
PERFORMANCE TUNING OF ITERATIVE ALGORITHMS IN SIGNAL PROCESSING

Zdeňek Pohl, Jǐrı́ Kadlec∗

Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic

email:{xpohl,kadlec}@utia.cas.cz

PřemyslŠůcha, Zdeňek Hanźalek†

CAK, Department of Control Engineering
Czech Technical University in Prague
email:{suchap,hanzalek}@fel.cvut.cz

ABSTRACT

Presented high-level synthesis describes scheduling for wide
class of DSP algorithms. Several FPGA vendors or even
ASIC designs are targeted via Handel-C compiled by Celox-
ica DK3.1 compiler. Using our approach, the designer can
easily change type of used pipelined arithmetic modules and
then check new performance. The optimal time schedule is
found by cyclic scheduling using Integer Linear Program-
ming while minimizing the schedule period in the terms
of clock cycles. Experimental results in HW implementa-
tion, performed on logarithmic arithmetic and floating-point
arithmetic, confirm significant influence of the period on the
resulting performance of DSP algorithms.

1. INTRODUCTION

This paper presents design methodology, which enables to
the designer effectively explore at relatively high level of
abstraction the optimal FPGA implementation of the DSP
algorithm. The designer has to choose storage for input vec-
tors, input/output data flow and select the arithmetic mod-
ules. The optimal schedule is found by cyclic scheduling.

Cyclic schedulingdeals with a set of operations (generic
tasks) that have to be performed an infinite number of times
[1]. This approach is also applicable if the number of loop
repetitions is large enough. Alternative terms tocyclic sche-
duling, used in the scheduling community, aremodulo sche-
duling andsoftware pipelining, used in the compiler com-
munity. Existing methods for scheduling of loops can be
divided into heuristic approaches e.g. [1] and methods us-
ing integer linear programming (ILP) [2, 3]. The heuristics-
based techniques do not guarantee optimal solutions but have
much lower computing requirements making them applica-
ble in code compilers. On the other hand ILP is not a poly-
nomial algorithm but for problems with reasonable size it
finds an optimal solution in a reasonable amount of time.

∗This work been supported by the Grant Agency of the Academy of
Sciences of the Czech Republic under Project 1ET300750402
†This work was supported by the Ministry of Education of the Czech

Republic under Project 1M6840770004

HSLA (112MHz) FP32 (181MHz)
Slices BRAMs Latency Slices BRAMs Latency

[-] [-] [clk] [-] [-] [clk]
MUL 83 0 2 367 0 8
DIV 79 0 2 2198 0 8
ADD 1075 28 9 1158 0 11

Table 1. Summary of HSLA and FP32 library parameters
measured for Xilinx Virtex II (XC2V6000–6). Each unit has
1 clock cycle time to feedpi. Slices stands for basic FPGA
elements. BRAMs is number of block-RAMs

In this paper we presentcyclic scheduling of tasks with
precedence delays on set of dedicated processorsby ILP
formulation as an extension of [2]. In addition to our pre-
vious publication mentioned above, in this article we con-
sider two different architectures, we show an extension that
allows to minimize the data transfers among the arithmetic
units, we extend the problem from one dedicated proces-
sor to the set of them, and finally we put emphasis on ex-
perimental work resulting in HW implementations and their
performance evaluation.

This paper is organized as follows: Section 2 describes
used FPGA arithmetic libraries. The next section presents
our scheduling algorithm. Experimental results are presen-
ted in Section 4. Section 5 concludes the paper.

2. FLOATING-POINT LIBRARIES

The logarithmic number system (LNS) arithmetic is an al-
ternative approach to floating-point. A real number is repre-
sented in LNS as the fixed-point value of base two logarithm
of its absolute value with a special arrangement to indicate
zero and NaN. An additional bit indicates the sign. A LNS
arithmetic implementation, the high speed logarithmic arith-
metic (HSLA), has been described in [4].

