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Abstract 

The motivation of our work is to make a design tool for 
distributed embedded systems compliant with HIS and 
AUTOSAR. The tool is based on Processor Expert, a 
component oriented development environment supporting 
several hundreds of microcontrollers, and Matlab 
Simulink which is the de-facto standard in the rapid 
prototyping of the control applications but it does not 
have an adequate HW support. The objective is to provide 
an integrated development environment for embedded 
controllers having distributed nature and real-time 
requirements. Therefore we discuss the advantages of 
using an automatically generated code in the development 
cycle of the control embedded software. We present a 
developed block set and Processor Expert Real-Time 
Target for Matlab Real-Time Workshop Embedded 
Coder. The case study shows a development cycle for a 
servo control design. 

 

1. Introduction 

Since the Matlab development tool chain has become a 
standard in the control applications development, we 
focus on its facilities for a code generation. As the Matlab 
main weakness is identified a poor support for handling 
hardware devices of a target microcontroller. Since 
Processor Expert (PE), a tool for the microcontrollers’ 
hardware resources management and design at high level 
exists; we bring an improvement of the Matlab facilities 
for handling the controller hardware by integrating 
Processor Expert to the Matlab Simulink environment. 

The design of control systems is often treated 
separately from the design of its software and hardware 
implementation. The increasing use of electronic control 

units in automotive applications has caused an increasing 
need for the simultaneous consideration of the control 
system and its implementation platform during the 
development. There is a need for supporting tools that 
assist designers in the modeling, the simulation and the 
analysis while capturing relationships among various 
requirements such as the control performance (e.g. rise 
time, overshoot, and stability), the response time, 
resources used (memory footprint, peripheral devices), the 
energy consumption, the robustness, the cost, and the 
design parameters related to the control system and 
platform design. 

The product demands in terms of the competition and 
the legislation will moreover cause a need for the system 
design optimization. This is particularly relevant for a 
large series production where the goal is to make the 
hardware cost proportion as small as possible [5], [11]. 

The digital control theory normally assumes 
equidistant sampling intervals and a negligible or constant 
control delay from the sampling to the actuation. 
However, this can seldom be achieved in practice in a 
networked embedded system [4]. For control systems this 
is of particular concern. Timing variations in sampling 
periods and latencies degrade the control performance and 
may in extreme cases lead to the instability. One solution 
is to simulate such a behavior while using e.g. TrueTime 
[2], a Matlab/Simulink toolbox, which requires the 
precise representation of the control algorithm structure, 
the worst case execution time of operations and other 
parameters. The second solution, represented by 
Targetlink [3] or the approach shown in this article, is 
based on an automatic code generation and the processor-
in-the-loop (PIL) or hardware-in-the-loop (HIL) testing. 

Tools supporting the co-design of control systems and 
their real-time implementation [2],[3],[6],[8],[9],[10] have 
various objectives ranging from the simulation to the 
formal verification and the code generation. The current 
status and the future directions are surveyed in [1][5] and 
more extensive description of the surveyed tools is given 
in [7]. 

 
 



     

The model based design and the automatic generation 
of the production code is increasingly employed in the 
development of automotive applications. To support this 
trend, we have developed an embedded real-time target 
integrating the tool Processor Expert (PE) to the 
environment of Matlab Simulink. 

PE is a tool generating a production quality C code that 
provides an hardware abstraction layer allowing to access 
peripherals (ADC, PWM, Timer,…) of many supported 
microcontrollers (MCU), covering the Freescale 
production line and many National Semiconductors and 
Fujitsu MCU, via an unified application interface that can 
be compliant with common standards (e.g. HIS or 
AUTOSAR [1]). A developer does not need to study all 
details relating to control registers of MCU peripherals. 
He only specifies the fundamental parameters (e.g. the 
resolution of ADC, the input pin, the conversion time, the 
mode of operation) and selects high level methods and 
events to access the peripheral (e.g. Measure, GetValue). 
Moreover, the selected parameters are verified by PE. 

