
Scheduling of Iterative Algorithms with Matrix Operations
for Efficient FPGA Design - Implementation of Finite

Interval Constant Modulus Algorithm

Přemysl Šůcha, Zdeněk Hanzálek
Centre for Applied Cybernetics, Department of Control Engineering

Czech Technical University in Prague
{suchap,hanzalek}@fel.cvut.cz

Antonı́n Heřmánek, Jan Schier
Institute of Information Theory and Automation,

Academy of Sciences of the Czech Republic
{hermanek,schier}@utia.cas.cz

July 18, 2006

Abstract

This paper deals with the optimization of itera-
tive algorithms with matrix operations or nested
loops for hardware implementation in Field Pro-
grammable Gate Arrays (FPGA), using Integer Lin-
ear Programming (ILP). The method is demon-
strated on an implementation of the Finite Interval
Constant Modulus Algorithm. It is an equalization
algorithm, suitable for modern communication sys-
tems (4G and behind). For the floating-point calcu-
lations required in the algorithm, two arithmetic li-
braries were used in the FPGA implementation: one
based on the logarithmic number system, the other
using floating-point number system in the standard
IEEE format. Both libraries use pipelined mod-
ules. Traditional approaches to the scheduling of
nested loops lead to a relatively large code, which
is unsuitable for FPGA implementation. This pa-
per presents a new high-level synthesis methodol-
ogy, which models both, iterative loops and imper-
fectly nested loops, by means of the system of linear
inequalities. Moreover, memory access is consid-
ered as an additional resource constraint. Since the
solutions of ILP formulated problems are known to
be computationally intensive, an important part of
the article is devoted to the reduction of the problem
size.

Keywords: High-level synthesis, cyclic schedul-
ing, iterative algorithms, imperfectly nested loops,
integer linear programming, FPGA, VLSI design,

blind equalization, implementation.

1 Introduction

In modern digital communication systems an esti-
mator of transmitted symbols represents one of the
critical parts of the receiver. The estimator consists
typically of an equalizer and of a decision device.
Recent systems (such as the GSM system) use meth-
ods based on training sequences, where part of sig-
nal is known and repeated. The equalizer is based on
matching its output to the reference signal, by adapt-
ing its parameters to minimize some criterion. Un-
fortunately the training sequence consumes a con-
siderable part of the overall message (approx. 25%
in GSM). For this reason, much research effort has
been devoted to blind deconvolution algorithms, i.e.,
algorithms with no training sequence. Perhaps the
most popular blind algorithm (performing estima-
tion without any training sequence) is the Constant
Modulus Algorithm (CMA), originally proposed by
Godard [1]. The Finite Interval Constant Modulus
Algorithm (FI-CMA) [2] is a windowed version of
CMA where a time-window operator is applied to
the received data. Compared to other algorithms
in the class of blind deconvolution algorithms , it
is characterized by fast convergence (see Section 2,
Figure 1(b)) at acceptable computational complex-
ity. Nevertheless FI-CMA requires up to 8 itera-
tions operating on matrices of sampled data to be

1

performed each 3.7μs.
The FPGA technology supports massive fine

tuned parallelism and high data throughput. On the
other hand, the FPGA design gets complicated, due
to the representation of real numbers. One solution
is to use an arithmetic library implementing a 32-bit
floating point number system, compliant with IEEE
standards [3]. An alternative solution is to use the
logarithmic number system arithmetic, where a real
number is represented as the fixed-point value of
base two logarithm of its absolute value [4]. In each
case, rather complex arithmetic is required. There-
fore, scheduling of such dedicated HW resources
has to carefully consider the algorithm structure, in
order to achieve the desired performance of applica-
tions. Scheduling also helps to choose the appropri-
ate arithmetic library prior to the algorithm imple-
mentation.

This paper deals with the scheduling of digital
signal processing algorithms, where at least K it-
erations have to be executed each sampling period
in order to achieve the desired algorithm conver-
gence. Moreover, the iteration may contain rather
complex data computations, usually expressed in
the form of matrix operations and implemented as
nested loops. The scheduling method shown in this
paper models both, iterative loops and imperfectly
nested loops, by means of the system of linear in-
equalities. The target hardware based on FPGA, a
set of pipelined dedicated processors, is formalized
as a system of linear inequalities with integer vari-
ables. The scheduling problem is then solved using
the Integer Linear Programming (ILP), resulting in
the optimal schedule. Thanks to an efficient repre-
sentation of imperfectly nested loops and to a poly-
nomial reduction of decision variables we are able
to handle scheduling problems of significant size as
demonstrated on applications (hardware implemen-
tation of FI-CMA shown in this article; FI-CMA
on different hardware architecture shown in internal
report [5]). We show how, given the hardware re-
sources, the mathematical programming can be used
to optimize the execution time of the implemented
algorithm.

1.1 Related work in Parallel Imple-
mentation of Signal Processing Al-
gorithms

The signal processing algorithms typically rely on
loops, either performing vectormatrix computations,
or performing iterative computations. In the sig-
nal processing field, the concept of loop unrolling

closely relates to the so-called systolic array – reg-
ular mesh of synchronous “processing elements”,
which however does not account for the time op-
timization issues. Between 1980s and mid 1990s,
there were indeed many works in this field treating
transformation of algorithm to the systolic arrays.
Examples range from simple systolic arrays for the
FIR filters [6] to the recursive QR algorithms [7, 8]
and to the QSVD update [9]. They become again
topical with the recent advances of the FPGA tech-
nology, with embedded multipliers and DSP units.

Practical FPGA realizations first involved simple
algorithms (FIR and LMS filters), implemented us-
ing fix-point arithmetic. Later, from the end of 90’,
implementations of the recursive QR algorithm were
published (see [10]). It should also be noted, though,
that probably all published designs treated the prob-
lem of the recursive algorithm, where rotation ma-
trix Q is computed only implicitly, while in our pa-
per, block version of the algorithm is used and it
is this matrix that is of interest. An interesting de-
sign has been published in [11], where floating point
cores are used to implement a high-speed QR pro-
cessor in the Virtex-E device. We are not aware
of any FPGA designs that would implement com-
plete blind equalization algorithm. Moreover, major
development in the floating point libraries has hap-
pened only in the recent years and they still have to
be considered with hardware demands in mind.

1.2 Related Work on Scheduling of It-
erative Algorithms

An iterative algorithm can be seen as an iterative
loop performing an identical set of operations re-
peatedly (one repetition of the loop is called an it-
eration). When the number of iterations is large
enough, the optimization can be performed by cyclic
scheduling while minimizing the completion time
of the set of K iterations. If operations belong-
ing to different iterations interleave, the schedule is
called overlapped [12]. Efficient exploitation of the
schedule overlap and pipelining is rather difficult to
achieve in manual design.

The periodic schedule is given by a schedule of
one iteration that is repeated with a fixed time inter-
val called a period (also called initiation interval).
The aim is to find a periodic schedule with a min-
imum period. If the number of processors is not
limited, a periodic schedule can be built in polyno-
mial time [13]. For a fixed number of processors
the problem becomes NP–complete [14]. The gen-
eral solution to this problem is shown e.g. in [15].

2

Cyclic scheduling presented in [16] is not depen-
dent on the period length and with respect to [15] it
leads to simpler problem formulation with less inte-
ger variables. Moreover, this model allows to reduce
number of interconnections by minimization of the
data transfers as shown in [17]. Modulo scheduling
and software pipelining [18, 19], usually used in the
compiler community, are alternative terms to cyclic
scheduling, used in the scheduling community.

1.3 Related Work on Scheduling of
Nested Loops

For practical reasons, we usually do not want to ex-
pand matrix operations into scalar operations, since
we want to achieve regularity of the schedule (effi-
ciently implemented in the form of the nested loops)
and we want to prevent enormous growth in the
number of the scheduled tasks (i.e. to prevent the
growth of computation time required by the schedul-
ing algorithm). Therefore, we intend to schedule
matrix operations in the form of nested loops.

A great deal of work in this field has been fo-
cused on perfectly-nested loops (i.e. all elemen-
tary operations are contained in the innermost loop).
For example, one of the often used optimization ap-
proaches called loop shifting (operations from one
iteration of the loop body are moved to its previous
iteration) was recently extended in [20, 21]. An-
other approach is the unroll-and-jam (also called
unfolding or unwinding) [22], which partially un-
rolls one or more loops higher in the nest than the
innermost loop, and fuses the resulting loops back
together. Improvement by unroll-and-squash tech-
nique has been shown in [23].

In our case the loops are imperfectly-nested (i.e.
some elementary operations are not contained in
the innermost loop). Existing compilers usually
use heuristics transforming them into perfectly-
nested loops [24]. The tiling method, extended for
imperfectly-nested loops, is discussed in [25]. Loop
tiling is a transformation technique, which divides
the iteration space of loop computations into tiles
(or blocks) of some size and shape, so that travers-
ing the tiles results in covering the whole iteration
space [24]. The tiling method is also used in PICO-
NPA [26], a tool for high-level synthesis of nonpro-
grammable hardware accelerators. Nevertheless, the
tool is limited to perfectly-nested loops. However,
such approaches can greatly expand the code size,
which is unacceptable with respect to the limited
size of FPGAs as well as to the number of intercon-
nections in the design.

