
Integrated Environment for Embedded Control Systems Design

Roman Bartosinski1, Zdeněk. Hanzálek2, Petr Stružka3, and Libor Waszniowski2

1Czech Academy of Sci.,
Pod vodarenskou vezi 4,

182 08 Praha 8, CR
bartosr@utia.cas.cz

2Czech Technical University
Karlovo nám. 13

121 35 Prague 2, CR
{hanzalek, xwasznio}@fel.cvut.cz

3UNIS, Ltd.
Jundrovská 33

624 00 Brno, CR
pstruzka@unis.cz

Abstract

The motivation of our work is to make a design tool for
distributed embedded systems compliant with HIS and
AUTOSAR. The tool is based on Processor Expert, a
component oriented development environment supporting
several hundreds of microcontrollers, and Matlab
Simulink which is the de-facto standard in the rapid
prototyping of the control applications but it does not
have an adequate HW support. The objective is to provide
an integrated development environment for embedded
controllers having distributed nature and real-time
requirements. Therefore we discuss the advantages of
using an automatically generated code in the development
cycle of the control embedded software. We present a
developed block set and Processor Expert Real-Time
Target for Matlab Real-Time Workshop Embedded
Coder. The case study shows a development cycle for a
servo control design.

1. Introduction

Since the Matlab development tool chain has become a
standard in the control applications development, we
focus on its facilities for a code generation. As the Matlab
main weakness is identified a poor support for handling
hardware devices of a target microcontroller. Since
Processor Expert (PE), a tool for the microcontrollers’
hardware resources management and design at high level
exists; we bring an improvement of the Matlab facilities
for handling the controller hardware by integrating
Processor Expert to the Matlab Simulink environment.

The design of control systems is often treated
separately from the design of its software and hardware
implementation. The increasing use of electronic control

units in automotive applications has caused an increasing
need for the simultaneous consideration of the control
system and its implementation platform during the
development. There is a need for supporting tools that
assist designers in the modeling, the simulation and the
analysis while capturing relationships among various
requirements such as the control performance (e.g. rise
time, overshoot, and stability), the response time,
resources used (memory footprint, peripheral devices), the
energy consumption, the robustness, the cost, and the
design parameters related to the control system and
platform design.

The product demands in terms of the competition and
the legislation will moreover cause a need for the system
design optimization. This is particularly relevant for a
large series production where the goal is to make the
hardware cost proportion as small as possible [5], [11].

The digital control theory normally assumes
equidistant sampling intervals and a negligible or constant
control delay from the sampling to the actuation.
However, this can seldom be achieved in practice in a
networked embedded system [4]. For control systems this
is of particular concern. Timing variations in sampling
periods and latencies degrade the control performance and
may in extreme cases lead to the instability. One solution
is to simulate such a behavior while using e.g. TrueTime
[2], a Matlab/Simulink toolbox, which requires the
precise representation of the control algorithm structure,
the worst case execution time of operations and other
parameters. The second solution, represented by
Targetlink [3] or the approach shown in this article, is
based on an automatic code generation and the processor-
in-the-loop (PIL) or hardware-in-the-loop (HIL) testing.

Tools supporting the co-design of control systems and
their real-time implementation [2],[3],[6],[8],[9],[10] have
various objectives ranging from the simulation to the
formal verification and the code generation. The current
status and the future directions are surveyed in [1][5] and
more extensive description of the surveyed tools is given
in [7].

The model based design and the automatic generation
of the production code is increasingly employed in the
development of automotive applications. To support this
trend, we have developed an embedded real-time target
integrating the tool Processor Expert (PE) to the
environment of Matlab Simulink.

PE is a tool generating a production quality C code that
provides an hardware abstraction layer allowing to access
peripherals (ADC, PWM, Timer,…) of many supported
microcontrollers (MCU), covering the Freescale
production line and many National Semiconductors and
Fujitsu MCU, via an unified application interface that can
be compliant with common standards (e.g. HIS or
AUTOSAR [1]). A developer does not need to study all
details relating to control registers of MCU peripherals.
He only specifies the fundamental parameters (e.g. the
resolution of ADC, the input pin, the conversion time, the
mode of operation) and selects high level methods and
events to access the peripheral (e.g. Measure, GetValue).
Moreover, the selected parameters are verified by PE.

