
Control System for Unmanned Aerial Vehicles
Ondřej Špinka, Štěpán Kroupa, Zdeněk Hanzálek

Abstract— An open project, dealing with autopilot design
for autonomous Unmanned Aerial Vehicles is introduced in
this paper. Networked hierarchical distributed control system
is being proposed and its hardware and software structure is
briefly described. Mathematical model of a small rotorcraft is
presented and identification methodology and state estimation
using Extended Kalman Filter are discussed. Control algorithms,
based on PI, LQG and SDRE approaches, focused on rotorcraft
UAVs are proposed, including a complex hierarchical autopilot
design. Real data, measured during test-flights of an experimental
UAV, are presented.

I. INTRODUCTION

A. Motivation

UNMANNED aerial vehicles (UAVs) are becoming more
and more popular in a wide field of applications nowa-

days. Although being developed mainly for military purposes
in the past, it becomes obvious that there are a lot of other
areas where they might prove useful. Consider agriculture for
example, where they may be used for field observations or
for chemicals distribution. They can patrol over wide forest
areas as a fireguard, or they can be used for traffic observation
in the cities. In cartography, small UAVs might be used for
automatic landscape photographing, being much more cost-
efficient compared with traditional aerial snapshooting. UAVs
are also very interesting for the academic research, as they can
be used for various purposes - as flying laboratories, proving
ground for control algorithms, or as an education tools for
students.

Therefore, there is a growing demand for UAV control
systems, and many projects - either commercial or academic
- destined to design a UAV autopilot were (and are) held
recently. A lot of impressive results had already been achieved,
and many UAVs, more or less autonomous, are used by
various organizations. Sadly, they are still unattainable for
many potential users, as stock products are very expensive,
and academic researchers are often reluctant (understandably)
to give away specific construction details of their inventions.
Many teams had published their results, but (according our
knowledge) none of them had released full technical documen-
tation of their control systems for public usage. Hence, every
newcomer to this field, unable to afford a commercial product,
is compelled to start his project from scratch, again and again.
The complexity of the whole design process may discourage
many of them, and a lot of time and resources are wasted by
re-inventing things already known to more experienced teams.
That is why we designed RAMA.

RAMA stands for Remotely operated Aerial Model Autopi-
lot. It is an open project, held at the Department of Control
Engineering, Faculty of Electrical Engineering of the Czech
Technical University in Prague, which purpose is to design

a universal lightweight and compact control system for small
UAVs. RAMA is intended to be used mainly in the academic
environment, and shall serve as a good starting point for
anyone willing to build his own UAV. Main distinctive feature
of the RAMA project is that it is totally open, meaning that the
whole technical documentation - including wiring diagrams,
PCBs (Printed Circuit Boards), software source codes, vehicle
controller designs, vehicle mathematical models and real flight
data from our UAV - is available at the project website
[24]. Therefore, anybody with necessary technical background
should be able to build his own RAMA system for whatever
purpose, or could use RAMA as a reference for his own
project, saving a lot of work he (she) would otherwise spend
developing his (her) own system.

From engineering point of view, UAV autopilot design poses
a lot of challenges. It is very complex multidisciplinary pro-
cess, covering disciplines from hardware design, sensors and
measurement, programming, networking, etc. to mathematic
modeling and control theory, artificial intelligence, image and
signal processing etc. Therefore it is very interesting for
researchers from various fields, and there is still plenty of
room for improvements and new approaches, as this field is
relatively fresh and unexplored.

The RAMA project had been running since 2004 and
had already brought some interesting results. From hardware
design and system programming point of view, it is almost
complete by now. Currently, extensive work is being carried
out on the mathematical modeling and controller designs. A
couple of stabilizing controllers had already been introduced
and tested with promising results, and dozens of test flights
were performed. The project is comprehensively documented
at the project website [24].

