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This paper presents an integer linear programming (ILP) model for cyclic scheduling of tasks
with unit processing time. Our work is motivated by digital signal processing (DSP) applications
on FPGA (Field-Programmable Gate Array) architectures hosting several kinds of identical arith-
metic units. These hardware resources can be formalized as dedicated sets of parallel identical
processors. We propose a method to find an optimal periodic schedule of DSP algorithms on such
architectures. The accent is put on the efficiency of the ILP model. We show advantages of the
model in comparison with common ILP model on benchmarks and randomly generated instances.
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1 Introduction

Integer Linear Programming (ILP) formulations find their application in scheduling as well as
other areas in engineering. The challenge for researchers is to provide faster solutions for ILP
based approaches. The modeling problem plays a crucial role on the solution efficiency.

In this paper, we concentrate on the efficiency of the ILP model used for automatic paralleliza-
tion of computation loops. Our work is motivated by DSP (Digital Signal Processing) applications
executed on FPGAs (Field Programmable Gate Arrays) hosting several kinds of identical arithmetic
units. These hardware resources can be formalized as dedicated processors.

The DSP application is usually implemented in the form of an iterative loop. A parallel imple-
mentation of the loop requires each operation of the loop to be mapped on the arithmetic unit at
a given time, which is formulated as a cyclic scheduling problem. The arithmetic units operating
with real numbers are usually pipelined, i.e. the input data are usually passed to the unit in one
clock cycle, while the result of a computation is available after several clock cycles denoted as the
input–output latency of the unit formalized as precedence delays.

An example of the arithmetic library for FPGA is FP32 [1] implementing a 32-bit floating point
number system and compliant with IEEE standards. Another library using a logarithmic number
system arithmetic is HSLA [2]. In both cases, rather complex arithmetic is required. Therefore,
scheduling of such dedicated HW resources has to carefully consider the algorithm structure, in
order to achieve the desired performance of the application. Scheduling also helps to choose the
appropriate arithmetic library prior to the algorithm implementation.

Cyclic scheduling deals with a set of operations (tasks) that have to be performed an infinite
number of times [3]. This approach is also applicable if the number of loop repetitions is large
enough. The aim is then to find a periodic schedule with a minimum period. One repetition of
the loop, called an iteration, can be performed in several periods. Therefore, the schedule is called
overlapped [4], since the execution of the operations belonging to different iterations can interleave.

Modulo scheduling and software pipelining [5] are related terms to cyclic scheduling, which
are usually used in the compiler community. A common ILP based approach (further called the



for k=1 to N do

T1: a(k) = X(k) − c(k − 2)
T2: b(k) = a(k) ∗ α
T3: c(k) = b(k) + X(k)
T4: d(k) = b(k) + c(k − 2)
T8: Y (k) = X(k − 1) + d(k)

end
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Figure 1: (a) An example of a computation loop lattice wave digital filter (LWDF). (b) Corre-
sponding data dependency graph G. (c) An optimal schedule with w = 2.

binary method) uses a binary decision variable xit determining whether a computation of task i
starts at clock cycle t. Unfortunately, the size of such an ILP model (corresponding to the time
complexity) depends on the period length and therefore it is not suitable for HW architectures
with longer input–output latencies of the arithmetic units (e.g. FP32 or HSLA). For example
the ILP approach with xit decision variable is used in [6], where the additional objective is to
optimize the word–length of the arithmetic units. In [7], the ILP model is extended by automatic
processor selection from a library and [4] applies the approach to architectures with interprocessor
communication. ILP formulation using the binary method is also employed in [8] to schedule
multifunction loop accelerators. A general solution using ILP is shown in [9] but the size of the
ILP model is independent of the period length only for a monoprocessor solution.

With respect to these works, our solution leads to a simpler ILP formulation with less integer
variables. We propose a method based on ILP to find the optimal periodic schedule. Motivated by
FPGA architectures with standard arithmetic units operating with real numbers, we formulated
an ILP model for cyclic scheduling of tasks with unit processing time on dedicated sets of parallel
identical processors. We call this ILP model the integer method, since we use an integer variable
to represent the start time of a task while the binary method uses a set of binary variables for the
same purpose.