Matlab Simulink, on the other hand, allows engineers
to develop a control application algorithm in the high
level graphical language of data-flow and state-flow
diagrams. The C code can be automatically generated
from the model. However, the hardware (HW) of
peripheral devices is not supported well. Only few MCUs
are supported, portability is limited since blocks
representing peripherals are different for different MCUs;
they do not usually allow adjusting all HW parameters
and no verification of this error prone process is done.

It is clear from the mentioned brief description of PE
and Matlab Simulink that they complement one another
perfectly. To allow designers to use the best features of
each of these tools at the rapid application development
cycle, we have developed a peripheral devices block set
and a code generator target integrating PE to Simulink.
PE generates the code of a HW abstraction layer and
Simulink use it in the application code.

The integration of PE to Simulink allows control
engineers familiar with the graphical environment of
Simulink to adjust the HW peripherals that are an
inseparable part of each control application on the high
level, without the detail knowledge of the specific MCU.

Contrary to the other existing targets for the code
generation from Simulink, PE block set allows to use all
features of the HW – there are no predefined adjustments
that can not be changed by the user. Since many
peripherals generate interrupts and they are all supported
by the corresponding blocks in the PE block set, the
control application can consist of both, event driven and
time driven tasks.

From the strategic point of view, it is important that
due to the HW abstraction layer provided by PE, the PE
block set and the target automatically support all MCUs
supported by PE - that are the most important families of

MCU produced by Freescale. Also new MCUs coming to
the market will be supported by the PE producer.

The model with the PE blocks can be moreover
extremely simply ported to another MCU by selecting
another CPU bean in the PE project window. The
application design in Simulink therefore becomes HW
independent.

The motivation for using an automatic code generation
in the development cycle of embedded control
applications is discussed in section 2. Matlab facilities for
the code generation and weaknesses of the existing code
generation targets are described in section 3. A brief
description of PE follows in section 4. The integration of
PE to the Matlab tool chain, the main contribution of this
paper, is described in section 5. A support of the
processor in the loop simulation is described in section 6.
A short case study demonstrating the using of this
technology is presented in section 7. Finally concluding
remarks and future work directions are indicated in
section 8.

2. Motivation to Automatic Code Generation

Problems related to the manually coded software arise
from its huge complexity on one side and the requirement
of its high reliability and short time to the market on the
other side. The powertrain control unit software, for
example, consists of 50000 lines of a code, its
development effort takes 40 man-years and the average
productivity of the coding process is 6 lines per day. The
time to the market is only 24 months, the validation takes
5 months and the changing rate is 3 years [14].

Regardless of the quality and the efficiency problems
with the manually coded SW, there is also a problem
originating in the classical development process of the
control application. The control strategy is formulated as
a control algorithm that is continually improved and
refined by the simulation on a model. Once the algorithm
design is finished the implementation is done manually.
With the exception of simple projects, the tasks of the
control algorithm design and its implementation are done
by different specialists, or even teams. Realize however,
that the points of view of these specialists, their
qualifications and the used tools are different. While the
control engineer sees the controlled object and the
requirements on the control quality, the software engineer
focuses on the implementation and the architecture of the
real-time system and probably does not know the details
of the controlled system dynamic and the motivations for
the decisions done by the control engineer.

However, the implementation is not only a simple
translation of the algorithm specified in details by the
simulation model to the target language. Also many
decisions affecting the behavior of the control algorithm

(e.g. the hardware/software deployment, the scheduling
policy) must be done.

Once the controller is manually implemented, its code
is handled by software development tools (compilers,
debuggers, profilers etc) that do not support the control
theory point of view. Simultaneously, due to the manual
implementation, the tool used for the control algorithm
design and simulation looses the link between the model
and the executable application. A validation and tuning of
the implemented controller is therefore hard.