B. Related work

A lot of work had already been done in the UAV field by
other teams. Most interesting works in the academic environ-
ment were proposed by following teams: H. P. Geering and
M. F. Weilenmann from ETH Zurich presented a stabilizing
controller for a rotorcraft in [14]. Another Swiss team followed
in their footsteps with considerable success [15]. At the
University of California in Berkeley a military UAV rotorcraft
was developed in the course of the DARPA project [16].
Their vehicles are even able to perform coordinated group
flights. At the MIT (Massachusetts Institute of Technology),
V. Gavrilets, B. Mettler and E. Feron developed a complex
non-linear mini-helicopter mathematic model and verified it
successfully using two small rotorcrafts [6]. A. Bogdanov, E.
Wan and G. Harvey from the OGI School of science and
engineering at Oregon later used this model to develop a
promising SDRE (State-Dependent Riccati Equation) governor



[5]. An interesting work dealing with dynamics identification
of a small helicopter using frequency domain methods was
published by B. Mettler [4]. A group led by G. Buskey
investigated the possibilities of ”artificial intelligence” control
methods, such as neural networks, fuzzy and neuro-fuzzy
controllers (see [17] for example). Another interesting R-UAV
(Rotorcraft-UAV) is being developed at the TU Berlin [18].
Advanced mathematical models and control methods were
presented by a team from the Aalborg University [2] [3] [7]
[8] [9].

From non-academic projects, let us at least mention the
Yamaha RMAX R-UAV [19], probably the most advanced
commercial UAV currently available at the market. It is a
completely autonomous R-UAV, used widely all around the
world in such projects as environmental observations, atomic
plant surveillance, infrastructure maintenance etc.

C. Paper organization

This paper is organized as follows: In the following chapter,
basic structure of the RAMA control system is presented. Its
distinctive feature compared to most other projects known
to us [8] [14] [15] [17] [18] is the hierarchical networked
architecture we are introducing, bringing undisputable benefits
(see II-B.1). In chapter II-C, the software architecture is very
briefly described. Its main asset is very general and easily
extendible structure, as well as the possibility of rapid software
upgrades without the need to physically connect to the system.
The chapter III introduces basic mathematical models we
use, and controller design is described in the chapter IV,
introducing our complex hierarchical autopilot, utilizing PI,
LQG and SDRE control methods. Results achieved during the
flight tests are discussed in V, followed by the conclusion.

II. CONTROL SYSTEM ARCHITECTURE

A. Flying Platform

Fig. 1. Hirobo Freya helicopter with the RAMA control system

Hirobo Freya 60 RC helicopter (Figure 1) [23] is being
used as the flying platform for the RAMA system. Freya is
a two-blade machine with Bell-Hiller stabilizer, incorporating
H1 type of swash plate management. Powered by O.S. Max
SX-61 Heli two-stroke engine and with carbon-fiber 680mm
FAI symmetrical blades, it can bear about 2 kilograms of
payload. The overall weight of the machine (including avionics
and fuel) is approx. 7kg, main rotor diameter 1560mm, length
1375mm, width 200mm and height 543mm.

B. Control System Hardware

Fig. 2. Control System block diagram

1) Specifications: RAMA should be a fully autonomous
control system for any kind of UAV. It is lightweight (approx.
1.5kg) and compact (330x160x65mm), to allow its usage even
in the small UAVs. Although we use the RAMA system to
steer a hobby helicopter, it can be adopted for fixed-wing
aircraft if needed. All vital parts of the system are airborne.
This includes the data acquisition system (sensors and their
management), control system and communication system. The
Ground Station (GS) serves only to gather and visualize the
on-line telemetry. Generally speaking, RAMA should therefore
be able to fulfill a pre-programmed mission, or at least enter
some kind of fail-safe mode (emergency landing, hover or
orbiting) when loosing the wireless connection with the GS.
This is the ultimate goal for the future.

To be easily extendible, RAMA is designed as a networked
hierarchical distributed system, as is pretty much common
nowadays. It consists of several basically independent func-
tional blocks, as can be seen from the block diagram (Figure
2). Only the RC transmitter/receiver and the servomotors
are standard modeler equipment, all other parts are our own
contribution. Those blocks (or nodes) are interconnected by
the CAN 2.0b (Controller Area Network), a well-known serial
bus, used mainly in the automotive industry. This architecture
not only allows relatively easy expansion of the system, but
also contributes to its reliability (failure of one of the nodes
does not necessarily compromise the function of others) and
simplifies the testing and debugging of the system. As will
be shown later, RAMA has only one crucial node, whose
malfunction would lead to an inevitable crash of the controlled
vehicle. All other nodes may fail, but at least the manual
controllability would be preserved.

