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Abstract

We have proposed an algorithm for optimal real-time
routing in multi-hop communication networks for multi-
source/multi-sink connection. The algorithm deals with
various capacity constraints in terms of communication
limits and real-time constraints expressed as deadline for
each particular flow of data. The objective is to find the
optimal routing in terms of energy consumption. The al-
gorithm is based on a data flow model leading to Lin-
ear Programming formulation and therefore it ensures
polynomial-time complexity. An extension handling simul-
taneous real-time and non real-time routing is added. An
example of data collection from 100 nodes is presented
and performance experiments illustrating time complexity
in dependence on the number of nodes are given.

1. Introduction

Our work is focused on data flow routing through the
multi-hop static network, where all data has to be deliv-
ered to the destinations in time. An example of a target
application could be a network for periodic sensing and
control of some commodity consumption (like electrical
energy consumption, gas consumption, water consump-
tion, etc.) in large objects, like airports, supermarkets, etc.
Then each sensing device produces a data flow of a partic-
ular volume, which is supposed to be routed through the
network. We optimize the energy consumption for data
transfer and we assume the following constraints: link ca-
pacities, node capacities and different deadlines for each
sensed value. The solution where not all data is deliv-
ered before the deadlines is not feasible. We assume a
TDMA-like medium access protocol (e.g. GTS allocation

in IEEE 802.15.4 [11, 12]) which ensures collision-free
communication and causes communication delay. Due
to the TDMA mechanism assumed, the worst case delay
from the source node to the destination node is a sum of
the particular delays for each of the hops, assumed to be an
integer (derived from the parameters like TDMA period,
worst case execution time of the communication stack...).
In a particular setting, we may assume a unit delay com-
mon for all hops (the same TDMA period, negligable
influence of the transmission delay on physical layer...).
Therefore, we assume the unit hop delay (the deadlines are
expressed as the number of communication hops between
devices) and further more we generalize our approach to
integer delays that may differ for each hop [16]. Assum-
ing only the communication delay caused by the TDMA
(no execution time of the communication stack...), the hop
delay would be shorter than the TDMA period, depending
on the routing direction and on the TDMA schedule [13],
at the cost of the model’s complexity.

The optimal routing of data flow depends on the link
capacities and on the communication prices (e.g. energy
consumption). We take the value of the data flow as a
continuous quantity and we allow the flow fragmentation
go to more routing paths. Thanks to the flow continu-
ity, the problem is solvable in polynomial time by Linear
Programming. The network topology is represented by a
directed graph where the nodes represent the devices and
the oriented edges represent the oriented communication
links between the devices.

Traditionally, routing problems for data networks have
often been formulated as linear or convex multicommod-
ity network flow routing problems (e.g. [4, 15]) for which
many efficient solution methods exist [3, 14, 5, 10].

In [19], the multicommodity problem formulation is
used for simultaneous routing and resource allocation



(e.g. node related bandwith), which allowed us to find
more efficient routing paths than the paths that would be
found in the case of separated flow routing and resource
allocation. One of the advantages of the multicommodity
network flow model based on convex optimization is that
several constraints can be put together. Using the same
underlying network model, we can easily combine the so-
lution presented in this article (network routing with real-
time constraints) with [19] (network routing and resource
allocation). Unfortunately an explanation of such a model
is rather complex and therefore, we have not presented
resource allocation in this paper in order to simplify the
presentation.

Several papers have been performed in the area of real-
time routing in wireless sensor networks [2, 1]. In [1], the
theoretical work about the capacity of the real-time com-
munication limits in multi-hop wireless sensor networks is
presented. In [9], the soft real-time communication proto-
col in multi-hop wireless sensor networks, called SPEED,
is presented. The protocol uses the speed of message
propagation to set priorities of the messages. In [7], the
protocol called RPAR is presented. It uses the fact that the
message propagation speed depends on the transmitting
energy and this fact is used to set the priority and trans-
mitting energy according to the remaining time.