Floating-point number system uses widely known IEEE
format for storage of number. First bit stands for sign, conse-
quent 23 bits are mantissa and finally the last eight bits holds
exponent. The 32-bit FP arithmetic implementation used in
our experiments is Celoxica pipelined floating-point library



(FP32). Provided 32-bit pipelined modules were extended
by input and output registers in order to increase clock per-
formance. Parameters of HSLA and FP32 HW units are
summarized in the Table 1.

3. FORMULATION AND SOLUTION OF THE
SCHEDULING PROBLEM

The iterative algorithm can be implemented as a computa-
tion loop executing an identical set of operations repeatedly.
Therefore our work, dealing with optimized implementation
of such algorithms, is based oncyclic scheduling. The iter-
ations of the cyclic schedule can overlap, therefore one can
achieve better processor utilization.

3.1. Cyclic Scheduling Problem

The algorithm’sn operations in a computation loop (see e.g.
WDF filter [5] algorithm on Figure 1(a)) can be considered
as a set ofn generic tasksT = {T1, T2, ..., Tn} to be per-
formedN times whereN is usually very large. One execu-
tion of T is called aniteration. The scheduling problem is
to find a start timesi of every occurrenceTi [1].

for k=1 to N do
T1: a(k) = X(k) + e(k − 1)
T2: b(k) = a(k)− g(k − 1)
T3: c(k) = b(k) + e(k)
T4: d(k) = γ1 · b(k)
T5: e(k) = d(k) + e(k − 1)
T6: f(k) = γ2 · b(k)
T7: g(k) = f(k) + g(k − 1)
T8: Y (k) = c(k)− g(k)

end

T1
5

+

T5
5

+

T2
5

+ T3
5

+

T8
5

+T4
5

* T7
5

+

T6
5

*

(9,0)

(9,0)(2,0)

(9,0)

(9,0)(9,1)(9,0)(9,1)

(2,0)
(9,0)

(9,0)

(9,1)
(9,1)

height hlength l

processing
time p

(a) (b)

Fig. 1. (a) An example of a computation loop of wave digital
filter (WDF). (b) Corresponding data dependency graphG.

Each task is characterized by processing timepi. Data
dependencies of this problem can be modeled by a directed
graphG. Edgeeij from the nodei to j is labeled by a couple
of integer constantslij andhij . Length lij represents the
minimal distance in clock cycles from the start time of the
taskTi to the start time ofTj and it is always greater to zero.

The notions of the lengthlij and the processing timepi

are useful when we consider pipelined processors used in
both libraries HSLA and FP32 presented in previous sec-
tion. The processing timepi represents the time to feed the
processor (i.e. new data can be fed to the pipelined proces-
sor afterpi clock cycles) and lengthlij represents the time
of computation (i.e. the input–output latency). Therefore,
the result of a computation is available afterlij clock cycles.

On the other hand, the heighthij specifies the shift of
the iteration index (dependence distance) related to the data

produced byTi and read (consumed) byTj . Figure 1(b)
shows oriented graph of WDF algorithm in Figure 1(a) con-
sidering HSLA library. To make the cyclic scheduling more
difficult we are assuming processing of five WDF filters si-
multaneously which increases the processor utilization and
significantly reduce the number of feasible solutions.

Assumingperiodic schedulewith periodw (i.e. the con-
stant repetition time of each task), each edgeeij in graphG
represents one precedence relation constraint:

sj − si ≥ lij − w · hij . (1)

The aim of the cyclic scheduling problem [1] is to find
a periodic schedule with minimal periodw. SinceN is as-
sumed to be very large, the one iteration lengthλ is negligi-
ble for execution time of all iterations ((N−1) ·w+λ). The
problem is solvable in polynomial time, assuming unlimited
number of identical processors [1]. When the number of
processors is restricted, the problem becomes NP–hard [1].
Unfortunately, in our case the number of processors is re-
stricted and the processors are dedicated to execute specific
operations (see Table 1). Due to the NP–hardness it is mean-
ingful to formulate the scheduling problem as a problem of
Integer Linear Programming (ILP), since various ILP algo-
rithms solve instances of reasonable size in reasonable time.