100 kbps baudrate is being used for CAN communication in
our case. The bus utilization is 20%, so there are no problems
with extensive packet delays. The real-time behavior is also
ensured by packet priorities and non-destructive arbitration,
so no problems related to jitter were encountered. The bus
overall behavior and mean/extreme data delays were evaluated
statistically.

The core member of the RAMA system is the Main Control
Computer (MCC), where the control and communication algo-
rithms run. MCC is connected to the GS (Ground Station) via



Wireless Ethernet (IEEE 802.11b, WiFi) link. The data rate
is 11Mbps, which is more than enough for our application,
as the telemetry data packets are only some 200 bytes long
and are sent 32 times per second. This results in approximately
0.6% of bus utilization, so there are no concerns with real-time
issues. The telemetry is a soft real-time task anyway. In case of
a communication loss, the data are stored in a buffer and sent
off-line as soon as the data link is re-established. The WiFi
communication is non-critical, as it is used only for telemetry
and remote monitoring of the system. The commands for
the autopilot (automatic/manual control mode switching and
desired values for the controllers) are issued via the modeler
RC system, which is much more reliable and has a lot wider
range. The WiFi link will be replaced in the future by some
better system. It is meant to be used only temporarily, to speed-
up the development process.

Controller input data, such as current position and attitude
of the vehicle in space, are provided by the Navigation Unit
(NU). This unit includes an Inertial Measurement Unit (IMU)
and a Global Positioning System (GPS). Currently, it being
extended by a three-axis magnetometer to simplify the flight
angles determination.

By now the flight angles are determined from the measured
accelerations. The acceleration of gravity can be decomposed
into three components, parallel with vehicle axes. Those
components are measured by the accelerometers and the angles
might be determined by triangulation (with one degree of
freedom still left, i.e. one of the angles would be unsure
and has to be determined by other means, e.g. angular rate
integration). The disadvantage of this method is that the ac-
celerometers measure not only the g acceleration, but also the
vehicle accelerations, which are superponed on the g. Vehicle
accelerations might be filtered using a low-pass filter, but this
introduces latency into the process. More convenient method
is to use three mutually perpendicular magnetometers, which
measure the Earth magnetic field vector components. The
magnetometers are not influenced by the vehicle dynamics and
the angles might be determined in the same manner as from
the accelerometers. Moreover, one can use both accelerometer
and magnetometer data, and pecify the computation using a
Kalman filter.

The actuators (that are, in our case, the servomotors driving
the collective and cyclic controls, the tail rotor pitch and the
throttle) are controlled by the Servo Control Unit (SCU). All
servos and a RC receiver are connected to this unit. Its purpose
is to control the servos according the commands from the
MCC or the RC receiver and to switch between automatic
and manual control modes. This is the only crucial point of
the RAMA system, whose failure would be fatal.

2) Basic Facts and Ideas: Basically, the system can operate
in two modes. Either in the Manual Control Mode (MCM),
when the hosting vehicle is fully controlled by a human
pilot, and RAMA serves only as a telemetry device; or in
the Automatic Control Mode (ACM), when RAMA takes over
some (or all) actuators. From the controller development point
of view, sometimes it is convenient if automatic control could
be applied only to selected actuators, while the others are
controlled manually; that’s the reason why this semi-automatic

option was implemented.
Regardless of the operational mode, all Operational Data

(OD) (that are measured vehicle variables and control system
variables) are gathered and sent to the GS (Ground Station)
on-line. Those OD (Operational Data) comprise:

Measured vehicle variables

• Angular rates around lateral (pitch rate), longitudinal (roll
rate) and yaw (yaw rate) axes of the vehicle