According to our current knowledge, there are at least
two other papers about treating specific problems of real-
time routing in wireless sensor networks. In [6], the au-
thors assume nodes in hexagonal cells and use inter-cell
and intra-cell communication in single directions to en-
sure the real-time behavior. The second protocol pre-
sented in [18] uses the distance from the last transmitting
node to avoid data collisions and the data is sent in com-
munication waves. However, none of these algorithms can
ensure real-time and energy optimal routing.

The multicommodity network flow model is used, be-
cause it does not need any particular network structure,
like a hexagonal structure (in [6]), or tree topology. This
approach can handle any network topology with any num-
ber of sources and destinations. In contrast with all papers
about real-time routing in sensor networks, referenced in
this article, our approach ensures the real-time and energy
optimal routing for all communication demands even in
high loaded networks.

The paper is organized as follows: Section 2 describes
the network structure, the multicommodity network flow
model for data flow routing and the formulation of the ob-
jective function in terms of energy consumption. In Sec-
tion 3, which is the main part of our work, our model
for real-time data flow routing is presented and an intu-
itive meaning of our approach is illustrated. We have also
extended the approach to simultaneous real-time and non
real-time data flow routing and deal with time complex-
ity of the algorithm in this section. An example with 100
nodes and time complexity experiments is given in Sec-
tion 4. Section 5 concludes the article and mentions the
potential future work.

2. Multicommodity network flow model

Several papers have been written about multicommod-
ity network flow routing. In this section, we briefly sum-
marize the basic terminology and specify the multicom-
modity network flow model used in this paper.

2.1. Network structure
The network is represented by a directed graph, where

for each device able to send or receive data, a node of the
graph exists. The nodes are labelled as n = 1, . . . , N .
Directed communication links are represented as ordered
pairs (i, j) of distinct nodes. The presence of a link (i, j)
means that the directed communication, from node i to
node j, is possible. The links are labelled as l = 1, . . . , L.
We define the set of the links l leaving the node n asO(n)
and the set of the links l incoming to node n as I(n). Each
link is only in one set O(n) of some node n and only in
one set I(n) of some other node. The network structure
could be described with two incidence matrices in node-
link form. The matrix of the incoming links is denoted
A+ and the matrix of the outgoing links is denoted A−.

A+
n,l =

{
1, l ∈ I(n) (link l enters node n)
0, otherwise (1)

A−n,l =
{

1, l ∈ O(n) (link l leaves node n)
0, otherwise (2)

Example: An example of a simple graph with 4 nodes
and 5 links is shown in Figure 1. The numbers in
parenthesis stand for the node and link labels. The
values associated to the links stand for the commu-
nication prices. The matrices A− and A+ for this
graph are:

A−=


1 1 0 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0

 A+ =


0 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 1 0 1 1



2.2. Multicommodity network flow
We have used a multicommodity network flow model,

which is widely used in the literature of network flow rout-
ing and optimization [4, 3, 19]. In the multicommodity
network flow model, each node can send different pieces
of data to any node. Each requested data transfer through
the network is called the communication demand m and
the set of all communication demands is labelled as M.
From the nature of the multicommodity flow model, the
data flow of each communication demand can be frag-
mented into more paths across the network. The model
assumes that the data flow is lossless in the network and
that it satisfies the flow conservation law at each node.
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Figure 1. Graph of the basic network.

The communication demands can be seen as various
flows coming into the network in some nodes and leav-
ing the network in other nodes. Each demand can come
into the network in more than one node and leave the net-
work in more nodes too (multi-source, multi-sink). Let us
denote the flow amount of demand m coming into the net-
work in node n as s

(m)
in,n ≥ 0 and similarly the flow leaving

the network in node n as s
(m)
out,n ≥ 0. We define the vec-

tors of the data flow of demand m leaving the network as
s̄
(m)
out ∈ RN and the data flow incoming into the network

s̄
(m)
in ∈ RN over all nodes.