This paper is organized as follows: Section 2 describes the notation and the Basic Cyclic Schedul-
ing problem assuming an unlimited number of processors. The following section presents a formula-
tion of the cyclic scheduling of tasks with unit processing time on dedicated sets of parallel identical
processors. Section 4 presents the results demonstrated on benchmarks and shows a comparison
with an ILP model using one binary decision variable for each task and each clock cycle within the
period. Section 5 concludes the paper.

2 Problem Statement

Operations in an iterative loop can be considered as a set of n tasks T = {T1, T2, ..., Tn} to be
performed K times. One execution of set T labeled with the integer index k ≥ 1 is called an
iteration. The scheduling problem is to find the start time si(k) of every occurrence of Ti [3].
Figure 1(a) shows an illustrative example of a simple computation loop (LWDF filter [10]).

Data dependencies of this problem can be modeled by a directed, double weighted graph G =
(T , E). Each task (node in T ) is characterized by the processing time pi. Edge eij ∈ E from the
node i to j is weighted by a couple of integer constants lij and hij . Length lij represents the
minimal distance in clock cycles from the start time of task Ti to the start time of Tj and is always



greater than zero.
When considering pipelined processors, the processing time pi represents the time to feed the

processor (i.e. new data can be fed into the pipelined processor after pi clock cycles) and length lij
represents the time of the computation (i.e. the input–output latency). The parameter height hij

specifies the shift of the iteration index (dependence distance) related to the data produced by Ti

and consumed by Tj .
Figure 1(b) shows the data dependence graph of the iterative loop shown in Figure 1(a). Pro-

cessing time pi is equal to 1 for all arithmetic units. The length lij corresponds to the input–output
latency of the given unit. ADD and MUL unit have 1 and 2 clock cycles input–output latency
respectively.

When assuming a periodic schedule with period w (i.e. the constant repetition time of each
task), each edge eij in graph G represents one precedence relation constraint

sj − si ≥ lij − w · hij , (1)

where si denotes the start time of task Ti at the first iteration.
The aim of the cyclic scheduling [3] is to find a periodic schedule while minimizing the period w.

The scheduling problem is simply solved when the number of processors is the number of processors
not limited, i.e. is sufficiently large. The minimal feasible period, given by the critical circuit c in

graph G, is equal to maxc∈C(G)

(

∑

eij∈c lij

)

/
(

∑

eij∈c hij

)

, where C(G) denotes a set of cycles in

G. The critical circuit can be found in polynomial time [3], and we use this value to determine the
lower bound of the period in our scheduling problem.

When the number of processors m is restricted, the cyclic scheduling problem becomes NP–
hard [3]. Unfortunately, in our case the number of processors m is restricted and the processors are
grouped into dedicated sets up to their capability to execute specific operations. Three iterations
of the optimal schedule to the loop from Figure 1(a) are shown in Figure 1(c). In this case, a
hardware architecture with two ADD units and one MUL unit is considered.

3 Integer Linear Programming Formulation

In this section we define an Integer Linear Programming formulation for the problem of cyclic
scheduling of tasks with unit processing time on dedicated sets of parallel identical processors
P = {P1, . . .Pd, . . . ,PD}. First we solve a problem for one dedicated set of parallel identical
processors (i.e. all tasks in T are processed on P1 = P) which is further generalized in Section 3.2.
To define the ILP formulation, we introduce several integer and binary variables.

Let ŝi be the remainder after division of si (the start time of Ti in the first iteration) by w and
let q̂i be the integer part of this division. Then si can be expressed as follows

si = ŝi + q̂i · w, ŝi ∈ 〈0, w − 1〉 , q̂i ≥ 0. (2)

This notation divides si into q̂i, the index of the execution period, and ŝi, the number of clock
cycles within the execution period.

Furthermore, let x̂ij be a binary decision variable such that x̂ij = 1 if and only if ŝi ≤ ŝj (i.e.
Ti is followed by Tj or both Ti and Tj start at the same time) and x̂ij = 0 if and only if ŝi > ŝj

(i.e. Tj is followed by Ti). And let ŷij be a binary decision variable such that ŷij = 1 if and only if
ŝi = ŝj (i.e. tasks Ti and Tj are processed at the same time on different processors).