• Accelerations in the lateral (x), longitudinal (y) and yaw
(z) vehicle axes

• Altitude above sea level and flight speed (decomposed
into x, y and z components)

• Geographical position (latitude and longitude)
• Actuators position
• RC control sticks position

Control system variables

• Operational mode (automatic / manual)
• Controller(s) state variables
• Error notifications

The OD are sampled synchronously at the rate of 32Hz.
Synchronization CAN message is sent periodically to all nodes
to ensure that all data are sampled at the same time. All vehicle
variables are sent to the MCC. When operating in ACM,
the action value is computed and applied to the actuators as
soon as the computation is finished. In MCM, the controller
state variables are set so that the action value equals current
manual action value, to ensure bumpless control transition in
case of the manual-to-automatic mode change. Afterwards, the
telemetry message containing the OD is composed and sent
to the GS (Ground Station) instantly.

3) Main Control Computer: To shorten the design time,
it was decided not to develop a tailor-made MCC for the
project, but to buy a stock product instead. An extensive
market research followed, and at the end of the day the EXM32
SH7760 product line from a German company MSC [20] was
chosen.

The EXM32 system features a 64MB of SDRAM, up to 32
MB of FLASH memory, and a lot of peripherals (2x CAN
controller, 10/100 Ethernet, USB, Compact Flash socket, 6x
UART, VGA and others). With small Eurocard PCB footprint
(160x100mm) and relatively low-power consumption (approx.
250mA@12V DC, that is 3W, in our case), the EXM32 forms
an ideal computing platform for the RAMA system, able to
execute complex control algorithms in real-time.

4) Servo Control Unit: The Servo Control Unit (SCU) is
a simple purpose-developed embedded computer, built around
the Renesas 2638F MCU, serving to control the servomotors.
Basically, the SCU can operate in two modes; either in
Automatic or in Manual Control Mode (ACM and MCM). In
the ACM, the signals from the RC receiver are read and sent
to the MCC, and the signals for the servomotors are generated
by the SCU, according the commands from the MCC. In the
MCM, the signals from the RC receiver are read and sent to
the MCC, and also sent directly to the servomotors. Therefore,
should the rest of the RAMA system fail and only the SCU
would prevail, it is still possible to maintain manual control.



5) Navigation Unit: The Navigation Unit (NU) consists of
three basic parts. The core member is the Data Acquisition
Module (DAM)), based on the Philips LPC2119 ARM-core
MCU, whose purpose is to acquire data from various types of
sensors, preprocess them and send the results to the MCC.
On top of that, DAM also provides the system with the
time synchronization message. Currently, two sensing units are
connected to the DAM; the first one being the Inertial Mea-
surement Unit (IMU), and the other is the Global Positioning
System (GPS) receiver.

MICRO-ISU BP-3010 [21] is being used as the Inertial
Measurement Unit (IMU). It is a handy little unit, measur-
ing just 35x22x12mm and weighing tiny 30g, with 0.5W
power consumption, which contains 3 accelerometers and 3
gyroscopes, providing accelerations and angular rates in all 3
vehicle axes. Measuring ranges are +-10g / +-300 ◦ /s at 64Hz
sampling rate.

Garmin GPS 16-HVS receiver [22] is being used as the GPS
receiver. It is an OEM GPS module with integrated antenna
and WAAS (Wide Area Augmentation System) capability. The
data are sampled at 1Hz rate.

C. Control System Software

Fig. 3. System software structure

1) MCC Software: The software running on the MCC
(Main Control Computer) could be separated into several
layers (see Figure 3). Its main tasks are following:
• Gather the OD (Operational Data) from the sensors and

actuators
• Compute the control action and deliver it to the actuators
• Communicate with the Ground Station (GS)
The uppermost layer is the Control Algorithm Layer (CAL).

Its task is to generate actuation signals according OD.
The layer beneath is the Framework Layer (FL), detaching

the controller from the operating system and the hardware.
The CAL is communicating with the FL using standardized
interface, and the FL does the rest of the work - that is to
gather the OD from the underlying CAN nodes, to send the
controller commands to the actuators and to communicate with
the GS.