1.4 Outline and Contribution

In this paper, we propose a new method for schedul-
ing of iterative algorithms with imperfectly-nested
loops on the set of pipelined dedicated processors.
The method is based on cyclic scheduling of iter-
ative algorithms where matrix operations are mod-
eled by “united edges” and “approximated expan-
sion”. The method is based on the construction of
model, which models the nested loops, and which is
optimally scheduled using integer linear program-
ming (ILP). Moreover, access into the memory is
considered as an additional resource constraint.

A lot of research has been done in scheduling
of nested loops as mentioned above. Our method
differs in mathematic formulation of the scheduling
problem which leads to simpler code and therefore
more efficient FPGA implementation. Applications
requiring matrix operations usually lead to sched-
ules with long period. Therefore classical ILP for-
mulations of cyclic scheduling (e.g. [12]), where
the number of integer/binary variables (and also
time complexity) depends on the period length, are
inconvenient in this framework. Number of inte-
ger/binary variables of our ILP model is indepen-
dent of period length. Further to improve time per-
formance of the scheduling algorithm we show a
polynomial method reducing the size of the ILP
model. Primarily, we look for the shortest feasible
period. For such period we find a schedule mini-
mizing the number of interconnections (related to
the data transfers).

The proposed scheduling method is demonstrated
on the Finite Interval Constant Modulus Algo-
rithm (FI-CMA). To achieve an acceptable com-
putational performance and precision, the iterative
algorithm has to be implemented using floating-
point arithmetics. We consider two libraries of
arithmetic units (Celoxica pipelined floating-point
library (FP32) [3] and High-Speed Logarithmic
Arithmetics (HSLA) [4]) and we show that by us-
ing the presented method, the optimal architecture
can be chosen for a given algorithm prior to its im-
plementation.

Starting from the algorithm representation and
hardware parameters, the presented method shows,
how to represent the problem by a graph and how
to find an optimal schedule. The schedule, contain-
ing start times of operations, is further used to au-
tomatically generate a state machine in Handel-C or
VHDL, controlling a parallel execution of the algo-
rithm on FPGA.

The main contributions of this paper are: (a)
a novel scheduling method for iterative algorithms

3

with imperfectly-nested loops on the set of ded-
icated processors leading to efficient design on
FPGA (see Section 4). (b) a representation of
imperfectly-nested loops in the form of linear in-
equalities (see Subsection 4.1.1). (c) a polyno-
mial algorithm for elimination of redundant deci-
sion variables which considerably accelerates the
scheduling algorithm (see Subsection 3.4). (d) an
implementation of the Finite Interval Constant Mod-
ulus Algorithm (see Section 5) considered for 4G
communication systems. While using our schedul-
ing method, we reached a considerable speedup in
comparison with [27], the first implementation of
FI-CMA in FPGA.

The paper is organized as follows: in the next
section the FI-CMA algorithm is briefly outlined.
Section 3 surveys the scheduling of iterative algo-
rithms (considering only scalar variables) on the set
of dedicated processors by Integer Linear Program-
ming (multiprocessor extension of [16]). Section 4
presents the main contribution of the paper, schedul-
ing of iterative algorithms with imperfectly-nested
loops, illustrated by the parallelization of the FI-
CMA algorithm. The construction of the model,
respecting the regularity of algorithm data depen-
dencies, is described and the resulting schedule is
shown. Parallelization of the QR decomposition,
used in FI-CMA algorithm, is described in Sec-
tion 4.2. Section 5 presents the HW implementation
of FI-CMA algorithm on FPGA using two different
libraries of arithmetic units (HSLA or FP32). The
last section concludes the work.

2 Constant Modulus Algorithm

In this section, the system model and constant mod-
ulus (CM) criterion will be briefly reviewed, fol-
lowed by derivation of the FI-CMA algorithm.

Let {sn} be an IID symbol sequence to be trans-
mitted, adhering to a constant modulus (CM) con-
stellation, such as PSK. The data symbols are trans-
mitted over a Single-Input Multiple-Output (SIMO)
discrete channel with a finite length impulse re-
sponse matrix H. The received signal has the form

un = Hsn + bn. (1)

where sn = [sn sn−1 . . . sn−Mc
]T collects the

M most recent input symbols, bn is a background
noise vector, H is the P × Mc channel impulse re-
sponse matrix, and P is the number of antennas or
the oversampling factor. An equalizer can be seen
as a linear combiner of order M with output yn,

yn =
M∑

k=0

gT
k un−k = gT Un. (2)

where n is the discrete baud rate time and g and
U are defined as

g =
[

gT
0 gT

1 . . . gT
M

]T
,

Un =
[

uT
n uT

n−1 . . . uT
n−M

]T
.

The CMA algorithm is based on minimization
of a cost function defined by the constant modulus
(CM) criterion. This criterion penalizes deviation
in magnitude of the equalizer output from a fixed
value. It has the following form

JCMA(g) =
1
4
E

[
(|yn|2 − γ)2

]
. (3)

where E [·] is the expectation operator and γ is a
constant chosen as a function of the source alphabet.

The main advantage of this criterion is that the
resulting gradient descent algorithm is very similar
to the well known Least Mean Square (LMS) algo-
rithm, hence, it can be implemented in a very simple
way. On the other hand, the relatively slow conver-
gence of CMA (≈ 104 iterations), as well as its de-
pendence on the initialization and on the step-size
parameter, are recognized drawbacks.

2.1 Finite Interval CMA algorithm

The FI-CMA algorithm [2] is a windowed version of
(3) where a time-window operator is applied to the
received data. The cost function has the following
form

J(g) =
N∑

n=1

(
|yn|2 − 1

)2

=
N∑

n=1

(∣∣gT Un

∣∣2 − 1
)2

. (4)

Constant γ used in (3) is replaced by 1 without
loss of generality (the value does not change the po-
sition of the local extrema points).

It follows from (2) that N successive equalizer
outputs can be rewritten in matrix form as

y =
[

y1 . . . yN

]T

=
[

U1 . . . UN

]T

︸ ︷︷ ︸
U

g

= QRg = Qw. (5)

4

(a) (b)

Figure 1: (a) Equalizer output after convergence (i.e. 5 iterations in that case). (b) Evolution of the cost
function Fk over iteration k.

where the QR-decomposition of matrix U is used
to obtain an orthonormal matrix Q.

The optimal equalizer coefficients are reached by
the following iterative procedure

vk+1 = wk − μkQT y�3
k /Fk

wk+1 = vk+1/‖vk+1‖
(6)

where k is the iteration counter and (·)�n is an
element-wise power operator. Fk is defined as

Fk = |yk|4,

vk is an auxiliary variable, wk is a transformed
parameter vector and yk = Qwk (see Equation 5).
The equalizer output after convergence is shown in
Figure 1(a).

The decomposition used in (5) is calculated us-
ing Givens rotations: let Rj be a matrix obtained by
triangularization of sub-matrix Uj containing first j
rows of matrix U (see Equation 5). Let Qj be the
corresponding orthonormal matrix. Matrices Qj+1

and Rj+1, which represent decomposition of matrix
Uj+1, can be calculated as follows

[
Rj+1

0

]
= GMGM−1 . . .G1

[
Rj

uj+1

]
, (7)

[
Qj+1 q

]
=

[
Qj 0
0 1

]
GT

1 . . .GT
M−1G

T
M .

(8)
where Givens-rotation matrix Gi eliminates the

j-th element of the data vector uj+1. As it is well

known [28], the matrix is composed of sine and co-
sine values (cj ,sj)

Gi =

⎡
⎢⎢⎣

I
cos θi sin θi

I
− sin θi cos θi

⎤
⎥⎥⎦ .

where I is identity matrix of appropriate size. The
sine and cosine parameters are computed as follows:

cos θi =
ri,i√

r2
i,i + u2

i,j+1

(9)

sin θi =
ui,j+1√

r2
i,i + u2

i,j+1

(10)

Note: The initial values of matrices R and Q are
R0 =

[
u1 0

]T
and Q0 = I2×2.

To summarize, the FI-CMA algorithms consist of
two successive parts: the QR decomposition of the
input data matrix (equations (7) and (8)) and the iter-
ative procedure (6). Compared to the recursive gra-
dient (LMS type) algorithm mentioned earlier, this
algorithm converges after few iterations (up to 10)
and the optimal step size is analytically known and
data dependent only (see [2]).

3 Formulation and Solution of
the Scheduling Problem

The iterative procedure, as the one mentioned in
the previous section, can be implemented as a com-

5

for k=1 to K do //iterative loop
d(k) = e(k − 4) − 2
a(k) = d(k)2 + 1
b(k) = 4 · d(k)
e(k) = a(k − 4) + b(k − 1)

end

2
e-2 d

(...)+1a b+

T1 T2

T3T5

c

c(9,4)

(9,0)

(2,0)

(2,4)

1

2

1 1

11

(9,0)

h height

length l

processing
time p

5,1

5,1

1

4·d

T4
1

(2,1)

e-2

(...)+1a b+

T1

T3T5

c

c(9,4)
(11,0)

(2,4)

1

2

1

11

(11,1)

(a) (b) (c)

Figure 2: (a) Illustrative example of the iterative algorithm. (b) The corresponding data dependency graph
G. G contains two cycles c1 and c2 with average cycle times {22/8, 20/5}. The critical circuit is c2. (c)
The corresponding reduced graph, which is explained in Section 3.2.

putation loop performing an identical set of opera-
tions repeatedly. Therefore our work, dealing with
an optimized implementation of such procedures, is
based on cyclic scheduling (also referenced as mod-
ulo scheduling or software pipelining [18, 19]).