Let x
(m)
l ≥ 0 be the flow of demand m routed through

the link l. We call x̄(m) ∈ RL the flow vector for demand
m, which describes the flow of the demand in all links
over the network. In each node, the flow vector and the
leaving/incoming flow have to satisfy the flow conserva-
tion law:

A−x̄(m) + s̄
(m)
out = A+x̄(m) + s̄

(m)
in ∀m ∈M (3)

Finally, we focus on communication capacity con-
straints. Let tl =

∑
m∈M x

(m)
l be a total amount of

data flow in the link l over all communication demands.
Then denote vector t̄ ∈ RL as the total flow for each link
over the network. There could be many different capacity
constraints in the network (e.g. fixed link capacity, node
capacity, etc.). The capacity constrain can by written in
matrix form as: Dt̄ ≤ µ̄. Where µ̄ is the limit of the con-
straints and matrix D represents the constraints structure.
When there is a separate capacity for each link, matrix D
is the identity matrix of size [L × L] and µ̄ would just be
the capacities of links.

In summary, our network flow model imposes the fol-
lowing group of constraints on the network flow variables
x̄(m), s̄

(m)
in , s̄

(m)
out and t̄:

A−x̄(m) + s̄
(m)
out = A+x̄(m) + s̄

(m)
in ∀m ∈M

t̄ =
∑

m∈M
x̄(m)

Dt̄ ≤ µ̄

x̄(m) ≥ 0̄; s̄
(m)
in ≥ 0̄; s̄

(m)
out ≥ 0̄; µ̄ ≥ 0̄

(4)

This model describes the average behavior of the data
transmission, i.e., the average data rates on the commu-
nication links, and ignores packet-level details of trans-
mission protocols. The link layer communication proto-
col (e.g. TDMA) should set the bandwidths for each de-
mand according to the flow vectors x̄(m). The link capac-
ity should be defined appropriately, taking into account
packet loss and retransmission, so the flow conservation
law holds with sufficient probability.

Example (continued): Suppose all the link capacities in
our example to be equal to 1. Then the capacity con-
straints matrix D is the identity matrix of size [5× 5]
and µ̄ = (1, 1, 1, 1, 1)T .

Let there be two communication demands both with
flow equal to 1. The first is routed from node 1
to node 4 and the second from node 2 to node 4.
Therefore, we have: s̄

(1)
in = (1, 0, 0, 0)T , s̄

(2)
in =

(0, 1, 0, 0)T , s̄
(1)
out = s̄

(2)
out = (0, 0, 0, 1)T .

2.3. Routing optimization
All routings that satisfy the system of inequalities (4)

are feasible solutions of the routing problem. However,
the best solution in terms of some price (e.g. energy con-
sumption, network lifetime) needs to be found. There are
plenty of possible price functions, which could be used to
determine which solution is the best one. We have focused
on convex functions where the cheapest routing in terms
of the price can be found in polynomial time. For exam-
ple, one of the most common price functions used in the
sensor network literature is total energy consumption:

ftotal cost = c̄T t̄ (5)

Where vector c̄ is the vector of the communication prices
per data unit for all links in the network. The task of
the total energy minimization is to minimize the function
ftotal cost by setting the optimal flow vector x̄, subject to
the system of inequalities (4).

Example (continued): Let the communication prices in
our example be the same as in Figure 1 (the number
associated edges). c̄ = (4, 10, 1, 4, 1)

One of the optimal solutions for this example is:
x̄(1) = (1, 0, 0, 1, 0)T , x̄(2) = (0, 0, 1, 0, 1)T , which
means that the first flow is routed through the nodes
(1 → 2 → 4) and the second flow is routed through
the nodes (2 → 3 → 4). The total flow is the sum of
the routings over all demands t̄ = (1, 0, 1, 1, 1)T and
the communication price is equal to 10. This energy
optimal routing is shown in Figure 2.

3. Real-Time multicommodity network flow
model

In this section, we have extended the multicommodity
flow model by real-time constraints, which guarantee suf-
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Figure 2. An example of optimal data flow
routing with capacity constraints.

ficient routing delay through the network. Each communi-
cation demand has its own deadline and the communica-
tion delay of this demand has to be shorter than the dead-
line. The hop delay is measured from the moment when
the processor in one routing device starts to send the mes-
sage until the moment when the processor in the neighbor-
ing routing device receives the message, i.e. this delay in-
cludes the transmission delay, MAC delay, and the delays
in routing devices. We have modeled the hop delay as an
integer value associated to each communication link. For
transparent model derivation, we assume the same com-
munication delay over the entire network (i.e. each com-
munication hop causes delay equal to one). However, the
model could be easily extended to the general form (see
[16] for more details), where the communication delays
can be different integer values for each link and demand.