An automatically generated code allows a seamless
development process where the only one control engineer,
or a team, designs and implements the entire system. The
designer therefore focuses on the controlled object from
the beginning to the end of the development and the
implementation issues as MCU HW, the programming
language, the scheduling policy and the other non-
functional aspects remain in the background [13]. All the
implementation issues are covered by the code generator
target developed by the real-time and MCU specialists as
a support for the control engineers work.

The quality of the generated code is comparable to the
hand-written code, it is readable, the development time is
shorter and possible error sources are reduced.

The rapid application development approach does not
bring only the automatic code generation. It is a model
based development method supported by a tool chain
covering entire “V” model development chain. The
validation of each development phase is done by the
simulation in the Matlab Simulink. First “Model in the
Loop” validates the model of the controller. After the
code generation, the “Processor in the Loop” simulation
can be used to validate the real-time execution of the
controller on the MCU in the loop with the plant model in
Simulink. Then the “Hardware in the Loop” simulation
can be used to validate the entire control unit. All these
phases can be supported by Simulink and the
corresponding code generator target. The results of each
experiment are used to continuous improvement of the
Simulink model that remains still the actual
documentation. Contrary to the hand-written code, there
is no gap between the model and the implementation.

3. Code Generation in Matlab

The C code for a rapid prototyping is generated by the
tool Real-Time Workshop (RTW) [19]. The add-on RTW
Embedded Coder [16] is used for the highly optimized
production quality code. The tool StateFlow Coder is used
for the code generation from StateFlow charts.

Besides these tools, the platform dependent target is
needed [20]. The platform means a specific MCU, an
operating system (or none for a bare board) and
development tools (compiler, linker etc.). The target,
except other, defines the language (C/C++), details about

the MCU (8/16/32bit, little/big endian), and it calls the
development tools. The target intended for the real-time
execution of the model defines the infrastructure
deploying the generated code to bare board interrupts or
operating system tasks.

An inseparable part of each target is a block set – a
library of Simulink blocks representing the functional
components of the targeted platform. A block set usually
contains blocks interfacing the HW peripherals, the
operating system and the communication services etc.
Each of these blocks, implemented as an s-function [21],
defines its simulation behavior and provides a user
interface for the parameters setting. The code generated
by RTW for each of these blocks is defined by a Target
Language Compiler (TLC) script in a tlc file [22].

During the code generation, a code is generated for
each block in the model according to the corresponding
tlc file. These codes are combined according to the data
flow in the model. Finally a make file is generated from
the predefined template; the code is build and the
executable application is downloaded to the development
board. There are several points in this process, where user
defined hooks can be called. This mechanism is used for
cooperation with the target specific development tools.

3.1. Weakness of Existing Code Generation
Targets

There are several weaknesses that motivate us to
develop a new target based on PE.
• Only few targets exist and therefore far from all MCU

families and derivates are supported.
• Each MCU target has its own block set. This fact

prevents the reusability and the portability of the
model using these HW specific blocks.

• The way in which the peripheral HW is handled by the
generated code is predefined by the target
developers and it can not be changed by the user.

• Validation of the HW settings in the time and the
resource domain is missing. Each parameter changes
are therefore an error prone process.

• The simulation behavior of blocks representing
peripherals is trivial (pass-through)

• Block sets are based on the low level API which is not
very comfortable for users.

4. Processor Expert Overview

PE [23] is a component oriented tool for the rapid
development of embedded applications. Its main task is to
manage the HW resources of the MCU and to allow the
design at the high level. PE contains information about
supported MCUs and their on-chip peripherals. The
functionality of the basic elements of the embedded

systems like the MCU core, the MCU on-chip peripherals
etc. are encapsulated in Embedded Beans. An interface to
a bean is provided via properties, methods, and events.