Matlab Simulink, on the other hand, allows engineers 
to develop a control application algorithm in the high 
level graphical language of data-flow and state-flow 
diagrams. The C code can be automatically generated 
from the model. However, the hardware (HW) of 
peripheral devices is not supported well. Only few MCUs 
are supported, portability is limited since blocks 
representing peripherals are different for different MCUs; 
they do not usually allow adjusting all HW parameters 
and no verification of this error prone process is done. 

It is clear from the mentioned brief description of PE 
and Matlab Simulink that they complement one another 
perfectly. To allow designers to use the best features of 
each of these tools at the rapid application development 
cycle, we have developed a peripheral devices block set 
and a code generator target integrating PE to Simulink. 
PE generates the code of a HW abstraction layer and 
Simulink use it in the application code. 

The integration of PE to Simulink allows control 
engineers familiar with the graphical environment of 
Simulink to adjust the HW peripherals that are an 
inseparable part of each control application on the high 
level, without the detail knowledge of the specific MCU. 

Contrary to the other existing targets for the code 
generation from Simulink, PE block set allows to use all 
features of the HW – there are no predefined adjustments 
that can not be changed by the user. Since many 
peripherals generate interrupts and they are all supported 
by the corresponding blocks in the PE block set, the 
control application can consist of both, event driven and 
time driven tasks. 

From the strategic point of view, it is important that 
due to the HW abstraction layer provided by PE, the PE 
block set and the target automatically support all MCUs 
supported by PE - that are the most important families of 

MCU produced by Freescale. Also new MCUs coming to 
the market will be supported by the PE producer. 

The model with the PE blocks can be moreover 
extremely simply ported to another MCU by selecting 
another CPU bean in the PE project window. The 
application design in Simulink therefore becomes HW 
independent. 

The motivation for using an automatic code generation 
in the development cycle of embedded control 
applications is discussed in section 2. Matlab facilities for 
the code generation and weaknesses of the existing code 
generation targets are described in section 3. A brief 
description of PE follows in section 4. The integration of 
PE to the Matlab tool chain, the main contribution of this 
paper, is described in section 5. A support of the 
processor in the loop simulation is described in section 6. 
A short case study demonstrating the using of this 
technology is presented in section 7. Finally concluding 
remarks and future work directions are indicated in 
section 8. 

2. Motivation to Automatic Code Generation 

Problems related to the manually coded software arise 
from its huge complexity on one side and the requirement 
of its high reliability and short time to the market on the 
other side. The powertrain control unit software, for 
example, consists of 50000 lines of a code, its 
development effort takes 40 man-years and the average 
productivity of the coding process is 6 lines per day. The 
time to the market is only 24 months, the validation takes 
5 months and the changing rate is 3 years [14]. 

Regardless of the quality and the efficiency problems 
with the manually coded SW, there is also a problem 
originating in the classical development process of the 
control application. The control strategy is formulated as 
a control algorithm that is continually improved and 
refined by the simulation on a model. Once the algorithm 
design is finished the implementation is done manually. 
With the exception of simple projects, the tasks of the 
control algorithm design and its implementation are done 
by different specialists, or even teams. Realize however, 
that the points of view of these specialists, their 
qualifications and the used tools are different. While the 
control engineer sees the controlled object and the 
requirements on the control quality, the software engineer 
focuses on the implementation and the architecture of the 
real-time system and probably does not know the details 
of the controlled system dynamic and the motivations for 
the decisions done by the control engineer. 

However, the implementation is not only a simple 
translation of the algorithm specified in details by the 
simulation model to the target language. Also many 
decisions affecting the behavior of the control algorithm 



     

(e.g. the hardware/software deployment, the scheduling 
policy) must be done. 

Once the controller is manually implemented, its code 
is handled by software development tools (compilers, 
debuggers, profilers etc) that do not support the control 
theory point of view. Simultaneously, due to the manual 
implementation, the tool used for the control algorithm 
design and simulation looses the link between the model 
and the executable application. A validation and tuning of 
the implemented controller is therefore hard. 