Example (continued): We added the deadline con-
straints into our example. Namely, the first com-
munication demand has the deadline equal to 2 com-
munication hops and the second communication de-
mand has the deadline equal to 1 communication
hop. With these new constraints, the solution shown
in Figure 2 is not feasible.

3.1. Mathematical model of real-time routing
Let vector x̄(m,k) ∈ RL denote the flow of communi-

cation demand m with integer communication delay k in
the network. Then the flow vector (x̄(m)) independent to
the flow delay of demand m is equal to the sum of the flow
vectors over all acceptable delays: x̄(m) =

∑d(m)

k=0 x̄(m,k).
Where d(m) denotes the deadline of the communication
demand m. Using this equation, we can rewrite the equa-
tion for total flow vector from the system of inequalities
(4) into a new form:

t̄ =
∑

m∈M

d(m)∑
k=0

x̄(m,k) (6)

Vector s̄
(m,k)
out ∈ RN stands for the flow of the demand

m leaving the network with communication delay k and
vector s̄

(m,k)
in ∈ RN denotes the flow of demand m com-

ing into the network with initial delay k. As usual, the
flow of each demand may come into the network and leave
it in more nodes. If all flows of one demand coming into
the network in different nodes have the same initial delay,
then s̄

(m,0)
in = s̄

(m)
in , and s̄

(m,k)
in = 0 for k > 0. The flow

of demand m leaving the network prior the deadline is:

s̄
(m)
out =

d(m)∑
k=0

s̄
(m,k)
out ∀m ∈M (7)

Through the Equations (6, 7), we have converted the
real-time constraint (i.e. the delay has to be shorter than
the deadline) to the structural constraint. Only the flows,
where their delays are shorter than their deadlines, are
represented. The flows, which do not meet the deadline,
cause that the flow conservation law does not hold and
then the network flow constraints are not satisfied, i.e. this
solution is not feasible.

If the flow is sent through the network, the flow delay
is increased by each communication hop. The flow of de-
mand m coming into node n with communication delay
k has to either leave the network in node n with the same
delay k or reach the neighbor node with delay k + 1. The
flow conservation law from Equation (3) can be rewritten
in the delay awareness form as:

A−x̄(m,k+1) + s̄
(m,k)
out = A+x̄(m,k) + s̄

(m,k)
in

∀m ∈M, 0 ≤ k ≤ d(m)
(8)

In summary, the constraints of the real-time multicom-
modity flow routing problem can be written as:

A−x̄(m,k+1) + s̄
(m,k)
out = A+x̄(m,k) + s̄

(m,k)
in

∀m ∈M, 0 ≤ k ≤ d(m)

s̄
(m)
out =

d(m)∑
k=0

s̄
(m,k)
out ∀m ∈M

t̄ =
∑

m∈M

∑d(m)

k=0 x̄(m,k)

Dt̄ ≤ µ̄

x̄(m,k) ≥ 0̄; x̄(m,0) = 0̄; s̄
(m,k)
in ≥ 0̄;

s̄
(m,k)
out ≥ 0̄; µ̄ ≥ 0̄

(9)

All feasible routings, which obey the deadlines and ca-
pacity constraints and realize all communication demands
are described by the system of inequalities (9). To choose
the cheapest one in terms of the price function (e.g. 5) we
can use Linear Programming with these constraints.

Example (continued): Solving the example with the
deadline constraints according to (9) and price
function (5) we get the new solution: x̄(1,1) =
(0, 1, 0, 0, 0)T , x̄(1,2) = (0, 0, 0, 0, 0)T , x̄(2,1) =
(0, 0, 0, 1, 0)T , x̄(1,0) = x̄(2,0) = (0, 0, 0, 0, 0)T .
This means that the first flow is routed through nodes
(1 → 4) and the second flow through nodes (2 → 4).
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Figure 3. An example of optimal data flow
routing with capacity and deadline con-
straints.

s̄
(1,1)
out = (0, 0, 0, 1)T and s̄

(1,0)
out = s̄

(1,2)
out =

(0, 0, 0, 0)T , which means that the first flow leaves
the network in node 4 with communication delay
1 and no part of the first flow leaves the network
with communication delays 0 and 2. Similarly for
the second flow s̄

(2,1)
out = (0, 0, 0, 1)T and s̄

(2,0)
out =

(0, 0, 0, 0)T . s̄
(2,2)
out has no sense for the second flow

because its deadline is equal to 1.