Bean properties are used to specify the HW setting at
the design-time. Since it is done via well arranged dialogs
of the Bean Inspector menu (Fig. 4.1), it is not necessary
to study the HW details and the registers values. Some
design parameters, such as settings of common prescalers
or useable resources for the needed functionality are
calculated by the expert system. Verification of user
decisions is provided. All the on-chip peripherals are
supported and all the HW features are accessible to the
user; there are no predefined settings that can not be
changed.

Bean Methods provide a unified interface to the user
application code. The same methods on different MCUs
are compatible from the application point of view. As PE
covers the Freescale MCU product line, it supports
application code portability. Methods code is well tested,
highly optimized and scaled to the selected MCU. The
generated methods code can be compliant with common
standards (e.g. HIS or AUTOSAR standards for
automotive software).

Bean events can be used by the user to handle
interrupts.

5. Processor Expert Integrated in Simulink

It is clear from the mentioned brief description of the
Processor Expert and Matlab Simulink features for code
generations that they complement one another perfectly.
To allow designers to use the best features of each of
these tools at the rapid application development cycle, we
have developed a peripheral devices block set and an

embedded target for Real Time Workshop Embedded
Coder, the Processor Expert Real-Time Target (PEERT)
integrating Processor Expert to the Simulink environment.
The development cycle with PEERT is outlined in Fig.
6.1

PEERT consists of three main parts - the PE block set,
the PES_COM communication library and the RTW
Embedded Coder target.

The PE block set contains blocks representing general
peripherals such as Timers, ADC, PWM, PortIO,
Quadrature Decoder etc. Each block in the Simulink
model corresponds to a bean in the PE project. Each PE
block is implemented as an s-function that reads
properties of the corresponding bean and simulate the
behavior of the corresponding peripheral.

The synchronization of the Simulink model with the
PE project and the communication of both these tools
through the Microsoft Component Object Model (COM)
interface [24][25] is provided by the PES_COM library.
The PE COM server allows the full integration of the PE
functionality with Simulink. User changes in the model
(PE block insertion, erasure, rename etc.) are propagated
to the PE project and opposite. PE block properties are set
via the PE bean inspector menu (see Fig. 4.1) that is open
by a double-click on the PE block and they are therefore
immediately verified by the PE knowledge base.

The PE block set supports the single model approach to
the development. The model consists of two
interconnected subsystems – a controller and a plant in
the closed loop. The code is of course generated for the
controller subsystem only. During the simulation, the PE
blocks remain in the model since they have inputs/outputs
for signals from/to the plant model. The advantage of the
single model approach is that it is not necessary to create
one model for the simulation (without peripherals blocks)
and the second (without plant) for the code generation.

During the simulation, the PE blocks do not simply
pass the data from/to the plant to/from the controller
through, but reflects the main HW properties. For
example, the ADC block representing the 12 bits AD
converter on the MCU chip really provides the controller
model with values with the 12 bits resolution, even
though the data type of the input signal from the plant
model is double and the data type of the output signal to
the controller model is uint16.

The majority of the PE blocks represents beans with
events corresponding to the hardware interrupt (e.g. “end
of conversion” in the case of ADC). The events are
represented as function-call ports in the PE blocks. They
can be used for the event-driven triggering of a subsystem
block execution or an asynchronous change of a Stateflow
chart state.

The RTW Embedded Coder target has been developed
for the C code generation. It defines the code generated
for each block in the PE block set (via tlc files) and the

Fig. 4.1 Bean Inspector Window

real-time execution infrastructure. Only the uniform API
of beans is used in tlc files. They are therefore MCU
independent.

Periodic parts of the model code are executed non-
preemptively in a timer interrupt. Function-call
subsystems that are executed asynchronously are executed
within interrupt service routines of triggering events. The
initialization is done in the main function. There can also
be executed a manually written background task.

Moreover, the target manages the code generation
process. peert_make_rtw_hook.m file implements hook
methods called by RTW in the defined points of the code
generation process. It is used for the automatic
configuration of beans (it for example enables the code
generation for methods used in the corresponding tlc file).
The peert_make_rtw_hook.m file moreover starts the
generation of beans code by PE and integrates the code
generated by RTW to the code generated by PE. Then the
PE project is complete and can be used for building the
application.

