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Abstract. The aim of this paper is to show, how a multitasking application running 
under a real-time operating system compliant with an OSEK/VDX standard can be 
modeled by timed automata. The application under consideration consists of several 
non-preemptive tasks and interrupt service routines that can be synchronized by 
events. A model checking tool is used to verify time and logical properties of the 
proposed model. Use of this methodology is demonstrated on an automated gearbox 
case study and the result of the worst-case response time verification is compared with 
the classical method based on the time-demand analysis. It is shown that the model-
checking approach provides less pessimistic results due to a more detailed model and 
exhaustive state-space exploration. 

Keywords: Formal methods, Verification, Model-checking, Timed automata, 
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1 Introduction 

This paper deals with formal modeling of applications running under real-time 
operating system (OS). The typical application under assumption, shown as a case 
study in Section 7, is a complex controller consisting of periodic and aperiodic tasks 
constrained by deadlines and synchronized via inter-task communication primitives. 
The objective is to use model-checking approach (Larsen, et al., 1995), (Berard, et al., 
2001) for automatic verification of the model described in this paper. 

The model based on timed automata (Alur and Dill, 1994) considers an operating 
system, application tasks and a controlled environment behavior. It assumes a fine 
grain model of the task internal structure consisting of computations, OS calls, 
selected variables, code branching and loops. Therefore the model combines both, 
logic and timing characteristics of the discrete event system enabling one to check 
rather complex properties (safety and bounded liveness properties, state reachability 
or schedulability) by model checking tools (e.g. UPPAAL (Larsen, et al., 2001) and 
Kronos (Daws, et al., 1996)) in finite time. Deadlock freeness of the application, 
occurrence of the race condition during access to shared data structures, a concrete 
value of some essential variable under certain conditions, end to end response time of 
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an arbitrary event, proper ordering and timing of events in the control application or 
the controlled environment can be verified, for example. 

Due to the composability of timed automata, models produced by different authors 
can be directly combined together. For example, a single processor system model can 
be simply expanded to a distributed system model by adding a communication layer 
model (Krákora, et al., 2004). 

Even though timed automata and model-checking (analogous to other formal 
methods) allow one to model and verify almost everything, it is generally known, that 
they are susceptible to the state space explosion. This fact restricts the size of verified 
application to a small size that seems to be unusable in practice (compared with 
matured response time analysis methods (Klein, et al., 1993) or the offset-based 
analysis proposed by Palencia and Harbour (1998)). Therefore we try to show in this 
paper, how to build a compromised model of a reasonable size on one side and 
reasonable granularity on the other side, allowing for a detailed formal analysis of 
real-time properties that can not be made by response time analysis. 

Methods for response time analysis based on time-demand analysis (Buttazzo,1997), 
(Klein, et al., 1993), (Liu, 2000) are well known and used in practice. These methods, 
e.g. rate monotonic analysis (RMA) (Sha, et al., 1991), are straightforward for 
systems with independent periodic tasks but incorporation of non-periodic tasks and 
inter-task communication primitives can lead to pessimistic results (Bailey, et al., 
1995). This is caused by limited information inherent in the simple model of a task 
consisting of the worst-case execution time (WCET), the worst-case inter-arrival 
period and the worst-case blocking by lower-priority tasks. Analysis of end-to-end 
response time of transactions in a distributed system has been successfully solved by 
Tindell and Clark (1994) and later extended by Palencia and Harbour (1998). Also, 
these approaches however do not consider the detailed model of the controlled 
environment and the tasks internal structure as our approach does. 

The response time analysis based on an exhaustive analysis of the fine grain model 
provides more precise (less pessimistic) results in some cases as is shown in Section 8. 
The price paid for this is higher memory requirements and time complexity of the 
model-checking method. Therefore the model-checking-based response time analysis 
cannot be seen as a universal method but as a less pessimistic and more demanding 
alternative to classical scheduling theory-based methods. 

This paper focuses on a non-preemptive scheduling since tasks consisting of non-
preemptive blocks of code can be modeled by timed automata, for which effective 
verification algorithms based on symbolic and reduction methods (see e.g. Larsen, et 
al., 2003) exist. 

