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Abstract - Extended Hybrid Petri nets (eHPNs) defined 
by David & Caramihai are one of possible extensions of 
Hybrid Petri nets modeling a delay on continuous flow. 
The behavior of hybrid dynamic systems, modeled by 
eHPNs, can be studied using an evolution graph. This 
paper introduces an algorithm generating the evolution 
graph consisting of IB-states. A model of hydro-system is 
used as an illustrative example. 

Keywords: Delay, Extended Hybrid Petri nets, Evolution 
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1 Introduction 
 Petri nets (PNs) [1],[6] are generally used to model 
and analyze discrete event dynamic systems like 
manufacturing systems and communication protocols. 
Hybrid systems consisting of discrete and continuous 
parts can be modeled by Hybrid Petri nets [2],[5].  

 First-Order HPNs (FOHPNs) were studied in [7] by 
Balduzzi, Guia and Seatzu. In contrast to classical HPNs 
defined by David & Alla this type of PNs has two main 
differences in continuous part. First, in FOHPN 
continuous transitions are always strongly enabled. 
Second, instantaneous firing speed can be constrained by 
minimum firing speeds in FOHPN. 

 Neither the classical Hybrid Petri nets [5] nor the 
FOHPN do not allow to model the systems with delay on 
continuous flow (e.g. the product delay on the conveyor, 
the delay of fluid in pipe). Extended Hybrid Petri nets 
(eHPNs) defined by David & Caramihai [3] are one of 
possible extensions of Hybrid Petri nets modeling delay 
on continuous flow. This article aims at algorithmisation 
of this model.  

 Behavior of deterministic hybrid dynamic systems, 
modeled by eHPNs, can be analyzed by an evolution 
graph, which is composed from so-called invariant 
behavior states (IB-state) and transitions between 
particular IB-states. 

 This paper describes an algorithm generating an 
evolution graph consisting of IB-states characterized by 
constant marking of discrete places, by constant 
instantaneous firing speed of continuous transitions. 
Further the IB-state is characterized at its entry point by 
the continuous marking and by the elapsed time of each 
enabled discrete transition. The transitions between IB-
states are characterized by the event provoking the 
transition and by the elapsed time in previous IB-state. 
The algorithm is part of the PN Matlab Toolbox [4].  

 The paper is organized as follows: Section 2 briefly 
presents eHPNs. Section 3 describes the algorithm for 
generating of the eHPNs. Section 4 presents an example 
showing functionality of the presented algorithm. A 
model of a hydro-system is used as illustrative example. 

2 Extended Hybrid Petri nets 
 Basic notion of an extended Hybrid Petri nets 
(eHPNs) is defined in this section. The extended Hybrid 
Petri nets defined by David & Caramihai [3] allow to 
model systems with delays on the continuous flow. They 
are extension of classical Hybrid Petri nets defined by 
Alla & David [2] and they assume all their properties. 

A marked timed eHPN  is defined by the seven-tuple: 

<P, T, Pre, Post, M0, V, d>  (1) 

P = P ∪ CP 
 
 
 
 
T = T ∪ CT∪ eT 
 
 
 
 
 
 

finite and non-empty set of 
places, (P - the set of discrete 
places and CP - the set of 
continuous places (P and CP are 
disjoint) 
finite and non-empty set of 
transitions, where T is the set of 
discrete  transitions; eT is the 
set of extended transitions and 
CT is the set of continuous 
transitions (T, CT and eT are 
disjoint)  



Pre: P x T → N or 
R+ ∪ 0+  
Post: P x T → N or 
R+ ∪ 0+  
M0:  P → N or R+ ∪ 
0+  
V={eV1,.,eVm;V1,.,
Vm } 
 
 
 
 
d={ed1,.,edn;d1,.,dn} 

input incidence matrix  
 
output incidence matrix 
 
 
vector of initial marking 
 
vector of maximal speeds; 
speed Vj is associated with 
continuous transition CTj and 
speed eVj is associated with 
extended transition eTj 
 
vector of time delays, which 
expresses firing delay of 
transition; time delay dj is 
associated with discrete 
transitions Tj and edj is 
associated with extended 
transitions eTj 

