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Abstract: We propose a novel dynamical model of a simple traffic intersection,
where the state variables represent the queue lengths and the mean waiting times
in the queues. Including the mean waiting times in the model allows for a more
fair traffic control, where the waiting times of the individual vehicles in the various
streets of the intersection are taken into account to some degree. The model
is linearized and its parameters are estimated using real traffic data measured
during one day in Prague. For the balancing of the waiting times, two different
controllers are considered: a linear quadratic regulator and a nonlinear model
predictive controller. The controllers are evaluated in simulations where real traffic
data is used for the incoming flows. Copyright © 2006 IFAC
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1. INTRODUCTION

In urban traffic control, it is common to de-
compose the traffic infrastructure into microre-
gions that describe particular streets and inter-
sections. This work focuses on developing a dy-
namical model of a simple intersection, describing
the evolution of the traffic situation by nonlinear
difference equations. The objective is to develop
controllers for balancing the vehicle waiting times
in the different streets of the intersection. For
this purpose, we use real traffic data from Prague
(Homolova and Nagy, 2005) to tune the intersec-
tion model and then develop two controllers: a
linear quadratic regulator (LQR) and a nonlinear
model predictive controller (NMPC).

I This work is partially supported by EU/FP6/ARTIST2
and by the Ministry of Education of the Czech Republic
under Project 1M0567.

The rapid growth of urban traffic requires effi-
cient control methods. The study of intelligent
transportation systems (ITS) dates back to the
1960s. Since then, a lot of work has been done
on road traffic control, freeway traffic control,
route guidance, and driver information (see, e.g.,
(Papageorgiou et al., 2003)). The control of a
single intersection (belonging to the class of road
traffic control) is usually based on a fized-time
strategy or on a traffic-response strategy.

In a fixed-time strategy (see, e.g., the TRANSYT
tool (Robertson, 1969)), the light control phases
(i.e. the duration of green and red light) are
scheduled offline. This approach is optimal only in
the case of the undersaturated intersections. The
light control phases are derived from historical
data measured in a given intersection. There are
typically several light control phases for each



intersection, depending on the given time of the
day.

The traflic-response strategies are based on feed-
back from the current state of the traffic (see, e.g.,
the SCOTT tool (Hunt et al., 1982)). The store-
and-forward strategy (Gazis and Potts, 1963;
Gazis, 2002) is a traffic-response strategy based
on a rigorous mathematical model. The main idea
in this model is to introduce a simplification that
allows a mathematical description of the traffic
flow without the use of discrete variables. This
simplifies the description of the system state space
and opens up the possibility to use optimization
and standard control algorithms. Controllers like
NMPC and LQR have been used to control the
number of vehicles in the queues—see the traffic-
response strategies OPAC (Gartner, 1983), PRO-
DYN (Henry et al., 1983), RHODES (Sen and
Head, 1997), and TUC (Diakaki et al., 2002).

Our approach builds on the store-and-forward
strategy. In our model, we also incorporate the
vehicle waiting times, which is a crucial input to
the controllers designed in this paper. A similar
approach was taken in (Henriksson et al., 2004),
where non-linear difference state equations were
used to model and control web server traffic.

The remainder of this paper is organized as fol-
lows. Section 2 describes the extended queue
model. The simple intersection model is given in
Section 3 and its control is given in Section 4.
Section 5 contains the summary and future work.

2. EXTENDED QUEUE MODEL

Classical traffic control strategies use the single
variable n—the number of vehicles in the queue,
measured in unit vehicles [uv]—as an input to the
control law with the objective to minimize this
value. If we want to increase the quality of the
traffic control from the driver’s point of view, we
can add another objective: the waiting time. The
waiting time is the time spent by the vehicle in
the queue.

Let us first assume that we are able to track every
vehicle and its waiting time in the queue. This will
be referred to as the complete queue model. The
state vector of this model can be written in the
form

Xe = (x1,2,...,2:)7" (1)
where z; denotes the number of vehicles that have
been waiting in the queue for i time units. The
disadvantages of this model are the state equation
complexity and the unbounded state vector. In
fact, the complexity of the model prohibits the
application of standard control techniques.