An automatically generated code allows a seamless 
development process where the only one control engineer, 
or a team, designs and implements the entire system. The 
designer therefore focuses on the controlled object from 
the beginning to the end of the development and the 
implementation issues as MCU HW, the programming 
language, the scheduling policy and the other non-
functional aspects remain in the background [13]. All the 
implementation issues are covered by the code generator 
target developed by the real-time and MCU specialists as 
a support for the control engineers work. 

The quality of the generated code is comparable to the 
hand-written code, it is readable, the development time is 
shorter and possible error sources are reduced. 

The rapid application development approach does not 
bring only the automatic code generation. It is a model 
based development method supported by a tool chain 
covering entire “V” model development chain. The 
validation of each development phase is done by the 
simulation in the Matlab Simulink. First “Model in the 
Loop” validates the model of the controller. After the 
code generation, the “Processor in the Loop” simulation 
can be used to validate the real-time execution of the 
controller on the MCU in the loop with the plant model in 
Simulink. Then the “Hardware in the Loop” simulation 
can be used to validate the entire control unit. All these 
phases can be supported by Simulink and the 
corresponding code generator target. The results of each 
experiment are used to continuous improvement of the 
Simulink model that remains still the actual 
documentation. Contrary to the hand-written code, there 
is no gap between the model and the implementation. 

3. Code Generation in Matlab 

The C code for a rapid prototyping is generated by the 
tool Real-Time Workshop (RTW) [19]. The add-on RTW 
Embedded Coder [16] is used for the highly optimized 
production quality code. The tool StateFlow Coder is used 
for the code generation from StateFlow charts. 

Besides these tools, the platform dependent target is 
needed [20]. The platform means a specific MCU, an 
operating system (or none for a bare board) and 
development tools (compiler, linker etc.). The target, 
except other, defines the language (C/C++), details about 

the MCU (8/16/32bit, little/big endian ....), and it calls the 
development tools. The target intended for the real-time 
execution of the model defines the infrastructure 
deploying the generated code to bare board interrupts or 
operating system tasks. 

An inseparable part of each target is a block set – a 
library of Simulink blocks representing the functional 
components of the targeted platform. A block set usually 
contains blocks interfacing the HW peripherals, the 
operating system and the communication services etc. 
Each of these blocks, implemented as an s-function [21], 
defines its simulation behavior and provides a user 
interface for the parameters setting. The code generated 
by RTW for each of these blocks is defined by a Target 
Language Compiler (TLC) script in a tlc file [22]. 

During the code generation, a code is generated for 
each block in the model according to the corresponding 
tlc file. These codes are combined according to the data 
flow in the model. Finally a make file is generated from 
the predefined template; the code is build and the 
executable application is downloaded to the development 
board. There are several points in this process, where user 
defined hooks can be called. This mechanism is used for 
cooperation with the target specific development tools. 

3.1. Weakness of Existing Code Generation 
Targets 

There are several weaknesses that motivate us to 
develop a new target based on PE. 
• Only few targets exist and therefore far from all MCU 

families and derivates are supported. 
• Each MCU target has its own block set. This fact 

prevents the reusability and the portability of the 
model using these HW specific blocks. 

• The way in which the peripheral HW is handled by the 
generated code is predefined by the target 
developers and it can not be changed by the user. 

• Validation of the HW settings in the time and the 
resource domain is missing. Each parameter changes 
are therefore an error prone process. 

• The simulation behavior of blocks representing 
peripherals is trivial (pass-through) 

• Block sets are based on the low level API which is not 
very comfortable for users. 

4. Processor Expert Overview 

PE [23] is a component oriented tool for the rapid 
development of embedded applications. Its main task is to 
manage the HW resources of the MCU and to allow the 
design at the high level. PE contains information about 
supported MCUs and their on-chip peripherals. The 
functionality of the basic elements of the embedded 



     

systems like the MCU core, the MCU on-chip peripherals 
etc. are encapsulated in Embedded Beans. An interface to 
a bean is provided via properties, methods, and events. 