Extensions of eHPNs compared to HPNs : 

• the weight of an arc, leading from or leading to 
continuous place, may be infinitely small positive 
real number, i.e. 0+ 

• the marking of continuous place can be R+ ∪ 0+ 
instead of R+ 

• presence of inhibitor arcs (not assumed in this 
article) 

 
 The extended transition in eHPN ensures delays on 
the continuous flow. The extended transition can have 
only one input and one output place which is the 
continuous one. The output and input continuous place is 
connected with extended transition by arcs with weight 
0+. As well as in the case of discrete transition, the time 
delay is associated to extended transition. The weight 0+ 
of an arc allows continuous firing of the extended 
transition the time delay is elapsed. Symbol 0+ represents 
infinitely small positive real number. The marking of the 
input place of the extended transition can contain batches 
of marks, where each batch has different time elapsed. 

2.1 The evolution graph 

 An evolution graph of eHPN is an oriented graph 
consisting of nodes corresponding to IB-states (invariant 
behavior states) and transitions between these nodes. The 
IB-state characterizes the state of eHPN during certain 
time. The marking of discrete places and the 
instantaneous firing speed of continuous transitions 
remain constant as long as the system is in the same IB-
state. The transition of the evolution graph corresponds to 
an event provoking passage from one IB-state to another 
IB-state. It is labeled by the name of the events and by the 
time elapsed in previous IB-state (eventually by the 
absolute time).  

 

 

An IB-state consists of two parts in eHPNs (see Figure 1): 

• the discrete part on the left side of the IB-state is 
given by MD (the marking of discrete places) and 
by D, the elapsed time of each enabled discrete 
transition at the beginning of the IB-state. 

• the continuous part on the right side of the IB-
state is given by vE, the instantaneous speed of 
extended transitions, by vC, the instantaneous 
firing speed of continuous transitions and by MC, 
the marking of continuous places at the 
beginning of the IB-state. 

 
 
 
 

Figure 1 - The structure of IB-state 

In eHPNs, a passage from one IB-state to the following 
one can occur only if any of the following of events 
occurs:  

D-event: a discrete transition is fired 

C-event: the marking of a continuous place with 
negative balance becomes 0. The balance, the 
derivative of the continuous place marking, is 
constant in a given IB-state. The balance is 
calculated for each continuous place and 
determines dynamics of the place [1] 

A-event:  the marking of a continuous place, whose 
balance is positive and which is input place of 
discrete transition, reaches weight of arc 
linking this place with the discrete transition 

E-event:  the continuous firing of a discrete transition 
either begins or ends 

3 Algorithm 
 An algorithm for construction of the evolution graph 
of extended Hybrid Petri nets is presented in next 
paragraphs. The algorithm is designed to simulate also 
behavior of systems modeled by PN, CPN and HPN. The 
algorithm works with single server semantics (a firing 
delay is set, when the transition is enabled and new delay 
is generated upon transition firing only if the transition is 
still enabled in a new marking) and it does not work with 
unbounded nets. The presented algorithm solves conflicts 
in continuous part of the net without the loop of 

Continuous 
 part 

vE; vC Discrete 
part 

MC 

MD 

D 



continuous transitions. Notion “conflict in continuous 
part” supposes that continuous place has at least two 
output continuous transitions, which are weakly enabled 
and have not any output discrete transition. The conflict 
of continuous place is solved by priority assignment to 
output continuous transitions. It means the input stream of 
the place (the sum of speeds of all CTj such that CTj 
∈°CPi) is divided among the transitions up to their 
priority, starting with the highest priority (corresponding 
to the highest value). The instantaneous firing speed of 
weakly enabled continuous transitions is calculated by 
iterative algorithm 3.2 presented in [1], where equation 
(2) was extended by vector Infl. The algorithm runs until 
speed vector is equal to the one from previous iteration, 
i.e.  vr+1 = vr (r is index of iteration in the algorithm). 
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 The vector Inflj determines an influence of 
transitions on IFS calculation of transition CTj, therefore 
it is unique vector for each currently calculated transition. 
The number of Boolean valued entries in the vector 
corresponds to the number of continuous and extended 
transitions. Since by definition extended transitions 
cannot participate in a conflict, the elements of the vector 
corresponding to extended transitions are set to 0. Values 
of elements are set up to the priority of the calculated 
transition. The entries corresponding to the transitions 
with higher priority have value 1 and the entries 
corresponding to the transitions with lower priority have 
value 0. When the transition CTj is not in the conflict, all 
entries of vector Inflj are set to 1. 

