of hydro-system in Figure 7

Figure 9 – evolution graph

5 Conclusion
 In this paper we have shown the algorithm
generating the evolution graph for extended Hybrid Petri
nets with firing delays associated with discrete transitions,

maximal speeds associated with continuous transitions
and with continuous firing of extended transitions. This
algorithm also solves conflict in continuous part of
eHPNs and can be used for simulation of hybrid systems
with continuous product flow. The algorithm is
implemented as matlab function of the Matlab Toolbox
for Petri nets and it is available from authors upon
request.

This work supported by the Ministry of Education of the
Czech Republic under Project LN00B096.

6 Reference
[1] R. David, and H. Alla, Petri Nets and Grafcet,
Prentise Hall, London, 1992

[2] R. David, and H. Alla, “Continuous and Hybrid
Nets”, Journal of Circuits, Systems and Computers, Vol
8, No. 1, pp. 159-188, 1998.

[3] R. David, and S.I. Caramihai, “Modeling of Delays
on Continuous flows Thanks to Extended Hybrid Petri
nets”. The 4th International conference on Automation of
Mixed Processes: Hybrid Dynamic systems, p. 343-350,
2000.

[4] Z. Hanzalek, and M. Svadova, “Matlab Toolbox for
Petri Nets. Tool Demonstrations”, Application and
Theory Petri nets, Newcastle upon Tyne, p. 35-39, June
2001

[5] R. David, and H. Alla, “On Hybrid Petri Net”,
Discrete event dynamic systems: Theory and applications,
Vol 11, p. 9-41, 2001.

[6] T. Murata, “Petri Nets: Properties, Analysis and
Application”, Proceeding of The IEEE, Vol 77, 1989

[7] F. Balduzzi, A. Guia, and C. Seatzu, “Modelling
manufacturing systems with First-Order Hybrid Petri
Nets”, International Journal of Production Research,
Special Issue on Modeling, Specification and Analysis of
Manufacturing Systems, Vol. 39, No. 2, 2001