6. Processor in the Loop simulation support

The control system development cycle is not finished

by the implementation, but the validation and tuning
phase must follow. The validation and tuning process can
proceed on different levels of abstraction. At the earliest
phases of the control algorithm development, before its
implementation, its model has been validated by the
simulation with the model of the controlled plant in the
closed loop. This most abstract phase is called model in
the loop (MIL) simulation. Since the model of the control
algorithm does not contain, at this time unknown, real
time properties (execution times, jitters caused by
scheduling and interrupts,...), a more detail validation
must be done by executing the implemented code on the
targeted processor.

It is usual that the software is developed
simultaneously with the hardware or even simultaneously
with the controlled plant. Before the hardware and the
plant are finished, the code of the implemented control
algorithm can be validated by so called processor in the
loop (PIL) simulation. The implemented code of the
control algorithm is executed on a universal development
board, the model of the controlled plant is simulated by a
simulator and the input and output data are interchanged
by a communication line.

The PIL simulation is provided in the real time. It
shows the execution times of the implemented controller

Fig. 6.1 Processor Expert integrated in Simulink

code, interrupts response times, sampling jitters, memory
and stack requirements etc. It does not only provide the
profiling information, but it shows the impact of the
runtime parameters on the control quality. Even though
the results are not absolutely precise (due to the abstract
simulation model of the plant, the impact of the
communication times and the minor changes in the code
required for the input and output data redirection from
peripherals to the communication line), they are the best
can be obtained at this phase of the development. The PIL
simulation can, for example, answer the question whether
the computation power of the processor is sufficient and
whether the scheduling parameters are chosen properly.

More precise results can be obtained by the simulation
of the complete hardware of the control unite in the loop
with a simulator of the plant (so called hardware in the
loop simulation - HIL) or with the real plant. These
approaches are applicable in final phases of the
development and the final version of the code is used. On
the contrary, a special version of the code is used in the
PIL simulation. The inputs are not measured by the
hardware peripherals but their values are obtained via the
communication line, similarly the outputs are not written
to the hardware peripherals but to the communication line
and some interrupt service routines are not invoked by the
peripherals but the communication interrupt service
routine when a corresponding event is indicated by the
received packet. Therefore, a support for PIL simulation
is required in the code generation target. Our Processor
Expert Real-Time Target supports PIL simulation. The
concept of the system for the PIL simulation is outlined in
Fig. 6.2.

The host PC runs Simulink where the models of the
plant and the controller are developed and simulated by
the MIL approach.

For the PIL simulation, the process of the code
generation and simulation is automated by our
PEERT_PIL target.

The PEERT_PIL generates the code of the controller
subsystem by RTW Embedded Coder, compiles it and
downloads it to the development board. The code
generated for the peripheral blocks does not handle the
peripherals hardware, but read/write the data from/to the
communication buffer.

The PEERT_PIL then substitute the controller
subsystem by a communication block providing a code
that composes outcoming communication packets from
the signals from the plant subsystem and parses incoming
packets to the signals for the plant subsystem. The code
for the model of the plant with the communication block
is then generated by RTW for the xPC target and started
on the simulator PC.

Both, the plant and the controller codes are executed in
the real-time on the simulator PC and the development
board respectively and they exchange the simulation data

at the end of each simulation step (control period). The
communication between the simulator PC and the
development board is provided by RS232 asynchronous
serial line. Event though the communication over RS232
is very slow, the main advantage of this interface is that it
is present on any development board (an advantage over
faster USB), and simultaneously, it is usually unused in
the application (an advantage over CAN or SPI).

Any chosen data can by visualized on the host PC due
to the fast interconnection with the simulator via Ethernet
with the TCP protocol.