3.1 Cyclic Scheduling Problem

Operations in a iterative loop can be considered as a
set of n generic tasks T = {T1, T2, ..., Tn} to be
performed K times. One execution of T labeled
with integer index k ≥ 1 is called an iteration. The
scheduling problem is to find a start time si(k) of
every occurrence of Ti [13]. Figure 2(a) shows an
illustrative example of a simple computation loop.

Data dependencies of this problem can be mod-
eled by a directed graph G. Each task (node in G)
is characterized by the processing time pi. Edge eij

from the node i to j is weighted by a couple of in-
teger constants lij and hij . Length lij represents the
minimal distance in clock cycles from the start time
of the task Ti to the start time of Tj and is always
greater than zero.

Considering pipelined processors, processing
time pi represents the time to feed the processor (i.e.
new data can be fed to the pipelined processor after
pi clock cycles) and length lij represents the time of
computation (i.e. the input–output latency). Param-
eter height hij specifies a shift of the iteration index
(dependence distance) related to the data produced
by Ti and consumed by Tj .

Figure 2(b) shows the data dependence graph of
the iterative loop shown in Figure 2(a). Processing
time pi is equal to 1 for all units of HSLA and length
lij correspond to input–output latency of given unit
of HSLA (see Table 1).

Assuming a periodic schedule with the period τ
(i.e. the constant repetition time of each task), each
edge eij in graph G represents one precedence rela-

tion constraint

sj − si ≥ lij − τ · hij , (11)

where si denotes the start time of task Ti in the
first iteration.

The aim of cyclic scheduling [13] is to find a
periodic schedule while minimizing the period τ .
The scheduling problem is simply solved when
the number of processors is not limited, i.e. is
sufficiently large. Given by the critical circuit c
in graph G, the minimal feasible period is equal

to maxc∈C(G)

(∑
eij∈c lij

)
/
(∑

eij∈c hij

)
, where

C(G) denotes a set of cycles in G. Critical circuit
can be found in polynomial time [13], and we use
this value to determine lower bound of the period in
our scheduling problem.

When the number of processors m is re-
stricted, the cyclic scheduling problem becomes
NP–complete [13]. Unfortunately, in our case the
number of processors is restricted and the proces-
sors are dedicated to execute specific operations (see
Table 1).

3.2 Problem with Dedicated Processors

In FPGA, some arithmetic units can be implemented
quite cheaply in terms of SLICEs and BRAMs (see
MUL, DIV and SQRT units in Table 1 for HSLA
parameters). Therefore a designer can admit a high
number of these units. Moreover, the algorithm
structure (represented by the graph G) permits only
limited number of corresponding tasks to be exe-
cuted concurrently. Consequently these arithmetic
units are not critical resources, they will be further
called reduced processors, and T r will be the set of
reduced tasks, i.e. the ones executed on reduced pro-
cessors. For example, T2 and T4 in Figure 2(b) ex-
ecuted on HSLA, need not be restricted by resource

6

Administrator
Highlight

Administrator
Highlight

Table 1: Parameters of the 19-bit (32-bit) HSLA
units for XCV2000E-6 FPGA device. Maximal
clock frequency is 50 MHz.

Unit Input-output SLICEs BRAMs
Latency [clk] [%] [%]

ADD 9 8(13) 3(70)
MUL 2 1 0
DIV 2 1 0
SQRT 2 1 0

constraints, since MUL operation is cheaply imple-
mented in logarithmic arithmetics.

Remaining tasks, denoted by the set T ′ = T \T r,
must be considered in the scheduling algorithm,
since they are executed on m′ dedicated processors
(the processors that can not be reduced). The input-
output latency of the reduced tasks is reflected in the
lengths of arcs in the reduced graph G′. When the
tasks on dedicated processors are scheduled, the re-
duced tasks are simply executed as soon as possible,
while satisfying precedence relations (given by the
original graph G).

Therefore, we perform the following reduction
of graph G to the reduced graph G′ while using
the calculation of the longest paths (solved e.g., by
the Floyd’s algorithm). All nodes (tasks), except
the ones running on the dedicated processors, are
eliminated (see Figure 2(c)). Therefore, tasks in T ′

running on the dedicated processors constitute the
nodes of G′. There is e′ij (the edge from Ti to Tj

in G′) of height h′
ij , if and only if, there is a path

from Ti to Tj in G of height h′
ij such that this path

goes only through the reduced tasks. The value of
length l′ij is the longest path from Ti to Tj in G of
height h′

ij . Therefore, the input-output latency of
the reduced tasks is merged into l′ij and their itera-
tion shift into h′

ij .
Such reduction allows to formulate our schedul-

ing problem as a problem with set of m′ dedicated
processors, where the set of tasks T ′ is the con-
junction of disjoint subsets T ′

1 , . . . T ′
d , . . . T ′

m′ . Both
tasks Ti and Tj are assigned to the d-th dedicated
processor if and only if Ti ∈ T ′

d and Tj ∈ T ′
d .

The reduction, considering one dedicated processor
(ADD unit) performed on graph G, in Figure 2(b),
is shown in Figure 2(c).

3.3 Solution of Cyclic Scheduling on
Dedicated Processors by ILP

The approach presented in this subsection is a mul-
tiprocessor extension of work shown in [16]. The
size of our ILP model (and also time complexity)

is independent of the period τ , which is particularly
useful in our application since matrix operations and
nested loops lead to schedules with a long period.

Let ŝi be the remainder after division of si by τ
and let q̂i be the integer part of this division. Then
si can be expressed as follows

si = ŝi + q̂i · τ, ŝi ∈ 〈0, τ − 1〉 , q̂i ≥ 0. (12)

This notation divides si into q̂i, the index of the
execution period, and ŝi, the index within the execu-
tion period. The schedule has to obey two kinds of
restrictions. The first kind of restriction is given by
the precedence constraint corresponding to Inequal-
ity (11). It can be formulated using ŝ and q̂ as

(ŝj + q̂j · τ) − (ŝi + q̂i · τ) ≥ l′ij − τ · h′
ij . (13)

We have n′
e inequalities (n′

e is the number of
edges in the reduced graph G′), since each edge rep-
resents one precedence constraint.

The second kind of restriction are processor con-
straints. They are related to the processor restric-
tion, i.e. at maximum one task is executed at a given
time on the dedicated processor Pd, therefore

pj ≤ ŝi − ŝj + τ · x̂ij ≤ τ − pi, (14)

where x̂ij is a binary decision variable (x̂ij = 1
when Ti is followed by Tj and x̂ij = 0 when Tj is
followed by Ti).

To derive a feasible schedule, Double–Inequality
(14) must hold for each unordered couple of two
distinct tasks Ti, Tj ∈ T ′

d . Therefore, there are
(n′2

d −n′
d)/2 Double–Inequalities related to proces-

sor Pd (where n′
d is the number of tasks on one ded-

icated processor Pd in the reduced graph G′), i.e.
there are n′

d
2 − n′

d inequalities specifying the pro-
cessor constraints.

Using ILP formulation we are able to test the
schedule feasibility for a given τ . Please notice
that τ is assumed to be a constant in the ILP model
(in order to avoid multiplication of two variables).
The optimal period τ∗, the shortest period result-
ing in a feasible schedule, can be found iteratively
by formulating one ILP model for each τ between
the lower and upper bound (explained in Subsection
5.2). Consequently, for a given τ∗ we can minimize
the data transfers among the tasks (i.e. the objective
function of the ILP model minimizes the number of
registers used to store intermediate results) as a sec-
ondary objective.

Minimization of data transfers considerably sim-
plifies interconnections on FPGA. To achieve this

7

we add one slack variable Δij to each precedence
constraint (13) resulting at

(ŝj + q̂j ·τ)−(ŝi+ q̂i ·τ)+Δij = lij−τ ·hij . (15)

When Δij = 0, the intermediate result is passed
to the next task without storing in registers or mem-
ory. On the other hand when Δij > 0, the memory
or register is required. The aim is to minimize the
number of Δij > 0. Therefore we introduce new bi-
nary variable Δb

ij which is equal to 1 when Δij > 0
and Δb

ij is equal to 0 otherwise. This relation is for-
mulated as

(τ · (q̂max + 1)) · Δb
ij ≥ Δij , ∀eij ∈ G, (16)

where (τ · (q̂max +1)) represents an upper bound
on Δij and the objective is to minimize

∑
Δb

ij .
Such a reformulated problem not only decides the
feasibility of the schedule for the given period τ as
a primary objective, but if such a schedule exists, it
also finds the one with minimal data transfers among
the tasks as a secondary objective.