The Operating System Layer (OSL) represents the OS.
Currently, we are using Linux 2.6.14 for that purpose.

The MCC software can be easily updated via the Wireless
Ethernet (WiFi) link without the need to physically connect to
the system. This greatly contributes to the ability to test various
software and controller versions in the course of a flight-day,
as the whole software can be changed within seconds. Even the
firmware of other system nodes can be accessed and updated
remotely (see the next section for detail).

Fig. 4. Autopilot hierarchical structure

2) DAM and SCU Software: The DAM (Data Acquisition
Module) and SCU (Servo Control Unit) are running system-
less. Their programs are kept as simple as possible in order
to maintain reliability, especially in the case of SCU, as it is
the most crucial part RAMA’s.

To enable remote software updates when the system is
mated to the UAV, both modules are equipped with boot-
loaders, to enable firmware uploads via the CAN bus.
Firmware updates can be performed using the wireless link -
new firmware is uploaded to the MCC, and then to the modules
using CAN. Therefore, all software can be changed remotely,
without the need to de-mate the system.

III. HELICOPTER MATHEMATICAL MODEL AND
PARAMETERS IDENTIFICATION

A helicopter is strongly non-linear, unstable system with 6
Degrees Of Freedom (DOF). Its mathematical model could
be derived trough the extension of a rigid body dynamics
with external moments and forces acting on it [6]. Basically,
a helicopter has 4 inputs (longitudinal and lateral cyclic,
collective and yaw) and 6 outputs (3 dimensions of the position
in space and 3 Euler angles). From a control engineer point
of view, it is one of the hardest systems to cope with. To
make things worse, there are also some interdependencies, for
example the longitudinal - lateral dynamics is interrelated.

Several mathematical models, more or less complex, have
been studied and tested. For the initial controller design
a well-known 10 state space model [11] was chosen:
[u, v, w, p, q, r, θ, φ, β1c, β1s], where u, v, w are the body ve-
locities, p, q, r are the angular rates, [β1c, β1s] describe the
main rotor tip plane flapping, and finally θ, φ are the Euler
angles. The identification of model parameters for the Freya
helicopter was limited by the signal preprocessing, necessary
due to high vibration noise superponed on the observed
signals. Its elimination was solved using the Kalman filter for
Gaussian colored noise [24]. The model had been implemented
using the Matlab symbolic toolbox as a state-space model
with external noise (n4sid [13]), therefore its modification
(addition of new states for estimation of unknown/unprecise
model parameters, sensor biases and IMU axis misalignment)
could be done easily.



Fig. 5. PI-type angular rate stabilizer structure

IV. HELICOPTER CONTROLLER DEVELOPMENT

Proposed R-UAV autopilot is structured hierarchically (see
Figure 4). It consists of three layers. The first layer (Angular
Rate Control Layer, ARCL) is responsible for angular rates
stabilization. The second layer (Attitude and Velocities Control
Layer, AVCL) is responsible for attitude and velocity stabiliza-
tion. The uppermost layer (Trajectory Following Layer, TFL)
is responsible for the trajectory following.

The OD (Operational Data), obtained from the IMU (32Hz),
GPS (1Hz) and potentially a 3-axis magnetometer (32Hz) (as
soon as it would be implemented into the hardware), are used
for the system states estimation [1]. An Extended Kalman
Filter (EKF) [12] is applied, using quaternion Euler angles
representation. Estimated system state vector xˆ is fed to
respective controllers. Control commands (denoted cmd) are
then fed (hierarchically) to the actuators.

Actually, only the first control layer (ARCL) had been
implemented and flight-tested by now. The higher-level con-
trollers had been designed and simulated in matlab, but are
not implemented in the RAMA software and had not been
flight-tested yet.