7. Case Study

A simple control application developed by the
presented technology is briefly described in this section.
The considered application is a speed control of a
mechanically commutated DC motor. The motor is
actuated by a power transistor switched by a pulse width
modulated (PWM) signal from the MCU. The feedback is
provided by an incremental rotating encoder (IRC)
generating the quadrature modulated signal (100 periods
of two phase shifted pulse signals A and B per rotation
and one index pulse per rotation). These signals are
handled by the MCU counters. A few button keyboard is
used to set the speed set-point and switch between the
manual and the automatic control mode. The MCU is 16-
bit Hybrid Controllers (DSP and MCU functionality)
MC56F8367.

The software of the application is developed as a
model in Simulink. The model consists of the plant
subsystem and the controller subsystem (see Fig. 7.1).
This model is validated by the MIL simulation. Since the
controller subsystem (see Fig. 7.2) already contains PE
blocks simulating the behavior of the peripherals, the
modeled input and output data has the same resolution as
the hardware peripherals. It is also important to specify
data types of all the signals and the parameters in the
controller model. The default data type used in Simulink
is double. This type is, however, not appropriate for the
implementation in the 16-bit microcontroller without the
floating point unite. Simulink allows choosing and

Fig. 6.2 The concept of the system for the PIL
simulation

validating an appropriate fix-point representation of real
numbers in the controller model.

The controller code is then automatically generated by
the PEERT target from the controller subsystem only. The
controller subsystem must contain the Processor Expert
block that must be inserted to the model as the first block
from the processor expert block set.

8. Conclusions and Future Work

The advantages of using the automatically generated
code in the development cycle of the control embedded
software have been presented in this paper. Since Matlab
is probably the most often used tool for the simulation and
the control algorithm design we focused on its capability
for the embedded code generation.

As the main weakness of the current Matlab facilities
for the code generation was identified a poor support for
handling the HW devices of the target MCU. We have
presented the improvement of this situation by integrating
the tool PE to the Simulink environment. The developed
Processor Expert Real-Time Target for Matlab Real-Time
Workshop Embedded Coder has been described.

The contribution of the presented integration is that the
developed code generation target is intended for the
production quality code, while most of the other existing
targets seem to be more appropriate for rapid prototyping.
The main advantages of the developed target with respect
to other existing targets are the MCU independency of the
model, the unconstrained flexibility of the peripherals
setting, the possibility of the hardware setting at high
level with an immediate validation of designer decisions,
and the higher precision of the simulation due to the
consideration of the main hardware features.

There are two variants of the block sets. In the first
variant the blocks represent the PE beans while in the
second variant the blocks represent AUTOSAR
peripherals. The blocks of both variants are the same from
the functional point of view, but they differ in HW

settings and the API of generated code.
Currently we are working on the first industrial

applications using the first variant of block set. The
second variant currently contains basic blocks and we are
working on its completion.

Concerning the support for the PIL simulation, we
would like to develop a Linux target for the simulator.
The disadvantages of the currently used xPC target are
that it is closed and does not allow us to implement a
support for new communications (e.g. SPI). Linux would
also allow us to use a non PC hardware. Many embedded
computers (e.g. based on power PC processors) offer
communication and real-time facilities and sufficient
computation power.

Acknowledgement

This work was supported by Academy of Science of
the Czech Republic under Project 1ET400750406.

References

[1] Karl-Erik Ĺrzén, Anton Cervin: "Control and Embedded
Computing: Survey of Research Directions". In Proc. 16th
IFAC World Congress, Elsevier, July 2005.

[2] Dan Henriksson, Anton Cervin, Martin Andersson, Karl-
Erik Ĺrzén: "TrueTime: Simulation of Networked
Computer Control Systems". In Proceedings of the 2nd
IFAC Conference on Analysis and Design of Hybrid
Systems, Alghero, Italy, June 2006.

[3] Targetlink – Production Code Generation Guide – for
Targetlink 2.0. dSPACE GMBH.

[4] Hristu-Varsakelis, Dimitrios; Levine, William S. (Eds.)
Handbook of Networked and Embedded Control Systems.
2005, ISBN: 0-8176-3239-5.