In the rest of the paper we consider pi = 1 for all Ti ∈ T . The period w is assumed to be a
constant, since multiplication of two decision variables cannot be formulated as a linear inequality.



Therefore, the optimal w is found by iterative calls of the ILP problem. The ILP problem using
the above defined variables is:

min
n

∑

i=1

q̂i (3)

subject to:

ŝj + q̂j · w − ŝi − q̂i · w ≥ lij − w · hij , ∀(i, j);∃eij ∈ E (4)

ŝi − ŝj + w · x̂ij + (1 − w) · ŷij ≥ 1, ∀i, j ∈ {1, . . . , n} ; i < j (5)

ŝi − ŝj + w · x̂ij − ŷij ≤ w − 1, ∀i, j ∈ {1, . . . , n} ; i < j (6)

−x̂ij + ŷij ≤ 0, ∀i, j; i < j and Ti, Tj ∈ T (7)
n

∑

j=i+1

ŷij ≤ m − 1, ∀i ∈ {1, . . . , n − m} (8)

where: ŝi ∈ 〈0, w − 1〉 ; q̂i ≥ 0; ŝi, q̂i ∈ Z; x̂i, ŷi ∈ {0, 1}

3.1 Constraints of the ILP Model

Constraint (4) is a direct application of precedence constraint (1). Constraints (5), (6), (7) and
(8) limit the number of processors used at a given time. The binary decision variables x̂ij and ŷij

define the mutual relation of tasks Ti and Tj (i 6= j) within the execution period. Their relation is
expressed with constraints (5) and (6). There are three feasible combinations:

1. When x̂ij = 0 and ŷij = 0, constraint (6) is eliminated in effect. Constraint (5) reduces to
ŝj + 1 ≤ ŝi, i.e. Tj is followed by Ti within the execution period.

2. When x̂ij = 1 and ŷij = 0, constraint (5) is eliminated in effect. Constraint (6) reduces to
ŝi + 1 ≤ ŝj , i.e. Ti is followed by Tj within the execution period.

3. When x̂ij = 1 and ŷij = 1, constraints (5) and (6) are equivalent to ŝi = ŝj , i.e. Ti and Tj

are scheduled at the same time within the execution period.

4. Combination x̂ij = 0 and ŷij = 1 is not feasible due to constraint (7).

The number of available processors is limited using the variable ŷij . When ŷij = 1, there is a
resource conflict between tasks Ti, Tj and they can not be scheduled on the same processor. Since
we consider the unit processing time of the tasks, this relation between the tasks expressed with
ŷij is symmetric (ŷij = ŷji) and transitive (if ŷij = 1 and ŷjk = 1 then ŷik = 1). The relation can
be expressed by graph Gy where the nodes represent the tasks in T . There is an edge between Ti

and Tj iff ŷij = 1. Due to the symmetry and transitivity, the graph Gy consists of disjoint complete
subgraphs Hy

u , such that Gy =
{

Hy
1 , . . . , Hy

u , . . . , Hy
U

}

, where U ≤ w. Each Hy
u corresponds to

the set of tasks executed at the same time. Then for each Hy
u , it holds that the number of nodes

in Hy
u is equal to the chromatic number χ(Hy

u) which is equal to ∆(Hy
u) + 1, where ∆(Hy

u) is the
maximum degree in Hy

u [11]. In our case ∆(Hy
u) =

∑n
j=1 ŷij where Ti is a node of Hy

u .
In order to limit the maximal number of processors used, we limit the number of nodes in the

biggest Hy
u . It can be expressed as a condition

∑n
j=1 ŷij ≤ m−1, ∀i ∈ {1, . . . , n} and can be further

simplified to the form of constraint (8) using the following lemma



Lemma 1. Constraint
∑n

j=1 ŷij ≤ m−1, ∀i ∈ 〈1, n〉 is equivalent to constraint
∑n

j=i+1 ŷij ≤ m−1,
∀i ∈ 〈1, n − m〉, in the ILP model.