The summarized ILP model, using variables
ŝi, q̂i, x̂ij ,Δb

ij ,Δij , is shown in Figure 3. It con-

tains 2n′+
∑m′

d=1(n
′2
d −n′

d)/2+n′
e integer variables

and 2n′
e +

∑m′

d=1(n
′2
d − n′

d) constraints.

min
∑

Δb
ij

subject to
ŝj + q̂j · τ − ŝi − q̂i · τ + Δij = l′ij − τ · h′

ij ,
∀e′ij ∈ G′

pj ≤ ŝi − ŝj + τ · x̂ij ≤ τ − pi ,
∀i, j : i < j and Ti, Tj ∈ T ′

d

(τ · (q̂max + 1)) · Δb
ij ≥ Δij ,

∀e′ij ∈ G′

where
ŝi ∈ 〈0, τ − 1〉; q̂i,Δij ≥ 0; x̂i,Δb

ij ∈ 〈0, 1〉,
ŝi, q̂i, x̂ij ,Δb

ij are integers.

Figure 3: ILP model.

3.4 Elimination of Redundant Proces-
sor Constraints

The time requirements to solve the generated ILP
model roughly corresponds to the number of inte-
ger variables, therefore, it is meaningful to reduce
this number as much as possible. Not all proces-
sor constraints (14) are necessary when considering

precedence constraints (13). Keeping in mind that
the tasks from distinct iterations can be executed in
one period, we set up q̂max. This value, calculated
a priori in polynomial time using evaluation of the
longest paths, is an upper bound on difference of
two tasks iteration indeces executed in the same pe-
riod. The necessity of Double–Inequality (14) for
the couple of tasks Ti and Tj dedicated to the same
processor could be decided e.g. while using poly-
nomial linear programming (LP) composed of con-
straints (19), (17) and (18). If any feasible solution
of this LP problem exists, then Ti and Tj can be in
conflict and xij has to remain in the ILP model.

Tasks Ti and Tj are in conflict, if and only if,
sj + pj > si and si + pi > sj . Moreover, in this
cyclic scheduling case, we have to investigate a pos-
sible conflict of tasks from different iterations within
one period. That is why we investigate a separate LP
problem for each possible δ, the difference between
iteration indexes of Ti and Tj , as formalized in In-
equalities (17) and (18). Inequality (19) represents
all precedence constraints given by graph G′.

If the LP finds a feasible solution for any inte-
ger δ ∈ 〈−q̂max, q̂max〉, the tasks Ti and Tj can
eventually cause conflict on their dedicated proces-
sor and then the corresponding Double–Inequality
(14) is necessary.

si − sj + δ · τ < pj , (17)

sj − si − δ · τ < pi, (18)

sk − sl ≥ l′kl − τ · h′
kl, ∀e′kl ∈ G′ (19)

where si ∈ 〈0, (q̂max + 1) · τ + pi〉
This elimination leads to a decrease in the number

of binary decision variables x̂ij .

4 Parallelization of FI-CMA

As already mentioned, the dynamic range of data
in FI-CMA algorithm requires calculations in the
floating-point. That is, however, rather costly for an
FPGA implementation. In this work, we consider
two arithmetic libraries HSLA and FP32.

The High-Speed Logarithmic Arithmetic (HSLA)
library, implementing the logarithmic arithmetics,
consists of fully pipelined blocks, implementing ba-
sic arithmetic operations. Multiplication, division
and square-root are – in logarithmic representa-
tion – implemented as simple fixed-point addition,
subtraction and right shift. Addition and subtrac-
tion transform to non-linear functions that require
more complicated evaluation using look-up tables.

8

These tables are stored in a dual-ported Block RAM
(BRAM). With the necessary additional logic, the
unit consumes – from all log-operations – most logic
cells (slices) and BRAMs of the FPGA device. In
order to utilize the memory access efficiently, the
addition and subtraction macros have been imple-
mented as a twin-adder. For more details see [4].
The HSLA library has been implemented with 19-
and 32-bit wordlength, the parameters of both ver-
sions are summarized in Table 1.

The 32-bit pipelined floating-point library from
Celoxica (FP32) [3], uses the widely known IEEE
format to store the data. It has comparable preci-
sion with the 32-bit version of HSLA, but differ-
ent timing parameters (see Table 4 in Appendix C).
Namely, HSLA uses very simple (and cheap in
resources) implementation of the MUL, DIV and
SQRT units, while the ADD unit is expensive in
clock cycles, SLICEs and BRAMs. Therefore,
HSLA can be modeled by one dedicated processor,
since the MUL, DIV and SQRT units are not consid-
ered critical resource and they are not subject of pro-
cessor constraints (see Subsection 3.2). The FP32
library, on the other hand, has all units of non neg-
ligible size (but it can be run at a higher clock fre-
quency than HSLA). Therefore, it has to be modeled
by several dedicated processors.

To demonstrate the scheduling method, we use
FI-CMA algorithm. But this method is universal for
all iterative algorithms with matrix operations or im-
perfectly nested loops.

According to the results obtained by the schedul-
ing method presented in this paper we decided to
implement FI-CMA algorithm with HSLA library,
as explained in Section 5.1. Therefore, the parame-
ters of HSLA are used in all examples even though
we have modeled and calculated both cases (see in-
ternal report [5]).

The FI-CMA algorithm consists of two succes-
sive parts: the input data matrix is processed by
the QR-decomposition algorithm to obtain matrix
Q (see equation (5)), which is further used by the
equalizer algorithm (based on equations (6)). Ma-
trix Q of N rows and M columns is known after
the last iteration of the QR-decomposition, there-
fore, both parts are scheduled separately.

Both parts are iterative algorithms, and in this
section we show how the cyclic scheduling (given
in Section 3) can be used for their paralleliza-
tion. The parallelization of QR-decomposition al-
gorithm by processing time fusion is shown in Sub-
section 4.2. Subsection 4.1 shows the parallelization
of the equalizer algorithm by united edges and pro-
cessing time fusion.

4.1 Parallelization of Equalizer Algo-
rithm

The equations (6) are implemented as an equalizer
algorithm, shown in Figure 4(a) and in pseudo code
in Appendix A, while denoting ||vi+1|| by α and
(QT · y3) by vΔ. The parallelism in the loop is
increased while substituting y with (y′ · α). This
substitution increases the number of multiplications,
but it significantly increases the parallelism among
additions. The corresponding data dependencies are
shown in Figure 4(b).

4.1.1 Expansion of Imperfectly Nested Loops

A single node of the condensed graph Gc (see Fig-
ure 4(b)) represents the set of tasks performing e.g.
vector addition, vector multiplication, scalar addi-
tion, With respect to further efficient implemen-
tation, we do not want to simply expand these nodes
into scalar operations but we want to keep them in
a vector form intending to implement them as com-
putation loops. The reduced condensed graph G′c,
shown in Figure 4(c), is obtained from Figure 4(b)
while reducing the nodes not executed on the twin-
adder, i.e. the only dedicated processor on HSLA
architecture.

Our expansion of imperfectly nested loops is
based on the expansion of G′c to graph G′ (see Fig-
ure 6). The second level of nesting is modeled by the
processing time fusion while fully utilizing the twin-
adder. The first level of nesting is modeled using
united edges and an approximated expansion. Fur-
ther, G′ can be scheduled by ILP in Figure 3 while
partially fixing the precedence constraints.

Processing Time Fusion When there are no inter-
iteration dependencies inside the nested loop, one
can use the following processing time fusion: to
model each operation as one task with processing
time pi equal to the number of iterations |I | mul-
tiplied by ps

i , the processing time of single op-
eration. Therefore, different iterations of particu-
lar operation are assumed to be executed sequen-
tially within the task. The precedence relations
keep the same structure as data dependencies in the
loop and the value of the length lij is increased by
max{0, (|I | − 1) · (ps

i − ps
j)}. The value of the

height hij is equal to zero, since there are no inter-
iteration dependencies.

The expansion of nested loops will be illustrated
on task T1 in G′c, which computes matrix-vector
multiplication y′ = Q · v. When the multiplication
is evaluated in a common form, i.e. row-wise with

9

element-wise operation

sum of vector elements

matrix-vector multiplication

scalar operation

vector subtraction

for k=1 to K do //iterative loop
y′(k) = Q · v(k − 1)
α(k − 1) = 1√∑

v(k−1)2

w(k − 1) = v(k − 1) · α(k − 1)
Fμ(k) = μ

4
√∑

y′(k)4·α(k−1)

vΔ(k) = QT · y′(k)3 · α(k − 1)3

v(k) = w(k − 1) − Fμ(k) · vΔ(k)
end

Q.v vj

2

Σ vj

2

1
(...)

y
3
�

Q .y
3
�

(...).�
3

�
3

yi

4
�

Σ yi

4
�

4

(...)
�
�

(...)

(...)

v .�F� �.v

w-(...)

Σ vj

2

Q .y
3
�

Σ yi

4
�

w-(...)

T1

T5

T3

T2

T4

y’ y’

v�

w

v

v
v

��

�

F�

(...)