We next consider an approximate queue model
with only two state variables. The first variable,
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Fig. 1. Extended queue model evolution

n, is the number of vehicles in the queue, while
the second variable, E [s], is the mean value of
waiting times. E is given by S/n, where S is the
sum of the waiting times of all vehicles currently
in the queue. The state vector of this model is
written in the form x = (n, F)T. This model will
be referred to as the extended queue model.

2.1 Geometrical Interpretation of the FExtended
Queue Model

We here derive difference state equations for evo-
lution of the extended queue model. The extended
queue model evolution is dependent on the vehi-
cles flows and the length of the time unit. We as-
sume there is an (time-varying) incoming vehicle
flow w [uv - h~!] and an outgoing flow ¢ [uv - h~}]
of vehicles leaving the queue.

A geometrical interpretation of the extended
queue model is given in Fig. 1. The current state
at time k is given by the bold triangle, where the
base represents the queue length n and the height
represents the longest waiting time in the queue.
The longest waiting time is assumed to be twice
the mean waiting time E. The area of the bold

triangle represents the sum of waiting times over
all vehicles: S = E - n.

Next, we consider the evolution of the state from
time k to k+1. The incoming flow during this time
interval is assumed to be w(k), while the outgoing
flow is g(k). Studying Fig. 1, we have the following
geometrical interpretation of the state evolution:

(1) The outgoing flow ¢(k) corresponds to the
removal of the polygon A from the main
triangle. The remaining vehicles are thus
given by the triangle B.

(2) All vehicles staying in the queue increase
their waiting time by 1 unit. This corre-
sponds to the addition of the rectangle C.

(3) The incoming flow w(k) is represented by the
addition of the triangle D.

The new area (B+C+D) is equivalent to S(k+1),
i.e., the sum of waiting times over all vehicles at
time k + 1:

2
S(k1)=EW0 a4y (k) —q(k) + 22 (2)
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Fig. 2. Queue model evaluation

Finally, using the fact E(k) = S(k)/n(k), we ar-
rive at the following discrete-time state equations:

n(k+1) = n(k) — q(k) + w(k) (3)
B0 4 1) — g(k) + 242

Blk+1)= n(R) — q(k) + w(F)

(4)
These equations are valid only for n(k) > 0 and
n(k) > q(k) — w(k). This means that there must
be some vehicles in the queue, otherwise E(k + 1)
is equal to 0.

2.2 Extended Queue Model Evaluation

To evaluate the extended queue model, we com-
pared its ability to predict the mean waiting times
to that of the complete queue model. (While
the complete model has a complex mathematical
description, its behavior can be simulated for a
bounded number of vehicles.) As input data to
both models we used input traffic flows taken from
a real traffic region (Homolovd and Nagy, 2005).
The result is shown in Fig. 2. It is seen that the
extended queue model captures the mean waiting
times of the vehicles quite well, justifying its use.

2.3 FExtended Queue Model Equilibrium

For the purposes of linearization and further con-
trol synthesis, we want to find the equilibrium
points, i.e., the points where x(k) = x(k + 1).
The equilibrium points for our model must satisfy
the conditions

n(k)=n(k+1) (5)
Ek)=E(k+1) (6)

Solution of these equations implies

q°(k) = w°(k) (7)
2E°(k) = =

q°(k)
(The circle mark means that the value of a given

variable is the value in the equilibrium.) The con-
dition (7) means that the incoming flow w must
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Fig. 3. Simple intersection model

be equal to the outgoing flow g. The condition (8)
implies that the mean value of the waiting times
is proportional to the queue length and inversely
proportional to the vehicle flow. This is the well
known Little’s law (Little, 1961). In our terminol-
ogy, the condition says that “the average number
of vehicles in a stable queue (over some time
interval) is equal to their average incoming flow,
multiplied by their average time in the queue.”

3. SIMPLE INTERSECTION MODEL

The queue model described above will now be
used to construct a simple intersection model (see
Fig. 3). The intersection consists of two streets
(i.e., two queues) and one crossing area (which
is a shared resource). The outgoing flow ¢ for
each queue is controlled by a semaphore at the
intersection.

The simple intersection model is described by
xm(k +1) =F (xm(k),q(k), w(k)), (9)

where xp (k) = (x1(k), x2(k))T contains the state
vectors of the two queues. The full intersection
state vector is hence given by

xm(k) = (n1(k), B1(k),na(k), E2(k))"  (10)

Here, F is a non-linear function given by Egs.
(3) and (4). The vector q(k) = (q1(k),q2(k))T
represents the outgoing flow for the queues and
the vector w(k) = (wy (k), wa(k))T represents the
incoming flow.