Proof.
∑n

j=1 ŷij =
∑i

j=1 ŷij +
∑n

j=i+1 ŷij . By induction we show that the first term of this addition
can be omitted.

i = 1:
∑i

j=1 ŷij = ŷ11 = 0

i = 2:
∑i

j=1 ŷij = ŷ21 + ŷ22 = ŷ21. If ŷ21 = 0 then ŷ21 has no effect on constraint (8). If ŷ21 = 1
then nodes T1 and T2 belong to the same Hy

u and the number of nodes in Hy
u is already limited in

constraint (8) for i = 1.
i = k:

∑i
j=1 ŷij = ŷk1 + ŷk2 + . . . + ŷkk = ŷk1 + . . . + ŷk(k−1). If ŷk1 + . . . + ŷk(k−1) = 0 then

ŷk1, . . . , ŷk(k−1) have no effect on constraint (8). If ŷk1 + . . . + ŷk(k−1) > 0 then at lest one node Tv

; v ∈ 〈1, k − 1〉 belongs to the same Hy
u . Thereafter, the number of nodes in Hy

u is already limited
by constraint (8) for some i = v.

Finally, constraint (8) can be formulated for i ∈ 〈1, n − m〉, since
∑n

j=n−m+1 ŷij ≤ m − 1 is
always satisfied.

Please notice that we do not directly assign the tasks to the processors but we only restrict the
number of tasks executed at the same time. The above shown ILP formulation requires 2 ·n integer
and n2 − n binary variables constrained in ne + 3/2 · (n2 − n) + n − m constraints. It is obvious
that the size of the ILP model depends only on the number of tasks n, the number of edges ne and
the number of processors m.

3.2 Dedicated Sets of Parallel Identical Processors

The above mentioned formulation of the processor constraints allows one to generalize the approach
to the problem with dedicated sets of parallel identical processors where each task is assigned to
a dedicated set of parallel identical processors Pd such that P = {P1, . . . ,Pd, . . . ,PD} where D is
the number of these sets. Then md = |Pd| denotes the number of processors in set Pd and m, the
number of processors, is equal to

∑D
d=1 md. For example, in one of the benchmarks in Section 4.1

we assume to have 3 dedicated sets (one for addition, one for multiplication and one for division).
Furthermore, nd denotes the number of tasks assigned to the set Pd and n, the number of tasks, is
equal to

∑D
d=1 nd.

The tasks assigned to different processors are not conflicting, i.e. they do not impose any
restriction with respect to the feasibility of the schedule. Therefore, constraints (5), (6), (7) and
(8) are generated separately for each set Pd with md processors and nd tasks. On the other hand,
constraint (4) remains the same, since it represents the precedence constraints among the tasks
that may run on different processors.

3.3 Objective Function

We recall that the goal of cyclic scheduling is to find a feasible schedule with the minimal period w.
Therefore, w is not constant as we assumed in the ILP formulation above and it is a positive integer
value. Period w∗, the shortest period resulting in a feasible schedule, is constrained by its lower
bound and its upper bound [12]. The optimal period w∗ can be found iteratively by formulating
one ILP model for each iteration. These iterative calls of ILP do not need to be performed for
all w between the lower bound and the upper bound, but the interval bisection method or simple
incrementing of the period can be used, until w∗ is found.

Using the ILP formulation we are able to test the schedule feasibility for a given value of w.
In addition, we minimize the secondary criterion formulated using the objective function of ILP.



One of the simplest objectives is to minimize the iteration overlap by objective function (3) as is
assumed in this paper. Another criterion is the minimization of the iteration length or minimization
of the data storage units for transfers among the tasks [13].

4 Results

The presented scheduling technique was implemented and run on an AMD Opteron at 2.2 GHz
using the ILP solver tool CPLEX [14]. The complexity of integer linear programs can be estimated
by using the number of integer variables in the ILP model, but each change of the problem instance
may lead to a significant change of the algorithm computation time.