3.2. Solution of Cyclic Scheduling on Dedicated Proces-
sors with Precedence Delays by ILP

The scheduling method shown below applies for cyclic sche-
duling on the architectures consisting ofm dedicated pro-
cessors (e.g. one addition unit, one multiplication unit, ...).
Each task isa priory related to one dedicated processor.
Therefore we introducend as number of tasks related tod-th
processor.

Let ŝi be the remainder after division ofsi (the start time
of Ti in the first iteration) byw and letq̂i be the integer part
of this division. Thensi can be expressed as follows

si = ŝi + q̂i · w, ŝi ∈ 〈0, w − 1〉 , q̂i ∈ 〈0, q̂max〉 , (2)

where constant̂qmax is a priory given upper bound of
q̂i. This notation dividessi into q̂i, the index ofexecution
period, and ŝi, the number of clock cycles within the exe-
cution period. The schedule has to obey the two constraints
explained in following paragraphs. The periodw is assumed
to be a constant in the subsection 3.2, since multiplication of
two decision variables cannot be formulated as a linear in-
equality.

The first constraint is theprecedence constraintrestric-
tion corresponding to Inequality (1). It can be formulated
usingŝ andq̂

(ŝj + q̂j · w)− (ŝi + q̂i · w) ≥ lij − w · hij . (3)



Hence, we havene inequalities (ne is the number of
edges in graphG), since each edge represents one prece-
dence constraint.

Processor constraintsare the second type of restrictions.
They are related to the set of dedicated processor, i.e. at
maximum one task is executed on one dedicated processor
at a given time. It is guaranteed by Double–Inequality

pj ≤ ŝi − ŝj + w · x̂ij ≤ w − pi. (4)

where binary decision variablêxij determines whether
Ti is followed byTj (x̂ij = 1) orTj is followed byTi (x̂ij =
0).

To derive a feasible schedule when both tasks are as-
signed to the same processor, Double–Inequality (4) must
hold for each unordered couple of two distinct tasks, both
assigned tod-th dedicated processor. Therefore, there are∑m

d=1 (n2
d − nd)/2 double–inequalities, i.e. there are

∑m
d=1

(n2
d − nd) inequalities specifying the processor constraints,

wherem is number of dedicated processors.
In addition we can minimize the iteration overlap by for-

mulating the objective function asmin
∑n

i=1 q̂i.
The resulting ILP model containing precedence constra-

ints (3) and processor constraints (4), use integer variables
ŝi ∈ 〈0, w − 1〉, q̂i ∈ 〈0, q̂max〉 andx̂i ∈ 〈0, 1〉 and it con-
tains 2n +

∑m
d=1 (n2

d − nd)/2 variables andne +
∑m

d=1

(n2
d − nd) constraints.

3.3. Iterative Minimization of the Period

Using ILP formulation we are able to test the schedule feasi-
bility for the givenw. We recall that the goal of cyclic sche-
duling is to find a feasible schedule with the minimal period
w. Therefore,w is not constant as we assumed in the pre-
vious subsection, but due to the periodicity of the schedule
it is a positive integer value. Periodw∗, the shortest period
resulting in a feasible schedule, is constrained by its lower
boundwlower, for which the feasibility needs to be tested,
and its upper boundwupper, which is feasible if at least one
feasible solution exists. The values ofwlower andwupper

are found in polynomial time [2]. Optimal periodw∗ can
be found iteratively by formulating one ILP model for each
iteration. Using the interval bisection method, there are at a
maximumlog2 (wupper − wlower) iterative calls of ILP.