The ARCL consists of three totally independent controllers.
Those are roll, pitch and yaw angular rate stabilizers. The roll
controller actuates directly the lateral cyclic servo, the pitch
controller actuates the longitudinal cyclic servo and the yaw
controller drives the tail rotor pitch servo. All three controllers
have the same internal structure, only their parameters are
different. PI-type controllers with anti-windup filter are used
(see Figure 5). To ensure bumpless control transition when
switching from MCM to ACM, the summator initial value is
set so that the controller actuation equals the manual actuation
at the moment of MCM/ACM switch. See the section V for
the experimental results.

The AVCL could be implemented in several ways. LQG
and SDRE [5] control structure was chosen in our case.
The LQG attitude stabilization is based on the decomposition
of the dynamics into the longitudinal and lateral modes,
as is common in aircraft control. Cross dependencies must
be considered in order to enhance performance. The SDRE
method utilizes a complex form of state-parameterized model,
describing lateral and longitudinal dynamics. Main advantage
of this approach is better differentiation of the flight dynamics
in hover and cruise flight regimes.

The last layer (TFL) would probably be implemented using
a Model Predictive Controller (MPC). This layer had not been
designed yet.

Fig. 6. Comparison of identified mathematical model vs. real flight data

Fig. 7. Roll rate stabilizer performance in flight

V. FLIGHT TESTS

Dozens of flight tests were performed to identify the math-
ematical model parameters and to test the control system. The
identification experiments were primarily focused on angular
dynamics identification, as the first control layer (ARCL) was
designed. Good results were achieved (see Figure 6, showing
the conformity between the simulated and measured roll and
pitch dynamics), despite high amplitude noise present in the
measured data.

Fortunately, most of this noise (caused by airframe vi-
brations) could be filtered relatively easily using polynomial
low-pass filter, although the results are still not completely
satisfactory. The problem is that the filtering in real-time
introduces latency into the control loop, limiting the quality of
the filtering (only the first or second order filters are suitable
to be implemented in real-time). Off-line filtering with higher
order filters is working well, but the real-time filtering is still
something that needs to be improved.

Good quality of the flight data and excitation of all system
modes is needed for successful identification. The identifica-



Fig. 8. Controller implementation testing

tion experiments were focused on covering both hover and
cruise flight regimes.

After having the mathematical model identified, the angular
rate stabilizers (ARCL in the hierarchical structure) were
designed. Wide range of PI controllers (from careful to ag-
gressive) were tried out. Couple of them had shown promising
performance, although some of the earlier tests were hindered
by various teething problems, related to the hardware (electro-
magnetic disturbances affecting the RC apparatus, vibration-
related issues with IMU, GPS-related problems). Figure 7
shows the roll rate stabilizer performance during one of the
experimental flights. Note that the measured roll rate is greatly
deteriorated by vibration-related noise, which compromises the
controller performance.

To ensure that the control algorithm was implemented prop-
erly and no bugs were added during the process of the Matlab-
to-C code transfer, a testing scheme (Figure 8) was introduced.
The response of the C-implemented and Matlab/Simulink-
implemented controllers is thoroughly evaluated prior to flight
tests.

The measurement records with raw/processed flight data,
detailed experiments descriptions and video records are avail-
able at the project website [24].

VI. CONCLUSION AND FUTURE WORK

RAMA (Remotely operated Aerial Model Autopilot), an
open control system for Unmanned Aerial Vehicles, was
introduced in this paper. After approximately 2 years of
development, some promising results had been achieved -
the system is now flown on regular basis, HW and SW
development is almost finished, basic mathematical models
had been developed and parameters identified, and low-level
stabilizing controllers had shown promising results.

For the future, the HW and system SW would probably be
changed only slightly; the Navigation Unit is being extended
by a three-axis magnetometer to improve angles determination.
Extensive work would be carried out on the controller design,
as higher layers of the autopilot would be added and tested.
More complex mathematical models are also to be introduced,
to allow design and testing of more complex control methods.

The ultimate goal, that is to develop a fully autonomous
vehicle with fault-tolerant control system, is still very distant.
Currently, only the lowest control layer (angular rates stabi-
lization) had been designed, and even that had still not been

properly tested (only some initial tests had been performed).
Higher layers (angular and velocity stabilization, trajectory
following) are still to be designed and tested. But we are
confident that this goal can be achieved, hopefully not only to
our benefit, but also to the benefit of other researchers in the
UAV field.