Bean properties are used to specify the HW setting at 
the design-time. Since it is done via well arranged dialogs 
of the Bean Inspector menu (Fig. 4.1), it is not necessary 
to study the HW details and the registers values. Some 
design parameters, such as settings of common prescalers 
or useable resources for the needed functionality are 
calculated by the expert system. Verification of user 
decisions is provided. All the on-chip peripherals are 
supported and all the HW features are accessible to the 
user; there are no predefined settings that can not be 
changed. 

Bean Methods provide a unified interface to the user 
application code. The same methods on different MCUs 
are compatible from the application point of view. As PE 
covers the Freescale MCU product line, it supports 
application code portability. Methods code is well tested, 
highly optimized and scaled to the selected MCU. The 
generated methods code can be compliant with common 
standards (e.g. HIS or AUTOSAR standards for 
automotive software). 

Bean events can be used by the user to handle 
interrupts. 

5. Processor Expert Integrated in Simulink 

It is clear from the mentioned brief description of the 
Processor Expert and Matlab Simulink features for code 
generations that they complement one another perfectly. 
To allow designers to use the best features of each of 
these tools at the rapid application development cycle, we 
have developed a peripheral devices block set and an 

embedded target for Real Time Workshop Embedded 
Coder, the Processor Expert Real-Time Target (PEERT) 
integrating Processor Expert to the Simulink environment. 
The development cycle with PEERT is outlined in Fig. 
6.1 

PEERT consists of three main parts - the PE block set, 
the PES_COM communication library and the RTW 
Embedded Coder target. 

The PE block set contains blocks representing general 
peripherals such as Timers, ADC, PWM, PortIO, 
Quadrature Decoder etc. Each block in the Simulink 
model corresponds to a bean in the PE project. Each PE 
block is implemented as an s-function that reads 
properties of the corresponding bean and simulate the 
behavior of the corresponding peripheral. 

The synchronization of the Simulink model with the 
PE project and the communication of both these tools 
through the Microsoft Component Object Model (COM) 
interface [24][25] is provided by the PES_COM library. 
The PE COM server allows the full integration of the PE 
functionality with Simulink. User changes in the model 
(PE block insertion, erasure, rename etc.) are propagated 
to the PE project and opposite. PE block properties are set 
via the PE bean inspector menu (see Fig. 4.1) that is open 
by a double-click on the PE block and they are therefore 
immediately verified by the PE knowledge base. 

The PE block set supports the single model approach to 
the development. The model consists of two 
interconnected subsystems – a controller and a plant in 
the closed loop. The code is of course generated for the 
controller subsystem only. During the simulation, the PE 
blocks remain in the model since they have inputs/outputs 
for signals from/to the plant model. The advantage of the 
single model approach is that it is not necessary to create 
one model for the simulation (without peripherals blocks) 
and the second (without plant) for the code generation. 

During the simulation, the PE blocks do not simply 
pass the data from/to the plant to/from the controller 
through, but reflects the main HW properties. For 
example, the ADC block representing the 12 bits AD 
converter on the MCU chip really provides the controller 
model with values with the 12 bits resolution, even 
though the data type of the input signal from the plant 
model is double and the data type of the output signal to 
the controller model is uint16. 

The majority of the PE blocks represents beans with 
events corresponding to the hardware interrupt (e.g. “end 
of conversion” in the case of ADC). The events are 
represented as function-call ports in the PE blocks. They 
can be used for the event-driven triggering of a subsystem 
block execution or an asynchronous change of a Stateflow 
chart state. 

The RTW Embedded Coder target has been developed 
for the C code generation. It defines the code generated 
for each block in the PE block set (via tlc files) and the 

 

 

Fig. 4.1 Bean Inspector Window 



     

real-time execution infrastructure. Only the uniform API 
of beans is used in tlc files. They are therefore MCU 
independent.  