3.4. Minimization of Data Transfers

The advantage of ILP formulation is the possibility to for-
mulate various objective functions. E.g. if needed, this
problem can be reformulated to minimize the data trans-
fers among the tasks (i.e. the number ofintermediate re-
sults storage). Therefore we add one slack variable∆ij each
precedence constraint (3) resulting at

(ŝj + q̂j · w)− (ŝi + q̂i · w) + ∆ij = lij − w · hij . (5)

When∆ij = 0, the intermediate result is passed to the
next task without storing in registers or memory. On the
other hand when∆ij > 0, the memory or register is re-
quired. The aim is to minimize the number of∆ij > 0.
Therefore we introduce new binary variable∆b

ij which is
equal to 1 when∆ij > 0 and∆b

ij is equal to 0 otherwise.
This relation is formulated as

(w · (q̂max + 1)) ·∆b
ij ≥ ∆ij , ∀eij ∈ G, (6)

where(w · (q̂max + 1)) represents an upper bound on
∆ij and the objective is to minimize

∑
∆b

ij . Such a re-
formulated problem not only decides the feasibility of the
schedule for the given periodw, but if such a schedule ex-
ists, it also finds the one with minimal data transfers among
the tasks.

4. EXPERIMENTAL RESULTS

4.1. Complexity of the Scheduling Problem

The presented scheduling technique was implemented and
run on an Intel Pentium 4 at 2.4 GHz using non-commercial
ILP solver tool GLPK1. In this section some results are shown
on well known benchmarks found in the literature. One
benchmark is the second order wave digital filter (5WDF) [5]
consisting of eight tasks. It is extended to five channels by
assuming five clock cycles processing time of each task (i.e.
single channels are shifted by one clock cycle). The second
benchmark is a differential equation solver (DIFFEQ) [6]
consisting of ten tasks. Next benchmark is a seventh-order
biquadratic IIR filter [7] with unrolled innermost loop (IIR7).
The last one is RLS filter [8] which is the only benchmark
using DIV operations.

Complexity of the scheduling algorithm is summarized
in Table 2 wheren is the number of tasks andm denotes
the number of dedicated processors (arithmetic units). The
columnsize denotes number of ILP variables/constraints.

The scheduling algorithm results are given byw∗, the
shortest period resulting in a feasible schedule. The column
obj denotes the value of the objective function found while
minimizing the overlap (i.e.

∑
q̂i) for benchmarks 5WDF,

DIFFEQ, IIR7 and RLS and
∑

∆b
ij in case of benchmark

DIFFEQ REG, while minimizing the number of intermedi-
ate results storage. The time required to compute the opti-
mum, given as a sum of iterative calls of the ILP solver, is
shown in the columnCPU time.

As follows from Table 2, the optimal solution for all
benchmarks were found by GLPK solver in a reasonable

1GLPK 4.6 (http://www.gnu.org/software/glpk/)



ILP model HSLA FP32

Benchmark n m size w∗ obj
CPU
time

w∗ obj
CPU
time

[-] [-] [-]/[-] [clk] [-] [s] [clk] [-] [s]

5WDF 8 2 32/44 31 2 0,235 41 2 0,001
DIFFEQ 10 2 41/55 22 0 0,016 38 0 0,016
DIFFEQ REG 10 2 65/67 22 3 0,218 38 3 0,218
IIR7 29 2 254/435 20 36 0,362 30 22 2,031
RLS 26 3 186/297 52 0 4,672 74 2 67,766

Table 2. Complexity of the Scheduling Algorithm.

Benchmark fmax Period MFLOPS Slices BRAMs
[MHz] [ns] [-] [-] [-]

WDF HSLA 104,2 297,6 21,8 2344 44
FP32 111,6 367,4 26,9 2448 16

DIFFEQ HSLA 102,2 215,2 46,5 2520 44
FP32 109,1 348,2 28,7 2637 16

DIFFEQ REG HSLA 107,7 204,3 49,0 2395 44
FP32 112,0 339,2 29,5 2540 16

IIR7 HSLA 100,1 199,9 145,1 2844 44
FP32 107,7 278,6 104,1 2921 16

RLS HSLA 47,5 547,2 47,5 4787 57
FP32 57,3 1204,9 21,6 7273 26

Table 3. Hardware implementation results on XC2V6000–6
for optimal schedules found by cyclic scheduling.

amount of time except IIR7 on HSLA. It was caused by large
overlap of iterations, that increases the number of combina-
tions. Using the commercial ILP solver CPLEX2, the opti-
mal schedule was found in 0,36 s.