Q.v

Gc G′c

(a) (b) (c)

Figure 4: (a) Equalizer algorithm. (b) Data dependencies of the algorithm represented by the condensed
graph Gc. (c) Corresponding reduced condensed graph G′c.

respect to matrix Q, the efficiency of the resource
utilization is relatively small. This is caused by the
relatively big input-output latency of the twin-adder
with respect to the row length. We propose to com-
pute the multiplication in column-wise form, where
all the elements of the jth column are multiplied
by a jth element of vector v. The partial sums are
stored in the memory. For example, the computa-
tions of all rows in the 1st column (second level of
nesting) are represented by task T1,1 in G′ in Figure
5. Task T1,1 represents the fused ADD operations
of the 1st column, and therefore, its processing time
p1,1 is equal to N .

United Edges The outer loop over the columns,
further called column loop (first level of nesting), is
modeled using united edges as follows. Each task Ti

in G′c is expanded to set of tasks Ti,j representing
single iterations Ii. Index i denotes original index
of expanded task Ti and index j ∈ {1, . . . , |Ii|}
denotes the iterations modeled by loop expansion.

In order to keep regularity of the loop implemen-
tation, the time delay between consequent iterations
Ti,j and Ti,j+1 must be the same. Therefore, for all
j ∈ {1, . . . , |Ii| − 1} we introduce a new kind of
edge from Ti,j to Ti,j+1. These united edges, in-
troduced due to expansion of Ti are grouped in one
group o. Thereafter, the new precedence constraints
are expressed by equalities

si,j+1 − si,j − zo = lo, ∀j ∈ {1, . . . , |Ii| − 1}

where zo is one variable of ILP, such that zo ≥ 0,
and constant lo is the length of the united edge. Both
zo and lo are common for all united edges belonging
to the group o. Then τo = zo + lo is a period of the
column loop belonging to group o. This formalism
enables to handle inter-iteration dependencies. The
height of all united edges belonging to the group o
is equal to 0 since each iteration is represented by
particular task.

As iterations of the first level nested loop are iden-
tical, odd iterations are processed on the first half
of the twin-adder and even iterations on the second
one. Thereafter, both halves of the twin-adder pro-
cess the same tasks in the same order, but they are
shifted by 9 clocks, i.e. input-output latency of ADD
unit in HSLA library. Therefore, the model consists
of M/2 iterations of the column loop.

Approximated Expansion The scheduling algo-
rithm (in Figure 3) for model with processing time
fusion and united edges can find such an inner pe-
riod τo so that the global schedule is optimal. To
reduce the number of tasks (T1,1, T1,2, ..., T1,M/2)
representing expanded iterations of the nested loop
processed on the first twin-adder, we propose the
following approximated expansion. We divide the
iterations of the nested loop Ii into a prologue Pi,

10

y1 + (...)

united edge

N

y3 + (...)

N

y + (...)Σ yM/2-3+(...)

N

yM/2-2+(...)

N

(N,0) (N· ,0)| |B (N,0)

prologue of the column loop

(iterations)| |P

body

(M/2- - iterations)

of the column loop

| |B = | | | |P E

T1,1 T1,2 T1,Σ T1,3 T1,4

� � � � �
(N,0)

p1,Σ

yM/2-1+(...)

N

yM/2+(...)

N

(N,0)

epilogue

(iterations)

of the column loop

| |E

T1,5 T1,6

� �
(N,0)

fused
processing time

Figure 5: Approximated expansion of the column loop (first level of nesting) of matrix-vector multiplica-
tion y′ = Q · v.

a body Bi and an epilogue Ei. The prologue and
epilogue contain |Pi| (respectively |Ei|) iterations,
modeled as explained above.

The body contains one task which prevents any
other task to be executed. In fact it represents |Bi|
iterations, i.e. |Bi| = |Ii| − |Pi| − |Ei|, where
|Ii| is number of modeled iterations (in case of task
T1 |I1| = M/2). Processing time of the body task
pi,Σ is variable and it is equal to pi,Σ = |Bi| · pi,1 +
(|Bi| − 1) · zo. United edge from the body task
Ti,Σ to the first task of epilogue Ti,E is given by the
following precedence constraint

si,E − si,Σ − |Bi| · zo = |Bi| · lo. (20)

The utility of the approximation depends on the
estimation of the prologue and the epilogue length
permitting sufficient overlap of single operations.

When there are two loops that can be processed in
parallel while sharing one dedicated unit, (e.g. ex-
panded tasks T2 and T3 in Figure 6) then their in-
terleaving has to be carefully implemented since, in
the model, the body of one loop blocks the dedicated
unit. Such sharing is possible, when both loops have
the same inner period τo, i.e. their united edges are
grouped in the same group o. Thereafter there is just
one body task for both loops, since the role of body
task is to block the shared unit.

4.1.2 Simplification of memory access by fixed
edges

The previous section described modeling of the first
and the second level of nesting by expansion of the
condensed graph G′c to G′. The model considers
restriction to the one ADD unit only. In fact such
model does not reflect access into memory contain-
ing variables of the equalizer algorithm. The only
variable, that can cause conflict with respect to ac-
cess into memory is vector y′ stored in BRAM.
Other variables can not be accessed in parallel or
they are located in a distributed memory where the
number of accesses is not restricted.

Therefore, we assume two dedicated processors.
The first one is the twin-adder and the second one
is the dual ported BRAM containing vector y′. The
accesses into the memory containing y′ are modeled
as new tasks labeled ”READ” in Figure 6. Data read
from the dual ported BRAM are directly processed
in the twin-adder in order to avoid temporal storage
of data in the register. Therefore, precedence con-
straints related to this data are no longer given by
the inequality (11), but they are given by the equa-
tion sj−si = lij−τ ·hij . Such an edge, represented
by a dashed line, is called a fixed edge in the rest of
this text.

4.1.3 Equalizer Algorithm Schedule

The resulting equalizer algorithm model by the re-
duced graph G′ including accesses into the memory
(fixed edges) and expansion of nested loops (united
edges) is shown in Figure 6.

The particular constants M and N are chosen
to be greater than the input-output latency of the
pipelined twin-adder (i.e. M = 20 and N = 24).
The schedule of this instance of cyclic scheduling is
shown in Figure 7. While setting greater values of
constants M and N , we obtain different parameters
of graph G′ and an unclear Gantt chart, therefore,
we have shown this example.

The model in Figure 6 considers two processors,
i.e. the first half of twin-adder and the dual ported
BRAM containing vector y′. But it corresponds to
the HW design with both parts of the twin-adder,
since odd iterations are processed on the first half
of the twin-adder and even iterations on the sec-
ond one. This mapping scheme known from parallel
computing can be easily used to extend this model
to a different number of ADD units. The advantage
of such a representation lies in smaller correspond-
ing ILP model and therefore, lower computing time
requirements. Moreover, it leads to a simpler code
structure and therefore a smaller FPGA design.

11

READ
y

y + (...)

(1,0)

united edge (group 1)fixed edge

24

24

READ
y

y + (...)

(1,0)

24

24

y + (...)

READ
y

y + (...)

(1,0)

24

24

READ
y

y + (...)

(1,0)

24

24

(,0)24 (,0)24

TY1,1

T1,1

TY1,2

T1,2 T1,Σ

TY1,3

T1,3

TY1,4

T1,4

p1,Σ

(,0)24 (4 ,0)·24

�

�

�

� �

�

�

�

�

READ
y

y + (...)

(1,0)

24

24

(,0)24

TY1,5

T1,5

�

�

READ
y

y + (...)

(1,0)

24

24

(,0)24

TY1,6

T1,6

�

� �+ (...)

1

� + (...)

1

� + (...)

1

�+ (...)

1

(,0)24 (,0)24

T5,1 T5,2 T5,3 T5,4

(7 ,0)·24

READ
y1

F + (...)

(3,0)

1

1

READ
y3

F + (...)

(3,0)

1

1

READ
yx

F + (...)

(3,0)

1

(20,0)

TY2,1

T2,1

T ,2Y2

T2,2

T ,3Y2

T2,3

1

(,0)20 (8 ,0)·20

�

�

�

�

�

�

READ
y17

F + (...)

(3,0)

1

1

T ,4Y2

T2,4

�

�

READ
y19

F + (...)

(3,0)

1

1

(,0)20

T ,5Y2

T12,4

�

�

READ
y1

v + (...)

(5,0)

20

20

READ
y3

v + (...)

(5,0)

20

20

v + (...)

READ
y13

v + (...)

(5,0)

20

20

READ
y15

v + (...)

(5,0)

20

20

(,0)20 (,0)20

TY3,1

T3,1

T ,2Y3

T3,2 T3,Σ

T ,4Y3

T3,4

T ,5Y3

T3,5

p3,Σ

(,0)20 (5 ,0)·20

�

�

�

� �

�

�

�

�

READ
y17

v + (...)

(5,0)

20

20

(,0)20

T ,6Y3

T3,6

�

�

READ
y19

v + (...)

(5,0)

20

20

(,0)20

T ,7Y3

T3,7

�

�

READ
y5

v + (...)

(5,0)

20

20

(,0)20

T ,3Y3

T3,3

�

�

w1 - (...)