4.1 Standard Benchmarks

We compare the result of the binary method (e.g. [4, 8, 6]) and the integer method (shown in
Section 3) on standard benchmarks: the second order wave digital filter (WDF) [15], the Jaumann
filter (JAUMANN) [16], the recursive least squares filter (RLS) [12], the seventh-order biquadratic
IIR filter (IIR7) [17] and the fifth–order wave digital elliptic filter (ELLIPTIC) [18].

integer method binary method
Benchmark n arithmetic units qmax w∗ #var #constr CPU time #var #constr CPU time

WDF 8 2ADD (lij = 2), 2MUL (lij = 3) 3 9 48 65 0.016 80 39 0.063

8 2ADD (lij = 9), 2MUL (lij = 2) 3 29 48 65 0.016 240 79 0.047

JAUMANN 17 2ADD (lij = 9), 2MUL (lij = 2) 2 58 202 293 0.016 1003 161 0.063

17 2ADD (lij = 11), 2MUL (lij = 8) 2 82 202 293 0.016 1411 209 0.688

RLS 26 2ADD (lij = 9), 2MUL (lij = 2), 2DIV (lij = 2) 4 26 320 454 0.047 702 135 0.172

26 2ADD (lij = 11), 2MUL (lij = 8), 2DIV (lij = 28) 2 74 320 454 0.031 1950 279 0.953

IIR 29 2ADD (lij = 9), 2MUL (lij = 2) 8 20 450 657 0.125 609 134 0.234

29 2ADD (lij = 11), 2MUL (lij = 8) 7 30 450 657 0.063 899 133 0.156

ELLIPTIC 34 2ADD (lij = 2), 2MUL (lij = 3) 3 29 774 1147 0.063 1020 150 0.313

34 2ADD (lij = 9), 2MUL (lij = 2) 2 96 774 1147 0.063 3298 284 576.250

34 2ADD (lij = 11), 2MUL (lij = 8) 2 134 774 1147 0.063 4590 360 1.406

Table 1: Benchmarks

Experiments are summarized in Table 1 where n denotes the number of tasks, q̂i denotes the
upper bound of qmax given a priory. The parameters of dedicated sets of processors including
the number of processors in the set, function of the unit and corresponding input–output latency
lij in brackets are shown in the column arithmetic units. In our experiments, we have primarily
considered the parameters of the FP32 and HSLA libraries [1, 2]. The algorithm results are given by
the shortest period resulting in a feasible schedule w∗. The parameters of the ILP models (integer
and binary) in Table 1 are the number of ILP variables #var, the number of ILP constraints
#constr and the CPU time. The CPU time is the time required to compute the optimal solution,
given as a sum of iterative calls of the ILP solver.

4.2 Randomly Generated Instances

To compare the time complexity of the integer method with the one of the binary method thor-
oughly, we evaluate the average CPU times for randomly generated instances.

The randomly generated graph G consists of ⌈2/3 · n⌉ edges of height hij = 0 and n edges of
height hij > 0. The height hij > 0 is chosen from a uniform distribution on the interval 〈1, 3〉 (and
rounded toward the nearest integer). The out degree of the nodes in the generated graph G is less
then or equal to 4. All tasks (corresponding to the nodes) were associated with one set consisting
of two parallel identical processors. To demonstrate the influence of the precedence delay on the



(a) (b)

Figure 2: Comparison of integer and binary method.

CPU time, we performed two benchmarks, one for lij = 6 (see Figure 2(a)) and one for lij = 9
(see Figure 2(b)).

For each number of tasks n, 500 test instances have been randomly generated. The mean
CPU time in dependence on the number of nodes (tasks) n is shown in Figures 2(a) and (b). The
results show considerably lower time requirements for the integer method. From the comparison
between Figures 2(a) and 2(b), it follows that for instances with greater precedence delays (lij = 9),
the two methods differ even more.

5 Conclusions

This paper presents an ILP–based cyclic scheduling on dedicated sets of parallel identical processors.
In this paper, we have focused on problems with unit processing time of tasks which is common
in most FPGA architectures. Experimental results show that our model is more effective for
problems with a longer period than the commonly used ILP model where the number of variables
is independent of the period length (the binary method) [4, 8, 6]. The time complexity of the
presented ILP model can be further optimized by using the elimination of redundant processor
constraints presented in [13].
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