Periodic parts of the model code are executed non-
preemptively in a timer interrupt. Function-call 
subsystems that are executed asynchronously are executed 
within interrupt service routines of triggering events. The 
initialization is done in the main function. There can also 
be executed a manually written background task. 

Moreover, the target manages the code generation 
process. peert_make_rtw_hook.m file implements hook 
methods called by RTW in the defined points of the code 
generation process. It is used for the automatic 
configuration of beans (it for example enables the code 
generation for methods used in the corresponding tlc file). 
The peert_make_rtw_hook.m file moreover starts the 
generation of beans code by PE and integrates the code 
generated by RTW to the code generated by PE. Then the 
PE project is complete and can be used for building the 
application. 

6. Processor in the Loop simulation support 

The control system development cycle is not finished 

by the implementation, but the validation and tuning 
phase must follow. The validation and tuning process can 
proceed on different levels of abstraction. At the earliest 
phases of the control algorithm development, before its 
implementation, its model has been validated by the 
simulation with the model of the controlled plant in the 
closed loop. This most abstract phase is called model in 
the loop (MIL) simulation. Since the model of the control 
algorithm does not contain, at this time unknown, real 
time properties (execution times, jitters caused by 
scheduling and interrupts,...), a more detail validation 
must be done by executing the implemented code on the 
targeted processor.  

It is usual that the software is developed 
simultaneously with the hardware or even simultaneously 
with the controlled plant. Before the hardware and the 
plant are finished, the code of the implemented control 
algorithm can be validated by so called processor in the 
loop (PIL) simulation. The implemented code of the 
control algorithm is executed on a universal development 
board, the model of the controlled plant is simulated by a 
simulator and the input and output data are interchanged 
by a communication line. 

The PIL simulation is provided in the real time. It 
shows the execution times of the implemented controller 

 

Fig. 6.1 Processor Expert integrated in Simulink 



     

code, interrupts response times, sampling jitters, memory 
and stack requirements etc. It does not only provide the 
profiling information, but it shows the impact of the 
runtime parameters on the control quality. Even though 
the results are not absolutely precise (due to the abstract 
simulation model of the plant, the impact of the 
communication times and the minor changes in the code 
required for the input and output data redirection from 
peripherals to the communication line), they are the best 
can be obtained at this phase of the development. The PIL 
simulation can, for example, answer the question whether 
the computation power of the processor is sufficient and 
whether the scheduling parameters are chosen properly. 

More precise results can be obtained by the simulation 
of the complete hardware of the control unite in the loop 
with a simulator of the plant (so called hardware in the 
loop simulation - HIL) or with the real plant. These 
approaches are applicable in final phases of the 
development and the final version of the code is used. On 
the contrary, a special version of the code is used in the 
PIL simulation. The inputs are not measured by the 
hardware peripherals but their values are obtained via the 
communication line, similarly the outputs are not written 
to the hardware peripherals but to the communication line 
and some interrupt service routines are not invoked by the 
peripherals but the communication interrupt service 
routine when a corresponding event is indicated by the 
received packet. Therefore, a support for PIL simulation 
is required in the code generation target. Our Processor 
Expert Real-Time Target supports PIL simulation. The 
concept of the system for the PIL simulation is outlined in 
Fig. 6.2. 

The host PC runs Simulink where the models of the 
plant and the controller are developed and simulated by 
the MIL approach.  

For the PIL simulation, the process of the code 
generation and simulation is automated by our 
PEERT_PIL target. 

The PEERT_PIL generates the code of the controller 
subsystem by RTW Embedded Coder, compiles it and 
downloads it to the development board. The code 
generated for the peripheral blocks does not handle the 
peripherals hardware, but read/write the data from/to the 
communication buffer. 

The PEERT_PIL then substitute the controller 
subsystem by a communication block providing a code 
that composes outcoming communication packets from 
the signals from the plant subsystem and parses incoming 
packets to the signals for the plant subsystem. The code 
for the model of the plant with the communication block 
is then generated by RTW for the xPC target and started 
on the simulator PC. 