[5] Torngren, M., Arzen, K.-E., Henriksson, D., Cervin, A. -
Hanzálek, Z.: Tool Supporting the Co-Design of Control
Systems and Their Real-Time Implementation; Current
Status and Future Directions. In IEEE Symposium on

Fig. 7.1 Close loop model consisting of
plant and controller subsystems

Fig. 7.2 Controller model

Computer-Aided Control System Design 2006. Piscataway:
IEEE, 2006, p. 53-55. ISBN 0-7803-9797-5.

[6] Šůcha, P. - Kutil, M. - Sojka, M. - Hanzálek, Z.:
TORSCHE Scheuling Toolbox for Matlab. In IEEE
Symposium on Computer-Aided Control System Design
2006. Piscataway: IEEE, 2006, p. 50-52. ISBN 0-7803-
9797-5.

[7] Törngren M., Henriksson D., Redell O., El-Khoury J.,
Simon D., Hanzalek Z. and Årzén K.. Co-design of Control
Systems and their real-time implementation - A Tool
Survey. Technical report. Department of Machine Design.
Royal Institute of Technology – KTH, Stockholm Sweden.
August 2006.

[8] Redell, O., J. El-Khoury, and M. Törngren (2004): The
AIDA tool-set for design and implementation analysis of
distributed real-time control systems. Journal of
Microprocessors and Microsystems, 28:4, pp. 163.182.

[9] Hylands, C., E. Lee, J. Liu, X. Liu, S. Neuendorffer, Y.
Xiong,Y. Zhao, and H. Zheng (2003): Overview of the
Ptolemy project.. Technical Report UCBERL M0325.
Department of Electrical Engineering and Computer
Science, University of California Berkeley, CA.

[10] Simon, D., B. Espiau, K. Kapellos, and R. Pissard-Gibollet
(1997): Orccad: Software engineering for real-time
robotics. A Technical Insight, Robotica, Special Issues on
Languages and Software in Robotics, 15:1, pp. 111.116.

[11] Keutzer K. Newton A.R. Rabaey J.M. Sangiovanni-
Vincentelli A. 2000. System-level design:
orthogonalization of concerns and platform-based design.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. Vol 19. No 12. Dec.2000.
p1523-1543.

[12] AUTOSAR, http://www.autosar.org, 2006.
[13] Ludes R. and T. Pfund: Code Generation for

Manufacturing. In proceedings of the 7th LuK Symposium,
LuK GmbH & Co., April 2002.

[14] Romeo F.: Embedded Systems: the Real Story. Design
Automation Conference, Las Vegas, June 20th, 2001

[15] Alberto Sangiovanni-Vincentelli and Grant Martin: A
Vision for Embedded Software. Proceedings of CASES
2001, Atlanta, Georgia, November, 2001.

[16] Real-Time Workshop Embedded Coder User’s Guide. The
MathWorks, Inc., www.mathworks.com, 2005.

[17] dSpace, www.dspaceinc.com, 2006.
[18] ASCET, http://en.etasgroup.com/products/ascet, 2006
[19] Real-Time Workshop User’s Guide. The MathWorks, Inc.,

www.mathworks.com, 2005.
[20] Real-Time Workshop Embedded Coder Developing

Embedded Targets. The MathWorks, Inc.,
www.mathworks.com, 2005.

[21] Simulink – Writing S-functions. The MathWorks, Inc.,
www.mathworks.com, 2005.

[22] Real-Time Workshop Target Language Compiler. The
MathWorks, Inc., www.mathworks.com, 2005.

[23] Processor Expert help. UNIS, spol. s r.o.,
www.processorexpert.com, 2005.

[24] Microsoft Component Object Model. Microsoft
Corporation, msdn.microsoft.com, 2005.

[25] MATLAB – External Interfaces. The MathWorks, Inc.,
www.mathworks.com, 2005.

[26] OSEK/VDX, http://www.osek-vdx.org, 2006