Example 
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Figure 2- conflict in 
continuous part of Petri net 
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 Figure 2 illustrates continuous transitions in conflict, 
calculation of their IFS by (2) and the values of vectors 
Infl. Transition CT1 has maximal speed V1=2 and  
priority 2, transition CT2 has V2=1 and priority 0 and 
transition CT3 has V3=1 and priority 1. All of them are 

weakly enabled. The CP1 input stream is equal to the 
maximal speed of CT4 (V4=3). 

 The model adopted in this text considers that a 
discrete transition does not reserve tokens in its input 
places. The case showed in Figure 3, where discrete 
transition T2 is the output transition of discrete place P1 
and simultaneously there is self-loop formed by discrete 
place P1 with continuous transition CT1, is allowed and it 
not considered as a conflict. Since the reservation of 
tokens is not considered, transition CT1 can share 
marking of P1 until the discrete transition is fired. 

 
Figure 3 – Continuous transition and discrete transition 

sharing one discrete place 

3.1 The principle of the algorithm 

 The principle of the algorithm is based on finding of 
events evoking a passage from one IB-state to the 
following one. First for given initial marking, the times, in 
which particular events occur, are found. The times 
acquired in previous step are compared and the minimal 
time is found. In case that more times have the same value 
as the minimal time, corresponding events are merged to 
vector of events associated with the minimal time. The 
new marking and new timing vector are generated at this 
time. Assuming bounded net, this procedure is repeated 
until a terminal node represented by stable speed state is 
reached or the net gets into deadlock (type of terminal 
node) or the loop of IB states is found. The block diagram 
of the algorithm is illustrated in  

Figure 4. 

3.2 Detailed description of the algorithm: 

Step 1. Variables initialization; tests of validity of a 
net structure 

 The algorithm is designed to be applicable to 
simulate behavior of systems modeled by PN, CPN and 
HPN. In this step kind of a net is identified, variables by 
kind of the net are initialized and validity of the net is 
tested. 

Step 2. Particular calculations by kind of the net 
Following calculations are divided up to kind of the net to 
three parts: continuous, discrete and extended.  



Continuous part: 

 Enabled transitions of continuous part are calculated 
by an iterative algorithm 3.1. presented in [1]. 
Instantaneous firing speeds (IFS) of weakly enabled 
continuous transitions are calculated by algorithm 3.2. 
also presented in [1]. 

Discrete part: 

 Enabled transitions of discrete part meet a condition 
M(Pi) ≥ Pre(Pi, Tj) for all places in °Tj  (set of input places 
of transition Tj). Minimal time of D-event is found by 
comparing actual timings associated with enabled discrete 
transitions. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 4 – The block diagram of the algorithm 

Extended part: 

 Extended transition eTj is enabled if it meets 
conditions M(Pi) ≥ Pre(Pi, Tj) for  the place in °Tj or input 

stream of °Tj is nonzero. Minimal times of extended event 
are found by comparing actual timings associated with 
enabled discrete transitions. 

Step 3. Deadlock testing 
 If the vector of enabled transitions is equal to zero, 
the algorithm terminates. If not continue by Step 4. 

Step 4. Variable Recalcul testing; Calculation of 
minimal times of C-event and A-event: 

 C-event: Markings of places, which have negative 
balance, are divided by particular value of negative 
balance. The minimal time is found by comparing results 
of this operation. 