The total load of the links is: t̄ = (0, 1, 0, 1, 0)T and
the communication price is equal to 14. The energy
optimal real-time routing is shown in Figure 3.

3.2. Matrix form of real-time routing
For a more transparent description we have presented a

matrix formulation of the inequalities (9) in this section.
We defined a new column vector for the network flow

of demand m from vectors x̄(m,k) ∀k = 1 . . . d(m) as:

ȳ(m) = (x̄(m,1)T

, x̄(m,2)T

. . . x̄(m,d(m))T

)T (10)

and new column vector for routing demands for each de-
mand m from vectors s̄(m,k) as:

z̄(m) = (s̄(m,0)T

out . . . s̄
(m,d(m))T

out )T−
− (s̄(m,0)T

in . . . s̄
(m,d(m))T

in )T
(11)

To rewrite the flow conservation law (8), we defined ma-
trix A(m) for each demand m. The structure of the matrix
A(m) is the same for all demands m, however the size of
the matrix depends on the deadline d(m) of the demand m.
For demands with the same deadlines, the matrix A(m) are
identical.

A(m) =


−A− 0 . 0 0
A+ −A− . 0 0
0 A+ . 0 0
. . . . .
0 0 . A+ −A−

0 0 . 0 A+

 (12)

The size of the matrix A(m) depends on deadline d(m) of
the demand m and is

[
N ·

(
d(m) + 1

)
× L · d(m)

]
where

[N × L] is the size of matrices A+ and A−.
The total link load (6) can be rewritten for the

network flow variable ȳ(m) in the new form as:
t̄ =

∑
m∈MG(m)ȳ(m). Where matrix G(m) consists of

the identity matrices I as G(m) = (I I ... I) and its size
is

[
L× L ·

(
d(m) − 1

)]
.

The problems of the real-time multicommodity flow
routing minimizing the energy consumption (constrained
by the system of inequalities (9)), can be written in the
matrix form as a linear optimization problem:

min c̄T t̄

subject to:
A(m)ȳ(m) = z̄(m) ∀m ∈M
B(m)z̄(m) = s̄

(m)
out − s̄

(m)
in ∀m ∈M

Dt̄ ≤ µ̄
t̄ =

∑
m∈M

G(m)ȳ(m)

ȳ(m) ≥ 0̄; s̄
(m)
in ≥ 0̄; s̄

(m)
out ≥ 0̄; µ̄ ≥ 0̄

(13)

Where the matrix B(m) consists of the identity matrix
I and B(m) = (I I ... I) with the size

[
N × N · d(m)

]
.

Then the vector ȳ(m) describes the optimal real-time rout-
ing in the link-delay space for the communication demand
m and vector z̄(m) describes the deliveries of the flow of
the demand m to its destinations. This problem can be
solved by the linear programming method. If there is no
way how to route the communication demands with the
deadlines through the network, the problem (13) has no
feasible solution.

Example (continued): The matrix A(m) for the first de-
mand with the deadline equal to 2 is:

A(1) =

 −A− 0
A+ −A−

0 A+


and this matrix corresponds to the expanded graph in
Figure 4.

If we solve our example according to the system of
inequalities (13), the optimal solution is: ȳ(1) =
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T , ȳ(2) = (0, 0, 0, 1, 0)T

and z̄(1) = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)T , z̄(2) =
(0, 0, 0, 0, 0, 0, 0, 1)T , which is only a different
record of the solution shown in Figure 3 according
to the system of inequalities (9). (the transformation
is described by Equations (10) and (11)).