3.1 Linear model

A linear model is constructed via linearization
of the function F around an equilibrium point
(Section 2.3). The equilibrium point was selected
as an average point in the real traffic situation,
described by the data in Table 1.

Table 1. Traffic data for the lineariza-
tion of the intersection model.

Variable Queuel  Queue2
q° =w°® [uv-h7 1] 100 150
n° [uv] 20 50
E° = 2’;2 [s] (8) 360 600




The linearized model can be written as
xm(k +1) = Axm (k) + Bq(k) + Buww(k) (11)
where A, B, and B,, are given by

1 0 0 0

005099 0 O

A= 0o 0 1 0

0 0 0.020.99
-1 0 1 0
—-17 0 —-17 0
B = 0o -1\ Bw = 0 1
0 -11 0 —-11

4. CONTROL OF THE SIMPLE
INTERSECTION MODEL

The goal of the control is to find an optimal
schedule for the traffic lights in the intersection,
such that the difference in average waiting times
between the two queues is minimized. In this sec-
tion, two controllers from modern control theory
will be designed and compared.

In general, an incoming flow of vehicles arriving
at an intersection must be separated into several
phases. The phase separation, designed by the
traffic engineers, determines a direction of vehicles
driving through the intersection. A repetitive se-
quence of phases form a control period. The phases
have fixed order in the control period and our goal
is to find their optimal timing.

The simple intersection model defined above in-
cludes the two control phases. Each phase allows
vehicles to flow only from one street, see Fig. 3.
Our control algorithms consider a constant sum
of the phase time intervals, i.e. constant control
period T'. In this section, the control period is
assumed to be 90 seconds. The time when the first
phase passes to the second one will be denoted
the switching time ts,. The switching time can
be used to define a control law for the model (9)
as follows:

q(k) — {(qmamlao)T

if k€ (T, iT + tsw),

(07 Qmam2)T if ke <iT + tsw, (Z + 1)T)7
(12)
Here, Gmaz; is the maximum feasible outgoing
flow from queue j and ¢ = 0,1,2,3,... is the index

of the control period.

4.1 Linear Quadratic Regulator

In this subsection, a linear quadratic regulator
(LQR) (e.g., (Kwakernaak, 1972; Astrom and
Wittenmark, 1997)) will be used for the inter-
section control. The objective is to minimize the
difference in the waiting times of the vehicles. This

means that a vehicle entering a queue should wait
the same time, regardless of which queue it is
entering. This can be expressed as minimization
of the cost function

J =Y (E(k) - Ea(k))” (13)
k

Using (10), the cost function can be rewritten as
T = xm(k)" Qxm(k) (14)
k

where

o O O

Q p—
0-10

Assuming a control law in the form
d' (k) = (¢ (k), g3 (k)" = & xm (k)

and solving the LQR Riccati equation gives the
optimal feedback gain

o —0.001 —0.020 0.000 —0.012
0.001 0.016 —0.001 —0.062
This control law produces a potentially un-
bounded result q'(k), which cannot be directly
applied to the intersection traffic control. Instead,
from this result we compute the switching time

tsw A8

¢ (k)
(k) + g5(k)
The final control law q(k) is obtained by combin-
ing this expression and Eq. (12). The control law
is computed at the start of the control period and
is held for the whole control period.

The LQR was applied to the simple intersection
model control (9). The simulated response to real
input data during one day (i.e. 86400 seconds) is
shown in Fig. 4(a). The resulting average waiting
times in the two queues are significantly different,
the error caused by the linearization of the model.

4.2 Non-Linear Model Predictive Controller

Next, we consider controlling the waiting times in
the simple intersection model using a non-linear
model predictive controller (NMPC) (Findeisen
and Allgéwer, 2002; Magni et al, 2003). The
same cost function (13) was used as an objective
function. For the NMPC algorithm we must select
a control horizon and a prediction horizon. The
prediction horizon is a time interval that the
controller uses for simulating the nonlinear model.
The control horizon is a time interval over which
the controller optimizes the control signal. In our
case, both horizons were set to the 90 seconds,
which is equal to the control period T'.