Comprehensive information on the project and its current
state may be found at the project website [24].

ACKNOWLEDGMENT

This work was supported by the Ministry of Education of
the Czech Republic under Project 1M6840770004.

REFERENCES

[1] Merwe R., Wan E., Sigma point Kalman Filters for integrated nav-
igation. report IAAA, Oregon Heath and Science University. url:
http://speech.bme.ogi.edu/publications/ps/merwe04a.pdf

[2] Pettersen R., Mustafic E. and Fogh M., Nonlinear Control Approach to
Helicopter Autonomy. Thesis, Aalborg University, 2005

[3] Pettersen R., Mustafic E., Fogh M., Developement of real time flight
simulator for an experimentalmodel helicopter. Thesis, Georgia Institute
of Technology, School of Aerospace Engineering, 1998

[4] Mettler B., Identification, Modeling and Characteristic of Miniature
Rotorcraft. Kluwer Academic Publishers, Dordtrecht, The Neteherlands,
isbn 1-4020-7228-7, 2003

[5] Bogdanov A., Wan E., Harvey G., SDRE Flight Control For X-
Cell and R-Max Autonomous Helicopters. Proceedings of the AIAA
Guidance Navigation and Control Conference, OGI School of Science
and Engineering, Austin, USA, 2004

[6] Gavrilets V., Mettler B., Feron E., Nonlinear model for a small-size
acrobatic helicopter. Proceedings of AIAA Guidance Navigation and
Control Conference, Montreal, Canada, 2001

[7] Pettersen R., Mustafic E., Fogh M., Nonlinear Control Approach to
Helicopter Autonomy. Technical report, pp.136, Aalborg University,
Alborg, Denmark, 2005

[8] Jensen R., Nielsen A., Robust Control of an Autonomous Helicopter.
Technical report, pp.78, Aalborg University, Alborg, Denmark, 2005

[9] Hald U., Hesselbok M., Holmgaard J., Report: Autonomous Helicopter
- Modelling and Control. Technical report, pp.162, Aalborg University,
Alborg, Denmark, 2005

[10] Prouty R., Helicopter Performance Stability and Control. Krieger
Publishing Company Inc., Malabar, Florida 32950, pp.560, ISBN: 1-
57524-209-5, 2003

[11] Munzinger Ch., Development of a real-time flight simulator for
an Experimental Model Helicopter. Technical report, pp.130, Georgia
Institute of Technology, 1998

[12] Extended Kalman Filter description, url:
http://www.cs.unc.edu/ welch/kalman/

[13] n4sid model description,
url: http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ident.html

[14] Weilenmann, M. F. and Geering, H. P., A test bench for rotorcraft
hover control. Journal of Guidance, Control and Dynamics, vol. 17, pp.
729–736, 1994

[15] Chapuis, J., Eck, C., Kottmann, M., Sanvido M. and Tanner, O., Control
of Helicopters. Control of Complex Systems, pp. 359–392, 2001, url:
http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=375

[16] Shim, D. H., Kim H. J. and Sastry S., A Flight Control System for
Aerial Robots: Algorithms and Experiments. IFAC Control Engineering
Practice, 2003

[17] Buskey, G., Roberts, J. M. and Wyeth, G., Autonomous helicopter hover
using an artificial neural network. IEEE International Conference on
Robotics and Automation, pp. 1635–1640, 2001

[18] MARVIN UAV project, url: http://pdv.cs.tu-berlin.de/MARVIN
[19] Yamaha RMAX UAV, url:

http://www.yamaha-motor.co.jp/global/industrial/sky/solution/rmax/index.html
[20] MSC Company website, url: http://www.msc-ge.com
[21] BEC-NAV Company website, url: http://www.bec-nav.de
[22] Garmin Company website, url: http://www.garmin.com
[23] Hirobo Company website, url: http://model.hirobo.co.jp/english/index.html
[24] RAMA UAV project, url: http://rtime.felk.cvut.cz/helicopter