 A-event: Marking of each place, which has positive 
balance and which is input place of discrete transition and 
whose previous marking was smaller than weight of arcs 
linking this place with discrete transition, is divided by 
particular value of positive balance. The minimal time is 
found by comparing results of this operation. 

 A variable Recalcul, which determines if balance 
vector (C and A-event are calculated from balance vector) 
is calculated with influence of the discrete transition, is 
tested.  In the case when Recalcul is equal to 0, 
minimal times of C-events are calculated without 
influence of discrete part (all elements of vector Xdfir, 
determining firing of discrete transitions, are equal to 0), 
then continue by Step 5. In the case when Recalcul is 
equal to 1, times of C-event and A-event are calculated 
with affect of discrete part (elements corresponding to 
fired discrete transitions are equal to 1), then continue by 
Step 6. 

Step 5. Test, if discrete part of HPNs affects 
continuous part 

 The times of C-event and A-event calculated in 
previous step are compared with minimal time of D-event. 
If time of D-event is greater than times of C-event or A-
event (in this case D-event does not affect continuous 
part), continue by Step 6.  

 If the minimal time of D-event is equal to minimal 
times of the C-event or A-event, D-event affects 
continuous part, and particular times of C-event and A-
event have to be re-calculated with influence of D-event 
(balance is calculated with influence of D-event). Since at 
this time the new events of C-event and A-event can 
occur, they have to be also related to corresponding 
transition in the evolution graph (in this case there are 
several kinds of events at the same time). Variable 
Recalcul becomes 1. Continue by Step 4 

Initial. variables  up to 
the kind of the net (PN, 
CPN, HPN, eHPN) 

calculation: 
Cont:   XC, XS, v 
Discr:  XD,  time_XD,   nofeld 
eT: XeT, Time_XeTS, Time_XeTE, 
nofeleTS, nofeleTE 

while run=1 

test on deadlock 

 time_XD< delta   
              &  
time_XD< time_CX 

Minimal times of all  occurred 
events comparison;  finding the 
time_sum 
Calculation of new M, new 
remaining timings for DT, start and 
end times for eTs 

End 

Recalcul = 1 

Recalcul = 1 Recalcul = 0 

run = 0 
 

Test of variable Recalcul 

+ 

+ 

+ 

- 

- 

- 

- 

+ 

Calculation of  delta, 
time_CX, nofelc, nofelcx   
with influence D1-event

Calculation of  delta, 
time_CX, nofelc, nofelcx   
without influence D1-event 

test on terminal node 
or loopback 



The reason of recalculation C and A events, when D-
event influences them: 

 Figure 5 illustrates the case when calculation of 
minimal time of C-event is influenced by discrete part. In 
time t=0s, the transition T1 becomes enabled and its 
timing is set to 2. Simultaneously the IFS of transition 
CT1 (v1) is equal to 1. If C-event (the marking of CP1 
becomes 0) is calculated without effect of a discrete part, 
C-event would occur in time t=2s. Since in time t=2s D-
event also occurs (transition T1 is fired), marking of place 
CP1 becomes 1.  C-event does not occur in time t=2s, but 
in time t=3s, and therefore C-event has to be recalculated 
with effect of discrete transition T1. 

 
Figure 5 – Influence of 

D-event on C-event 

 
Figure 6 – Influence of D-

event on A-event 

 Figure 6 illustrates the case when calculation of 
minimal time of A-event is influenced by discrete part. In 
time t=0, the transition T1 becomes enabled and its timing 
is set to 1. Simultaneously IFS of transition CT1 (v1) is 
equal to 0.5. Without the influence of discrete part, A-
event would occur in time t=2s. However in time t=1s 
transition T1 is fired and the marking of continuous place 
CP1 becomes 1.5. Discrete part of the net influences 
occurrence of A-event. By this A-event does not occur in 
time t=2s, but earlier and therefore C-event has to be 
recalculated with effect of discrete part. 