Both, the plant and the controller codes are executed in 
the real-time on the simulator PC and the development 
board respectively and they exchange the simulation data 

at the end of each simulation step (control period). The 
communication between the simulator PC and the 
development board is provided by RS232 asynchronous 
serial line. Event though the communication over RS232 
is very slow, the main advantage of this interface is that it 
is present on any development board (an advantage over 
faster USB), and simultaneously, it is usually unused in 
the application (an advantage over CAN or SPI). 

Any chosen data can by visualized on the host PC due 
to the fast interconnection with the simulator via Ethernet 
with the TCP protocol. 

7. Case Study 

A simple control application developed by the 
presented technology is briefly described in this section. 
The considered application is a speed control of a 
mechanically commutated DC motor. The motor is 
actuated by a power transistor switched by a pulse width 
modulated (PWM) signal from the MCU. The feedback is 
provided by an incremental rotating encoder (IRC) 
generating the quadrature modulated signal (100 periods 
of two phase shifted pulse signals A and B per rotation 
and one index pulse per rotation). These signals are 
handled by the MCU counters. A few button keyboard is 
used to set the speed set-point and switch between the 
manual and the automatic control mode. The MCU is 16-
bit Hybrid Controllers (DSP and MCU functionality) 
MC56F8367. 

The software of the application is developed as a 
model in Simulink. The model consists of the plant 
subsystem and the controller subsystem (see Fig. 7.1). 
This model is validated by the MIL simulation. Since the 
controller subsystem (see Fig. 7.2) already contains PE 
blocks simulating the behavior of the peripherals, the 
modeled input and output data has the same resolution as 
the hardware peripherals. It is also important to specify 
data types of all the signals and the parameters in the 
controller model. The default data type used in Simulink 
is double. This type is, however, not appropriate for the 
implementation in the 16-bit microcontroller without the 
floating point unite. Simulink allows choosing and 

 

Fig. 6.2 The concept of the system for the PIL 
simulation 



     

validating an appropriate fix-point representation of real 
numbers in the controller model. 

The controller code is then automatically generated by 
the PEERT target from the controller subsystem only. The 
controller subsystem must contain the Processor Expert 
block that must be inserted to the model as the first block 
from the processor expert block set. 

8. Conclusions and Future Work 

The advantages of using the automatically generated 
code in the development cycle of the control embedded 
software have been presented in this paper. Since Matlab 
is probably the most often used tool for the simulation and 
the control algorithm design we focused on its capability 
for the embedded code generation. 

As the main weakness of the current Matlab facilities 
for the code generation was identified a poor support for 
handling the HW devices of the target MCU. We have 
presented the improvement of this situation by integrating 
the tool PE to the Simulink environment. The developed 
Processor Expert Real-Time Target for Matlab Real-Time 
Workshop Embedded Coder has been described. 

The contribution of the presented integration is that the 
developed code generation target is intended for the 
production quality code, while most of the other existing 
targets seem to be more appropriate for rapid prototyping. 
The main advantages of the developed target with respect 
to other existing targets are the MCU independency of the 
model, the unconstrained flexibility of the peripherals 
setting, the possibility of the hardware setting at high 
level with an immediate validation of designer decisions, 
and the higher precision of the simulation due to the 
consideration of the main hardware features. 

There are two variants of the block sets. In the first 
variant the blocks represent the PE beans while in the 
second variant the blocks represent AUTOSAR 
peripherals. The blocks of both variants are the same from 
the functional point of view, but they differ in HW 

settings and the API of generated code. 
Currently we are working on the first industrial 

applications using the first variant of block set. The 
second variant currently contains basic blocks and we are 
working on its completion. 

Concerning the support for the PIL simulation, we 
would like to develop a Linux target for the simulator. 
The disadvantages of the currently used xPC target are 
that it is closed and does not allow us to implement a 
support for new communications (e.g. SPI). Linux would 
also allow us to use a non PC hardware. Many embedded 
computers (e.g. based on power PC processors) offer 
communication and real-time facilities and sufficient 
computation power. 
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