1

w3 - (...)

1

w17 - (...)

1

w19 - (...)

1

(,0)24 (,0)24

T4,1 T4,2 T4,4 T4,5

(6·24,0)w5 - (...)

1

(,0)24

T4,3

edge

(,0)9+9+1

(,0)9+9+1

(9+9+2+2+2+2+2+2,0)

(9+9+2+2,0) (,0)9+9+2+2+2

(,1)9+2 (,1)9+2 (,1)9+2 (,1)9+2 (,1)9+2 (,1)9+2 (,1)9+2
(,1)9+2

united edge (group 2)

prologue of T (=2 iterations)1 | |P1

one iteration of first level of nesting

processing time corresponding to second
level of nesting (M=)20

epilogue of T (iterations)1 | |=4E1

body of T

(M/2- - =4 iterations)
1

| | | | | |B1 P1 E1=

N=24

| |P3 =3
body of T

(N/2- - =5 iterations)
3

| | | | | |B3 P3 E3= | |=4E3

+ + * *
-1 3

+ + *
4 -1

+ +
Mem write

+ *

+ + * *

| |P5 =2 | |E5 =2

| |P2 =3 | |E2 =2

Figure 6: Model of the equalizer algorithm by the reduced graph G′ with fixed edges and united edges on
HSLA library.

Figure 7: Resulting schedule of the equalizer algorithm (τ∗ = 565; inner periods τ1 = 26, τ2 = 23) on
two dedicated processors (one half of HSLA twin-adder, and BRAM containing y′).

4.2 Parallelization of the QR decompo-
sition

The QR decomposition algorithm (Figure 8(a)) con-
tains an outer loop, an iterative loop and nested
loops B,C. The outer loop is repeated for each input
data sample and it can not be subject of the cyclic
scheduling, since two iterations of the outer loop can
not be executed simultaneously. The iterative loop
is subject of the cyclic scheduling. The nested loops
B,C (both on the first level of nesting) have no inter-
iteration dependencies, therefore they are modeled
by the processing time fusion while fully utilizing
the twin-adder.

The k-th iteration of the iterative loop computes
one diagonal element of R (single cell A), off diago-
nal elements of R (cells B computed in nested loop
B) and from one to i elements of Q (cells C com-
puted in nested loop C). Hence, the number of lines
of Q grows up to i, the iteration index of the outer

loop. Figure 8(b) shows the data flow graph of the
N -th (the last) iteration of the outer loop, consisting
of the cells arranged in the upper triangular matrix
R, flipped over the main diagonal, and of the matrix
Q.

Assuming HSLA arithmetic library, we propose
to model the dataflow in Figure 8(b) by G′ in Fig-
ure 8(c). The iterative loop (executed over columns
in Figure 8(b)) is modeled by the cyclic scheduling.
The nested loops B and C (executed over rows in
Figure 8(b)) are modeled by the processing time fu-
sion extended by preemption. The idea is to com-
bine the operations across loops B and C as one pre-
emptible task, and the scheduling algorithm chooses
the optimal preemption point.

However, the number of operations varies with
both k (the iteration index of the iterative loop) and
i (the iteration index of the outer loop), which pre-
cludes direct application of the cyclic scheduling.
Therefore G′ in Figure 8(c) consists of:

12

for i = 1 to N do //outer loop
u = datai:(i+M); //input data
t = zeros(i, 1);
ti = 1;
for k=1 to M do //iterative loop

[r2
k,k, sc] = A(r2

k,k,uk);
//computation of diagonal element of R

for j = k + 1 to M do //nested loop B
[rk,j ,uj] = B(rk,j ,uj ,sc);

//computation of off-diagonal element of R
end
for j = 1 to i do //nested loop C

[qj,k,tj] = C(qj,k,tj ,sc);
//computation of elements of Q

end
end

end

T

T

TBC

(15,0)

(9,1)

(1,0)

1

1

pBC

B1

A

(9,1)

(a) (b) (c)

Figure 8: (a) The algorithm of QR decomposition. (b) The data flow graph of the iterative loop (N -th
iteration of the outer loop). (c) The reduced graph G′ corresponding to the model of QR decomposition.

• task TA corresponding to cell A

• task TB1 corresponding to the first cell B, tak-
ing data from the cell A and generating data for
the cell A in the next iteration

• task TBC corresponding to the rest of the cells
B and to all cells C

For a given column, task TBC represents all cells
B (except the first one) and cells C, all sequentially
processing data in the nested loop B and nested loop
C. No expansion of the nested loop is needed at this
point since the sequential processing fully utilizes
the twin-adder, therefore it is optimal. The process-
ing time of TBC is given as a sum of the processing
times of the corresponding cells.

The processing time of tasks TA resp. T ′
B1 is

pA = 1 resp. pB1 = 1 since they correspond to
one cell. The processing time pBC of TBC depends
on the number of iterations of iterative and outer
loop therefore pBC ∈ 〈0,M + N − 2〉. Since we
consider iterative algorithms with fixed period, task
TBC is modeled with pBC = 42 (M = 20 and
N = 24).

This graph has critical circuit with τ∗ = 24. Fur-
ther, the optimal schedule of one iteration must con-
tain a time gap of 14 clock cycles between tasks

TA and TB1 (since it takes TB1 the latency of the
pipelined unit to get the result of TA). In order to be
able to use the time gap, the task TBC is divided into
tasks T ′

BC and T ′′
BC with variable processing times

satisfying new linear constraint p′BC +p′′BC = pBC .
The division of TBC into T ′

BC and T ′′
BC can be con-

sidered as a preemption of TBC .

The resulting schedule is shown in Figure 9. For
the regularity reasons we suppose the order of tasks
in the schedule to be the same for all iterations in the
iterative loop.

inner loop iteration: 1st 2nd

TA TB1 T’BC T’’BC

0 20 40 60 t3010 50 70 80 90

TA TB1 T’BC T’’BC

100

Figure 9: Resulting schedule for two iterative loop
iterations of QR decomposition (τ∗ = 44).

We are able to consider preemption since the pro-
cessing times (p′BC and p′′BC) can be variables in
our ILP model, that is not permitted in common ILP
models, e.g. in [12].

13

Administrator
Highlight

5 Experimental Results

5.1 Implementation Results

The FICMA algorithm has been implemented in two
FPGA devices: Xilinx Virtex XCV2000E-6 and Xil-
inx Virtex-II XC2V1000-5. The schedules (in Fig-
ure 7 and 9), containing start times of operations,
were further used to automatically generate a state
machine controlling a parallel execution of the algo-
rithm using Handel-C language. It has been com-
piled using the compiler from the Celoxica DK3
suite. The resulting VHDL description was pro-
cessed with Simplify Pro and Xilinx ISE 6.1.03 to
get the bitstream for FPGA. The results of the im-
plementation (i.e. equalizer algorithm and QR de-
composition) are shown in Table 2.

The choice of architecture to be used was based
on two models, one for HSLA (Figure 7) resulting
in the period τ∗ = 565 and one for the FP32 (see in-
ternal report [5]) resulting in the period τ∗ = 1180.
Considering the clock cycle length (measured in the
case of HSLA and estimated in the case of FP32)
we were able to determine which architecture leads
to faster implementation. Based on these results, we
have decided to use the HSLA library. In order to
save the on-chip memory, we have decided for the
19-bit version of the library. The performance of the
equalizer is, of course, worse than with 32-bit preci-
sion, nevertheless still sufficient [29].

The implementation was tested on a data matrix
of the size 24 × 20. The FI-CMA algorithm uses
one twin-adder and four MUL units, which results in
300 MFlops for Virtex-II (210 MFlops for Virtex-E).
DIV and SQRT operations are neglected, because of
their spare use (the resulting error in MFLOPS is 0.3
per mille).

One iteration of equalizer update procedure takes
565 cycles which represents the execution time 11μs
for Virtex-II (16μs for Virtex-E). This performance
is sufficient for the symbol period 3.7μs (corre-
sponding to 24 symbols processed in one batch in
GSM systems), since the implementation of equal-
izer update is fast enough to perform 8 iterations,
needed for the algorithm convergence.

5.2 Results of Scheduling

The presented scheduling technique was tested on
an Intel Pentium 4 at 2.4 GHz using the non-
commercial ILP solver GLPK [30] and the commer-
cial ILP solver CPLEX [31]. The equalizer algo-
rithm model in Figure 6 consists of 47 tasks on two
distinct dedicated processors (29 on the first half of

Table 2: Resource utilization of the FI-CMA imple-
mentation with 19-bit HSLA library and the corre-
sponding XC2V1000-5 design.

XCV2000E-6 XC2V1000-5
Block RAM 16 10 % 16 40%
SLICEs 4349 22% 4222 82%
TBUFs 192 1% 192 7%
Clock Rate 35 MHz 50 MHz
Performance 210 MFlops 300 MFlops

Table 3: Overview of scheduling results for equal-
izer algorithm. Computation times were obtained on
CPLEX solver.