3.3. Intuitive presentation of extended graph
In this section, we have illustrated in an intuitive way

the graph transformation, which has been discussed in the
previous sections by mathematical equations. New vari-
ables have appeared for each communication link as well
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Figure 4. Expanded graph for 2 hops.

as new constraining equations for each node. These vari-
ables and constraints can be seen as virtual layers of the
network where each layer represents a different commu-
nication delay k. The number of the network layers is
equal to the integer deadline of the demand m plus one
(the number of allowed communication hops plus a zero
layer). As consistent with the structure of matrix A(m)

(12), all communication links are redirected to the nodes
in the higher layer, which means that the flow is routed not
only in node space but also in delay space. Because the
number of layers is limited by the deadline and the flow
can leave the network only in virtual nodes of the destina-
tion nodes, all possible routings through this transformed
network hold the deadlines. An example of the expanded
graph from Figure 1 is shown in Figure 4.

3.4. Simultaneous real-time and non-real-time routing
The network communication problems often comprise

real-time and non-real-time communication demands.
The non real-time routing demands can be taken as if
they would have no communication delays. Therefore,
they can be solved as the common multicommodity rout-
ing problem presented in Section 2. The only resources
where the non real-time and the real-time flows interact
are guarded by the capacity constraints. Let P be a set of
non real-time demands and vector x(p) be a non real-time
flow of demand p.

A new equation of flow conservation for non real-time
flow has to be added to the system of inequalities (13):

(A+ −A−)x̄(p) = s̄
(p)
out − s̄

(p)
in p ∈ P (14)

and the equation for the total link load has to be changed
to consider the non real-time flow:

t̄ =
∑

m∈M
G(m)ȳ(m) +

∑
p∈P

x̄(p) (15)

With these changes of the system of inequalities (13), si-
multaneous real-time and non real-time routing is possi-
ble.

3.5. Computation complexity
A big advantage of this approach is the polynomial

computation complexity. The exact time complexity of
the computation depends on a specific solver used for the
linear optimization and on the number of variables and
constraints. We denote N as the number of nodes, L as
the number of communication links, Kmax as the maxi-
mum of deadlines d(m) and M as the number of commu-
nication demands. The number of variables novar is the
sum of the flow variables y, z and t:

novar = L(
M∑

m=1

(d(m))) + N
M∑

m=1

(d(m) + 1) + L (16)

If we consider that L ≤ N(N − 1) and that the number of
allowed communication hops is smaller than the number
of nodes (Kmax ≤ N − 1), we can write the order of the
worst case of the variables complexity as:

Ovar(MN3) (17)

3.6. Integral flows
In the case that the data flow cannot be fragmented (e.g.

the data are transferred in packet, which cannot be frag-
mented), the multicommodity network flow problem is
NP-hard even for two communication demands (see [8]).
The multicommodity routing problem with integral flows
can be solved through algorithms based on the Branch-
and-Bound mechanism, Cutting planes, Lagrangian relax-
ation, Evolution algorithms, etc., where the continuous
problem presented in this article is used as a heuristic (see
[3, 15]). The second possibility, adopted in our experi-
ments, is the usage of solvers for integer linear program-
ming (e.g. CPLEX). For large networks with integral flow,
some approximation algorithm for multicommodity flow
can be used. (see e.g. [17])

4. Numerical experiments

To demonstrate the benefits and correctness of our ap-
proach for real-time routing, we simulated the routing
problems in Matlab. We have demonstrated the data col-
lection problem in the network with 100 nodes for two
data flows and a set of experiments to demonstrate the
time complexity of the computation algorithm.

4.1. Data collection problem
For the data collection problem we consider a network

field of size [10× 10] and divide it into 100 subsquares of
size [1 × 1]. One node is randomly placed into each sub-
square and the communication distance is set to 2. The
communication links are set between the nodes within the
communication distance which ensure that each node in-
side the field has at least 3 communication links to its
neighbors. An example of such a random network topol-
ogy is shown in Figure 5. Each node has a 50% probability
that it will send data of the first type to the first destina-
tion node and a 50% probability that it will send data of
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Figure 5. Topology of randomly generated
wireless network with 100 nodes and 962 di-
rected communication links.