Step 6. Selection of events with total minimal time; 
generation of the event vector; calculation of 
new marking corresponding to occurred 
event/events; detection of the loopback 

 The total minimal time is found by comparing 
minimal times of particular kinds of events found in 
previous steps. All events, which are related to total 
minimal time, are merged to vector of events. The new 
initial marking is calculated, the time elapsed in previous 
IB-state and new timing vector are generated. Evolution 
of behavior of the net can be stable, terminated by 
terminal node, or cyclic, represented by loop. The 
behavior is cyclic, when marking of new IB-state is equal 
to the marking of existing i-th IB-state and simultaneously 
timing vector is equal to i-th column vector in matrix of 
timings (i.e. the evolution graph forms a loop). 

 If the new marking is equal to the marking of 
previous state and timing vector as well (no evolution in 
the discrete part and stable instantaneous firing speeds in 
the continuous part) then the terminal node is reached. 
When net gets into deadlock, the last IB-state is also 
supposed as terminal node. If terminal node or cyclic 
behavior is found, the program terminates otherwise it 
continues by Step 1. 

4 Example: Model of hydro-system 

Valve
V = 0.5 l/sec

V = 2 l/sec

Tank A

Tank B
Desired
level

Desired
level

Pump

Sensor 
level

Sensor 
level  

Figure 7 – Hydro-system 

 Figure 7 shows a hydro-system consisting of two 
tanks (tank A, tank B), one valve and one water pump. 
Each tank has Boolean valued sensor of water level. Since 
both the pump and the valve work with time delay, the 
levels of both tanks need to be modified. Desired level of 
tank A is 90 liters, but the sensor should detect 80 liters 
due to the time delay of the valve (5s ~ 10 liters of water). 
Desired level of tank B is 45 liters, but the sensor should 
detect 40 liters due to the time delay of the pump (10s ~ 5 
liters of water). If the valve is open, the water from the 
tank A flows to the tank B by gravity at speed 0.5 l/sec. 
When the valve is open, the water pump does not pump 
and vice versa. Water is pumped from tank B to tank A by 
the pump at speed 2 l/sec. When pump stops pumping 
water in pipe flow back to tank B by gravidity at speed 
0.5 l/sec. Model takes in account transfer delay of water. 
In the model there are two transfer delays modeled by 
extended transitions. Transfer delay water of the pipe 
from tank A to tank B is 4s. Transfer delay of the pipe 
from tank B to tank B is 5s. In the initial state, tank A 
contains 100 liters of water, tank B contains no water, the 
pump is off and the valve is open. 

 Figure 8 shows extended hybrid Petri net model of 
hydro-system in Figure 7. Place CP1 represents tank A, 
place CP2 represents tank B. Transition CT1 represents 
the valve and transition CT3 represents the pump. 
Transfer delay of the pipe from tank A to tank B is 
represented by transitions CT3, CT4 and eT2 and by 
places CP6, CP7 and CP8. Transfer delay of the pipe from 
tank B to tank A is represented by transitions CT1, CT2 
and eT1 and places CP3, CP4 and CP5. Transition CT5 
represents discharge of water to tank B when the pump 
stops pumping. Discrete part represents the control of 



hydro-system when P1 is marked, the pump is on and 
valve is closed; when P2 is marked, the valve is open and 
the pump is off. Firing of transition T1 evokes opening of 
the valve and stopping of the pump. Firing of transition 
T2 evokes closing of the valve and start of pumping. 

Figure 9 shows evolution graph, which represents 
behavior of hydro-system. Evolution graph is constructed 
from output parameters of matlab function eHPN.m. 

 

Figure 8 – eHPN model of hydro-system in Figure 7 
 

 

Figure 9 – evolution graph 
 

5 Conclusion 
 In this paper we have shown the algorithm 
generating the evolution graph for extended Hybrid Petri 
nets with firing delays associated with discrete transitions, 



maximal speeds associated with continuous transitions 
and with continuous firing of extended transitions. This 
algorithm also solves conflict in continuous part of 
eHPNs and can be used for simulation of hybrid systems 
with continuous product flow. The algorithm is 
implemented as matlab function of the Matlab Toolbox 
for Petri nets and it is available from authors upon 
request. 

This work supported by the Ministry of Education of the 
Czech Republic under Project LN00B096. 
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