HSLA FP32
n′ 47 82
m′ 2 4
#var 621 1556
#varelim 436 1038
τ∗ 565 1180
#iter 9 11
CPU time 6.1 s 124.6 s
CPU timeelim 3.4 s 55.1 s

twin-adder and 18 on the dual ported Block RAM
containing vector y′). The upper bound of q̂i was
given a priory for tasks T1,i and T5,i equal to 0 and
for T3,i, T2,i and T4,i equal to 1. The lower bound of
period τ , τlower = 493 is given by critical circuit in
G′. The upper bound τupper = 774 was calculated
using the ILP model (Figure 3) for the reduced con-
densed graph G′c (in Figure 4(c)), where all tasks in
the column loop are supposed to be executed simply,
in sequence.

The resulting schedule with optimal period τ∗ =
565 was obtained by the interval bisection method in
9 iterative calls of the ILP. The corresponding ILP
model contains 621 variables. The time required
to compute the optimal solution without elimination
of redundant processor constraints, given as a sum
of iterative calls of the ILP solver was 1634 s with
GLPK. This time does not include the construction
of the ILP model, since it is negligible from the com-
plexity point of view. The time required to com-
pute the optimal solution with elimination of redun-
dant processor constraints (see Subsection 3.4) was
57.8 s with GLPK and only 3.4 s with CPLEX. In
this case, as many as 436 variables were eliminated
(the number of eliminated redundant inequalities is
twice as big), which is mainly due to the ILP model
keeping a regular structure of matrix operations.

The experiments are summarized in Table 3

14

Administrator
Highlight

Administrator
Highlight

where n′ denotes the number of tasks after reduc-
tion, m′ denotes the number of dedicated proces-
sors, #var denotes number of ILP variables. The
algorithm results are given by the shortest period
resulting in a feasible schedule τ∗, and by vector
s. The row #iter denotes the number of iterative
calls of ILP and #varelim denotes the number of
eliminated variables of ILP for τ∗ (the number of
eliminated redundant inequalities is twice as big).
The time required to compute the optimal solution
without elimination, given as a sum of iterative calls
of the ILP solver, is shown in the row CPU time.
CPU timeelim is the time to compute the optimal
solution with eliminated redundant inequalities. The
improvement on CPU time by using redundant in-
equalities elimination is 44% in the case of HSLA
and 56% in the case of FP32.

Since the model of QR decomposition contains
only 4 tasks, time required to compute the optimal
solution (without elimination of redundant proces-
sor constraints) was 0.001s. The optimal period
of resultant schedule is τ∗ = τlower = 44 since
τlower = 44 is given as the maximum sum of the
processing times of tasks dedicated to one proces-
sor.

6 Conclusions

This paper presented a new scheduling method
based on mathematical programming used to opti-
mize the computation speed of real-time iterative al-
gorithms with matrix operations running on archi-
tectures including distinct dedicated processors with
restricted access into memory. The contribution lies
in the representation of imperfectly nested loops and
memory access in the form of linear inequalities that
are incorporated in the cyclic scheduling framework
based on ILP. In order to compare two different
arithmetic libraries, we have extended our previous
work in this paper, cyclic scheduling on one dedi-
cated processor, to its multiprocessor version. Since
the solutions of ILP formulated problems are known
to be computationally intensive, important part of
the article is devoted to the reduction of the problem
size. In this article and in internal report [5] we have
shown that our elimination of redundant processor
constraints plays an important role in the case of the
iterative algorithms with matrix operations.

As shown e.g. in Figure 7, this approach leads
to a schedule overlap (operations belonging to dif-
ferent iterations are interleaving), which is rather
difficult to achieve in a manual design. The cyclic
scheduling is not directly applicable to complex par-

allelization problems containing imperfectly-nested
loops, and access to Block RAMs. Therefore, we
have proposed a model containing processing time
fusion, united edges and fixed edges. Even though
our method is not fully automated (i.e. program-
mer intervention is needed in the nested loop mod-
eling phase), the algorithm modeling, transforma-
tion and scheduling could be easily incorporated in
design tools while representing considerable simpli-
fication for rapid prototyping of real-time applica-
tions and evaluating their performance prior to their
implementation.

The method was used to find a schedule for FPGA
implementation of the Finite Interval Constant Mod-
ulus Algorithm (FI-CMA) using Xilinx Virtex-E
and Virtex-II devices. The algorithm, which re-
quires floating-point computations to achieve suf-
ficient accuracy, has been implemented using the
High Speed Logarithmic Arithmetic (HSLA) li-
brary.

The first implementation of the algorithm, has
been described in [27]. Using our ILP based
scheduling for equalizer order M = 20 and size of
the block N = 24, the number of cycles needed for
one iteration of the equalizer update has been im-
proved by approximately 43% (from 994 cycles to
565 cycles). In case of QR-decomposition improve-
ment of one iteration length was about 27.7% (from
10559 cycles to 7633 cycles).

From these numbers, it is clear that the imple-
mentation of equalizer update is fast enough to per-
form 8 iterations, needed for the algorithm conver-
gence. On the other hand the weak point is QR-
decomposition, which can be solved by implement-
ing several QR-decomposition blocks operating on
different data segments in parallel.

In our current work in the scheduling of algo-
rithms for efficient FPGA design we have solved
two related problems: (i) scheduling on dedicated
sets of identical processors (e.g. 3 MUL units and 2
ADD units) (ii) variable number of processors con-
strained by the FPGA resource (e.g. number of
MUL and ADD units is also subject of optimiza-
tion, which is constrained by available SLICEs and
BRAMs). Solution to both of these problems has
more complex ILP models but the model of nested
loops stays the same. We also work on alternative
solutions by polynomial heuristic algorithms en-
abling to solve considerably larger problems. These
works are the subject of our ongoing publications.

15

Administrator
Highlight

Acknowledgement

This work been partially supported by the Grant
Agency of the Academy of Sciences of the Czech
Republic under Project 1ET300750402 and by the
Ministry of Education of the Czech Republic under
Project 1M0567. The authors would like to thank
the anonymous referees for providing many invalu-
able comments and suggestions that lead to signifi-
cant improvement of this paper.

References

[1] D. N. Godard. Self-recovering equalization
and carrier tracking in two-dimensional data
communication systems. IEEE Trans. Com-
munications, 28:1867–1875, November 1980.

[2] P. A. Regalia. A finite interval constant
modulus algorithm. In Proc. International
Conference on Acoustics, Speech, and Signal
Processing(ICASSP-2002), volume III, pages
2285–2288, Orlando, FL, May 13-17 2002.

[3] Celoxica Ltd. Platform Developers Kit:
Pipelined Floating-point Library Manual,
2004. http://www.celoxica.com.

[4] R. Matoušek, M. Tichý, Z. Pohl, J. Kadlec,
and C. Softley. Logarithmic number system
and floating-point arithmetics on FPGA. In
M. Glesner, P. Zipf, and M. Renovell, ed-
itors, Field-Programmable Logic and Appli-
cations: Reconfigurable Computing Is Going
Mainstream, volume 2438 of Lecture Notes
in Computer Science, pages 627–636, Berlin,
2002. Springer.

[5] P. Šůcha and Z. Hanzálek. Optimiza-
tion of iterative algorithms with matrix
operations:case studies. Technical re-
port, CTU FEL DCE, Prague, 2005.
http://dce.felk.cvut.cz/sucha/articles/
sucha05ficmaCS.pdf.

[6] M.A. Bayoumi, G.A. Jullien, and W.C. Miller.
Hybrid VLSI architecture of FIR filters using
residue number systems. Electronics Letters,
21(8):358–359, January 1985.

[7] J.G. McWhirter. Systolic array for recursive
least-squares minimisation. Electronics Let-
ters, 19(18):729–730, 1983.

[8] I.K. Proudler, J.G. McWhirter, M. Moonen,
and G. Hekstra. The formal derivation of a sys-
tolic array for recursive least squares estima-
tion. IEEE Transactions on Circuits and Sys-
tems II: Analog and Digital Signal Processing,
43(3):247–254, 1996.

[9] M. Moonen, P. Van Dooren, and J. Vandewalle.
Systolic algorithm for QSVD updating. Signal
Processing, 25(2):203–213, 1991.

[10] G. Lightbody, R. Walke, R. Woods, and J. Mc-
Canny. Parameterizable qr core. In Asilomar
Conference on Signals, Systems and Comput-
ers, Conference Record, volume 1, pages 120–
124, 1999.

[11] R.L. Walke and R.W.M. Smith. 20 GFLOPS
QR processor on a Xilinx Virtex-E FPGA. In
Franklin T. Luk, editor, Advanced Signal Pro-
cessing Algorithms, Architectures, and Imple-
mentations X, volume 4116. SPIE, 2000.

[12] S. L. Sindorf and S. H. Gerez. An integer lin-
ear programming approach to the overlapped
scheduling of iterative data-flow graphs for tar-
get architectures with communication delays.
In PROGRESS 2000 Workshop on Embedded
Systems, Utrecht, The Netherlands, 2000.

[13] C. Hanen and A. Munier. A study of the
cyclic scheduling problem on parallel proces-
sors. Discrete Applied Mathematics, 57:167–
192, February 1995.

[14] A. Munier. The complexity of a cyclic
scheduling problem with identical machines.
European Journal of Operational Research,
91:471–480, June 1996.