0 2 4 6 8 10

0

2

4

6

8

10

Load of the links in the network for each network flow separately

Figure 6. Optimal real-time data flow routing
in a network with 100 nodes and two data
flows for the data collection problem.

the second type to the second destination node. Each data
flow is equal to 1 (i.e. there are nodes which send no data
flow, nodes which send flow equal to 1 and nodes which
send flow equal to 2). The deadline of the first flow is set
to 8 communication hops and the deadline of the second
flow is set to 6 communication hops. The link capacities
are set to 30. The communication prices per transmitted
data flow unit are set as the power of the distance between
the nodes.

The resulting data flow routing through the network is
shown in Figure 6, where only the used links are shown
and the links width is a logarithmic function of the amount
of the data flow routed through the link. The first type of
data flow is in black and the second data flow is in grey.
Each routing path of the first type of data flow has at max-
imum 8 communication hops and each routing path of the
second type of data flow has at maximum 6 communica-
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Figure 7. Optimal real-time data flow routing
in node-delay space for two communication
demands with deadlines 8 and 6 communi-
cation hops for the data collection problem.
The flow destination nodes are nodes num-
ber 54 and 13.

tion hops.
The routing in the node-delay space is shown in Figure

7. On the vertical axis, the single nodes are placed and
on the horizontal axis, the integer delays are placed. The
flows, which are produced by the nodes, start with delay
equal to zero and through each communication hop the
delay of the part of the transmitted flow is increased. The
lines width is a logarithmic function of the amount of the
flow. The vertical lines in node 54 and in node 13 repre-
sent the flow, which is buffered in the destination nodes.

4.2. Computation complexity
To demonstrate the computation complexity of our ap-

proach we varied the last experiment of data collection.
The size of the square field is gradually set from [2×2] to
[10× 10] so too the number of nodes from 4 to 100. The
communication distance is kept at 2 and the communica-
tion prices are kept as a power of the nodes distance. The
number of communication demands was set to 5 (and to
20 for the second experiment). Each node sends data flow
to 5 different destination nodes (or to 20 in the second
experiment). Each data flow is equal to 1. The link ca-
pacities are set as µ = 0.25NM/3 where N denotes the
number of the nodes in the network and M denotes the
number of communication demands. The flow deadline
for each communication demand is set as d(m) =

√
N .

The simulation has been run 20 times for each number
of nodes on randomly constructed networks for both con-
tinuous and integral flow. The resulting times are taken
as the average values from all feasible instances (see Ta-
ble 1). The simulation has been run using a commercial
solver CPLEX 9.1 on a computer with an AMD processor
Opteron 248 at 2200 MHz, 2GB RAM DDR at 400MHz.



Table 1. Average computation times [s]

Fragmented flow Integral flow
Nodes 5 flows 20 flows 5 flows 20 flows

4 0.02 0.02 0.02 0.02
9 0.02 0.03 0.02 0.05

16 0.03 0.11 0.04 0.13
25 0.06 0.28 0.08 0.36
36 0.13 0.57 0.16 0.77
49 0.22 1.21 0.28 1.52
64 0.36 2.30 0.46 2.77
81 0.75 3.99 0.87 5.20
100 1.96 7.45 1.96 8.18

5. Conclusion

We have focused on real-time routing in multi-hop net-
works, like sensor networks. We have used the multi-
commodity network flow routing problem and extended
it to solve real-time routing in general multi-hop network.
The work concentrates on a mathematical derivation of the
computation algorithm and it sets a task to show whether
this approach is usable for solving real-time routing prob-
lems. We have derived an off-line computational algo-
rithm and in the experiment section we have shown that it
is applicable even for large networks.

There are many possible extensions of our work. One
such extension could be to use a more detailed model of
the energy consumption per transmission (e.g. [19]) and
try to minimize the total energy subject to real-time rout-
ing constraints. Another extension could be to pose and
solve joint real-time routing and transmission scheduling
problems, giving not only the optimal routes but also the
optimal TDMA schedule (e.g. optimal allocation of time-
slots to links). The approach presented in this article can
be applied to many other problems, like routing in wired
networks or traffic control. Centralized solutions to these
problems are useful for gaining insight in the performance
limits of real-time routing, e.g. during system design, but
could also give intuition about distributed protocols. At
the present time, we are working on the distributed algo-
rithm, which is based on the dual decomposition of the
approach presented in this article.
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