4.2. HW Implementation

Hardware implementation results are summarized in Table 3.
Each implemented algorithm has been designed for LNS
and FP arithmetic (HSLA and FP32 library). One ADD and
MUL unit was used in all designs. DIV unit has been used in
lattice RLS algorithm only. Columnfmax stands for maxi-
mal design clock. ColumnPeriod is the length of one period
in ns of algorithm i.e. it isw∗/fmax.

Sets of test-vectors were generated by Matlab using bit-
exact model of algorithm in given arithmetic. The test-vectors
have been transferred using data stream manager (DSM) li-
brary to FPGA. The hardware platform for tests have been
AlphaData ADM–XRC II (Celoxica RC2000PMC Mezza-
nine Card) PCI card with Xilinx Virtex II (XC2V6000-6)
device. This platform enabled to test and compare bitstream
statistics without being influenced by resource limitation.

5. CONCLUSIONS

This paper presents high-level synthesis approach used to
optimize computation speed of iterative DSP algorithms. It
is based on cyclic scheduling method using formulation by

2In this case the schedule was found by commercial tool CPLEX 8.0
(http://www.ilog.com/products/cplex/)

ILP. The advantage of the ILP model (presented in Section
3) in comparison with common ILP programs used for sim-
ilar problems is that the number of variables is independent
of period length. Moreover, the ILP approach enables to in-
corporate secondary objective and additional constraints.

The additional optimization criterion (presented in Sec-
tion 3.4) reduced number of temporary registers. It helped to
save resources and simplified source code. The lower num-
ber of input places connected to arithmetic units reduced the
size of the input multiplexer, consequently the clock perfor-
mance increased.

Semi-automatic HandelC code generation was implemen-
ted and it proved to be effective way how to turn DSP algo-
rithm equations to hardware. This approach is advantageous
for design upgrade to new arithmetic units and rapid proto-
typing of new applications.

6. REFERENCES

[1] C. Hanen and A. Munier, “A study of the cyclic schedul-
ing problem on parallel processors,”Discrete Applied
Mathematics, vol. 57, pp. 167–192, February 1995.

[2] P. Šůcha, Z. Pohl, and Z. Hanzálek, “Scheduling of it-
erative algorithms on FPGA with pipelined arithmetic
unit,” in 10th IEEE Real–Time and Embedded Technol-
ogy and Applications Symposium, May 2004.

[3] D. Fimmel and J. M̈uller, “Optimal software pipelining
under resource constraints,”Journal of Foundations of
Computer Science, vol. 12, no. 6, pp. 697–718, 2001.

[4] J. Coleman, E. Chester, C. Softley, and J. Kadlec,
“Arithmetic on the european logarithmic microproces-
sor,” IEEE Trans. Computers, vol. 49, no. 7, pp. 702–
715, 2000.

[5] A. Fettweis, “Wave digital filters: theory and practice,”
Proceedings of the IEEE, vol. 74, pp. 270–327, Febru-
ary 1986.

[6] E. G. P. Paulin, J. Knight, “Hal: A multi-paradigm ap-
proach to automatic data path synthesis,” in23rd IEEE
Design Automation Conf, Las Vegas, July 1986, pp.
263–270.

[7] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast
prototyping of datapath-intensive architectures,”IEEE
Des. Test, vol. 8, no. 2, pp. 40–51, 1991.

[8] A. Hěrmánek, Z. Pohl, and J. Kadlec, “FPGA im-
plementation of the adaptive lattice filter,” inField–
Programmable Logic and Applications, ser. Lecture
Notes in Computer Science, vol. 2778. Berlin:
Springer, 2003, pp. 1095–1099.