For convex problems, the NMPC can find an op-
timal switching time t5,, by convex optimization
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(Boyd and Vandenberghe, 2004). Our optimiza-
tion problem is not convex, however. Instead, we
find the optimal ts, by enumerating all ts, €
(0,T) and simulating the response. The simulated

intersection model response when applying the
NMPC control law is shown on the Fig. 4(b).

NMPC allows tuning of the control law to be
modified in a number of ways. For example, we
can extend the controller by taking into account
future incoming flow. In practice, we can measure
this traffic in a previous, neighboring intersection
(as shown by (Lei and Ozguner, 2001)) and for-
ward this information to the next intersection con-
troller. In this way, the predictive controller can
prepare a much better control action. Trying this
approach on the simple intersection model, adding
feedforward traffic information to the NMPC is
able to reduce the cost function J by about 37%.
The accumulative value of the cost function J for
different controllers is depicted in Fig. 5. We can
see that the NMPC yields much better results
than LQR, and that feedforward from the incom-
ing traffic improves the result even further.

To evaluate the sensitivity of the NMPC to the
incoming flow, the following experiment was per-
formed. In addition to the original incoming flow,
Queue 2 was subjected to one additional vehi-
cle per second from time 30000 to time 30100.
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Fig. 6(a) shows that the increase in the number
of vehicles in Queue 1 is partially compensated by
the NMPC, which leads to an increase in the num-
ber of vehicles in Queue 2. From the principle (see
Equation 3) the number of vehicles in Fig. 6(a)
holds for both models. The mean value of the
waiting times in the extended queue model (shown
in Fig. 6(b)) is used to calculate the switching time
tsw by the NMPC. The same t,, is applied to the
complete queue model (see Fig. 6(c)) showing that
FE in both queues is quite well balanced.

Table 2 shows the complexity of the NMPC cal-
culations in terms of the number iterations for
the one-day experiment. The left half of the table
shows the complexity results for a prediction hori-
zon of 90 seconds. The first row in the first column
refers to the complexity of experiments reported
up to now. In general, the control performance
can be increased by prolongation of the predic-
tive horizon. In the right half of the table, the
complexity results for a predictive horizon of 180
seconds is shown. In all cases, the time complexity
is negligible with respect to the control period.
Nevertheless, we propose two simple approaches
for reducing the problem complexity. First, the
tsw does not need to be an integer variable (as
assumed in the first row in Table 2), but can be
assumed to achieve a value divisible by 2 (the
second row) or by 5 (the third row). Second, for



Table 2. NMPC complexity in number
of iterations

predictive horizon 90s predictive horizon 180s

6=90 =30 d=5 06=90 6=30 o6=5

p=0 p=10 p=10 p=0 p=10 p=10
1 87451 41328 9905 7958041 1980255 110621
2 45167 21927 5995 2122849 548138 39316
5 19220 10055 3587 384400 113237 13724

practical reasons, ts,, (k+1) does not need to vary
from 0 to 90 (as assumed in the columns with
d =90, = 0), but could be allowed to vary only
from max{tsy (k) — 0, u} to min{ts,(k)+9,90—p}
where ¢ stands for maximal allowed difference of
tsw and p defines a minimal duration of the phase.
Both approaches lead to a significant reduction of
the search space for the NMPC.

5. SUMMARY AND FUTURE WORK

In this paper, a new model for traffic queues
has been presented. The extended queue model is
described by the number of vehicles in the queue
and the mean value of waiting time. The model
is based on non-linear difference state equations.
We have shown that the equilibrium point of the
nonlinear model conforms with the Little’s law.

Further, we have used the extended queue model
to derive the parameters of the controllers for a
simple intersection model with two queues. Two
controllers were applied to the intersection model.
First, we designed a linear quadratic regulator
based on a linearization of the state equations
around an equilibrium point. Second, we proposed
the use of a nonlinear model predictive controller.
The advantages and disadvantages of the con-
trollers were discussed, and their performance was
evaluated in simulations using real traffic data.

Current work aims at incorporating several inter-
sections into a traffic microregion model. As future
work we would like to include additional practi-
cal constraints to the problem (e.g., supervisory
systems performing high-level optimization on the
model).

In order to model the traffic with higher precision
(i.e. incorporating logarithmic stream model cap-
turing the output flow as non-monotonic function
of the car density) we are developing a model
based on continuous Petri Nets. In the end, we
want to compare both models and evaluate the
resulting control performance.
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