[15] Dirk Fimmel and Jan Müller. Optimal software
pipelining under resource constraints. Inter-
national Journal of Foundations of Computer
Science, 12(6):697–718, 2001.

[16] P. Šůcha, Z. Pohl, and Z. Hanzálek. Scheduling
of iterative algorithms on FPGA with pipelined
arithmetic unit. In 10th IEEE Real-Time and
Embedded Technology and Applications Sym-
posium (RTAS 2004), Toronto, Canada, 2004.

[17] Z. Pohl, P. Šůcha, J. Kadlec, and Z. Hanzálek.
Performance tuning of iterative algorithms in
signal processing. In The International Con-
ference on Field-Programmable Logic and Ap-
plications (FPL’05), Tampere, Finland, Au-
gust 2005.

16

[18] M. Lam. Software pipelining: an effective
scheduling technique for VLIW machines. In
PLDI ’88: Proceedings of the ACM SIGPLAN
1988 conference on Programming Language
design and Implementation, pages 318–328,
1988.

[19] B. R. Rau and C. D. Glaeser. Some scheduling
techniques and an easily schedulable horizon-
tal architecture for high performance scientific
computing. In MICRO 14: Proceedings of the
14th annual workshop on Microprogramming,
pages 183–198, Piscataway, NJ, USA, 1981.
IEEE Press.

[20] S. Gupta, N. Dutt, R. Gupta, and A. Nico-
lau. Loop shifting and compaction for the
high-level synthesis of designs with complex
control flow. In Design, Automation and
Test in Europe Conference and Exhibition
(DATE’04), Paris, France, February 2004.

[21] A. Darte and Guillaume Huard. Loop shifting
for loop compaction. International Journal of
Parallel Programming, 28(5):499–534, 2000.

[22] S. Carr, C. Ding, and P. Sweany. Improving
software pipelining with unroll-and-jam. In
Proceedings of the 29th Hawaii International
Conference on System Sciences (HICSS’96),
January 1996.

[23] D. Petkov, R. Harr, and S. Amarasinghe. Ef-
ficient pipelining of nested loops:unroll-and-
squash. In 16th International Parallel and Dis-
tributed Processing Symposium (IPDPS’02),
Fort Lauderdale, California, April 2002.

[24] M. J. Wolfe. High Performance Compilers for
Parallel Computing. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA,
1995.

[25] N. Ahmed, N. Mateev, and K. Pingali. Tiling
imperfectly-nested loop nests. In Proceedings
of the IEEE/ACM SC2000 Conference, Dallas,
Texas, November 2000.

[26] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail,
B. Rau, D. Cronquist, and M. Sivaraman.
Pico-npa: High-level synthesis of nonpro-
grammable hardware accelerators. The Jour-
nal of VLSI Signal Processing, 31(2):127–142,
2002.

[27] A. Heřmánek, J. Schier, and P. A. Regalia. Ar-
chitecture design for FPGA implementation of

Finite Interval CMA. In Proc. European Sig-
nal Processing Conference, pages 2039–2042,
Wiena, Austria, September 2004.

[28] W. Givens. Computation of plane unitary ro-
tations transforming a general matrix to trian-
gular form. J. Soc. Ind. Appl. Math., 6:26–50,
1958.

[29] A. Heřmánek. Study of the next generation
equalization algorithms and their implemen-
tation. PhD thesis, Université Paris XI, UFR
Scientifique d’Orsay, 2005.

[30] A. Makhorin. GLPK (GNU Linear
Programming Kit) Version 4.6, 2004.
http://www.gnu.org/software/glpk/.

[31] ILOG, Inc. CPLEX Version 8.0, 2002.
http://www.ilog.com/products/cplex/.

17

A Equalizer Algorithm

for k = 1 to K do //iterative loop

y′
i = 0 ∀i ∈ 〈0, N〉

for i = 1 to M do //first level of nesting
for j = 1 to N do //second level of nesting

y′
j = y′

j + Qi,j · vi //y′(k) = Q · v(k − 1)
end

end

sum v = 0
for i = 1 to M do

sum v = sum v + v2
i

end
α = 1/

√
sumv //α(k) = 1/

√∑
v(k − 1)2

for i = 1 to M do
wi = vi · α //w(k) = v(k − 1) · α(k − 1)

end

sum y′ = 0
for j = 1 to N do

sum y′ = sum y′ + (y′
j)

4

end
Fμ = μ/(4

√
sum y′ · α)

//Fμ(k) = μ/(4
√∑

y′(k)4 · α(k − 1))

vdi = 0 ∀i ∈ 〈0,M〉
for j = 1 to N do

for i = 1 to M do
vdi = vdi + Qi,j · (y′

j)
3

end
end
for i = 1 to M do

vdi = vdi ∗ α3 //vΔ(k) = QT · y′(k)3 · α(k − 1)3

end

for i = 1 to M do
vi = wi − Fμ · vdi

//v(k) = w(k − 1) − Fμ(k) · vΔ(k)
end

end

B List of Variables
bn background noise vector
eij edge eij from the node i to j
g CMA equalizer coeffitient vector
hij height of eij

i, j, k indices
lij length of eij

m number of processors (arithmetic units)
m′ number of reduced processors
n number of tasks
n′ number of reduced tasks

o group of united edges
pi processing time
ps

i processing time of single operation
qi,j element of matrix Q
q̂i the index of the execution period
ri,j element of matrix R
si start time of task Ti in the first iteration
sn transmited data vector
ŝi the index within the execution period
t time
un received signal vector
v temporary value for equalizer update
w FI-CMA equalizer coeffitient vector
x̂ij binary decision variable of ILP model
yn equalizer output
yk equalizer outputs vector at time k
zo slack variable in ILP model
Fk FI-CMA cost function after k iterations
G graph
G′ reduced graph
Gc condensed graph
Gi ith Givens rotation in QR decomposition
H channel matrix
I identity matrix
J CMA cost function
K number of iterations
M equalizer order
N size of the block of FI-CMA
P oversampling factor
Q Q matrix of QR decomposition
R R matrix of QR decomposition
Ti task i
Ti,j task representing iteration j of task Ti

U input data vector of M past samples
Bi body of the nested loop i
Ei epilogue of the nested loop i
Ii iterations of the nested loop i
Pi prologue of the nested loop i
T set of tasks
T ′ set of tasks on dedicated processors
T r set of reduced tasks
U receiver input data matrix
γ not important constant
δ difference between iteration indexes
Δij slack variable of ILP model
Δb

ij binary decision variable of ILP model
θi rotation angle in Givens elimination
μk step-size in equalizer update at time k

18

τ period
τ∗ optimal period
τo optimal inner period

C Parameters of FP32

Table 4: Parameters of the 32-bit FP32 units for
XCV2000E-6 FPGA device. Maximal clock fre-
quency is 93 MHz.

Unit Input-output SLICEs BRAMs
Latency [clk] [%] [%]

ADD 11 8 0
MUL 8 4 0
DIV 28 10 0
SQRT 27 6 0

Přemysl Šůcha was born in Prague, Czech
Republic, in 1978. He received
the Diploma in Electrical Engi-
neering from the Czech Technical
University (CTU) in Prague in
2003. He is currently a Ph.D.
student at the Czech Technical
University. His research interests

include scheduling and high-level synthesis.
Zdeněk Hanzálek was born in Tabor, Czech

Republic, in 1967. He obtained
the Diploma in Electrical Engi-
neering from the Czech Techni-
cal University (CTU) in Prague in
1990. He obtained his PhD de-
gree in Control Engineering from
the CTU in Prague and PhD de-

gree in Industrial Informatics from the Universite
Paul Sabatier Toulouse. He was with LAAS - Lab-
oratoire d’Analyse et d’Architecture des Systemes
in Toulouse (1992 to 1997) and with LAG INPG -
Institut National Polytechnique de Grenoble (1998
to 2000). In 2005, he obtained Doc. degree at the
Czech Technical University in Prague. His research
interests include real-time systems and scheduling.

Antonı́n Heřmánek is a researcher at the Insti-
tute of Information Theory and
Automation of the Academy of
Sciences of the Czech Republic.
He received his M.S.E.E. and
Ph.D. degrees from the Czech
Technical University, Faculty of
Electrical Engineering (1998)

and Universite Paris Sud - Orsay, STITS (2005),
respectively. His research interests include blind
equalization, MIMO and OFDM communication

systems, FPGA implementation of DSP algorithms,
array processing and rapid prototyping for signal
processing. He has published over 30 papers in
these areas.

Jan Schier (M’2005) is a senior researcher at the
Institute of Information Theory
and Automation of the Academy
of Sciences of the Czech Repub-
lic. He received his M.S.E.E. and
Ph.D. degrees from the Czech
Technical University, Faculty of
Electrical Engineering (1989)

and Faculty of Nuclear Sciences and Physical Engi-
neering (1995), respectively. His research interests
include FPGA implementation of signal processing
algorithms, array processing and rapid prototyping
for signal processing. He has published over 20
papers in these areas. Dr. Schier has been a Visiting
researcher at the Delft University of Technology
and at the Katholieke Universiteit Leuven.

19