Modeling of preemptive tasks has been studied by Corbet in (1996). This work 
provides a method for constructing models of real-time Ada tasking programs based 
on constant slope linear hybrid automata. Even though the author reports that the 
analyzing algorithm does usually terminate in practice, the reachability problem for 
hybrid automata is undecidable and therefore the analyzing algorithm termination is 
not guaranteed in general. The termination of the timed automata model verification is 
guarantied, which is the advantage of our approach. 
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When modeling preemption in a multitasking application, it is necessary to stop a 
clock variable measuring the execution time of a preempted task and remember its 
value until the task is scheduled again. This can be done in hybrid automata, but not in 
timed automata. On the other hand the reachability problem is decidable for timed 
automata. This is a motivation of work (Waszniowski and Hanzálek, 2005) providing 
a timed automata based over-approximate model of preemptive tasks. The over-
approximation of the model means that besides the real behavior of the system, also 
some additional behavior is modeled. Therefore only properties preserved by this 
approximation (e.g. safety and bounded liveness properties) can be verified by a 
model-checking tool. Similarly, the model presented in this paper is over-approximate 
(in some cases, see Section 6) due to interrupts. 

There are also extensions of Time Petri Nets allowing one to model systems with 
preemption; Preemptive Time Petri Nets (pTPN) (Bucci et al., 2004) and Scheduling 
Extended Time Petri Nets (SETPN) (Lime and Roux, 2004). However, states of these 
formalisms are represented by a general convex polyhedra and the problem of state 
reachablity is undecidable. It has been shown in (Henzinger et al., 1998) that the 
problem of state reachability is undecidable for any formalisms that is expresive 
enough for modelling preemption. Therefore, decidable (finite state space) over-
approximations that preserve safety and bounded liveness properties are usually used 
for verification of preemptive systems. 

Timed automata are used to model primitives of Ravenscar run-time kernel for Ada in 
(Lundqvist and Asplund, 2003). However, the variable used to measure the execution 
time of tasks (modeling the system clock) is an integer, periodically incremented by a 
timed automaton after each “tick”. Therefore the notion of time in the application is 
discrete opposite to our approach where time is dense. 

Discrete time for modeling a real-time application is also used in (Campos and Clarke, 
1999) presenting a modeling language and a symbolic algorithm for quantitative 
analysis (providing minimum and maximum time between events) of synchronous 
real-time systems. Discrete time is also used in (Fredette and Cleaveland, 1993) where 
a generalized approach to schedulability analysis based on process algebra is 
proposed. Even though these approaches consider the task internal structure, the 
controlled environment affecting release times of tasks is not modeled. Our approach 
considers the controlled environment model. 

Another interesting approach to schedulability analysis is based on timed automata 
extended by asynchronous tasks (i.e. tasks triggered by events) that provide a model 
for event-driven systems (Fersman, et al., 2002), (Fersman, et al., 2003). Each task 
specified by its execution time is associated to one timed automaton location. A 
transition leading to the location denotes an event releasing the task. Released tasks 
are stored in a queue and they are assumed to be executed according to a given 
scheduling strategy. The problem of the system schedulability is transformed to the 
reachability problem in a timed automaton. This approach provides good results for 
aperiodic tasks (due to the detailed model of the environment releasing the tasks) but 
it does not consider the task internal structure. It would be possible to model the task 
internal structure by splitting the task to blocks of code and assigning them to 
locations of extended timed automaton representing control structure of the original 
task. Shared variables can be used to synchronize the end of one block of code 
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execution, with the transition of the control structure timed automaton that starts the 
next block of code. However, the reachability problem of such a model is decidable 
only for non-preemptive scheduling or when all tasks have constant execution times 
(Krčál and Yi, 2004). 

In recent years several approaches integrating the schedulability analysis to some 
formal description methods have been published. Alvarez, et al. in (2003) developed a 
method for computation of response time of tasks integrated to specification and 
description language (SDL). Similarly, Wang and Tsai in (2004) present an approach 
to extend message sequence chart (MSC) by tasks parameters, and by response time 
analysis. Both these methods are an application of standard response time analysis 
without considering the internal structure of tasks and controlled environment. 

This paper is organized as follows: Section 2 gives an overview on the basic features 
of OSEK compliant operating system. Readers familiar with OSEK specification do 
not need to read this section. Section 3 describes the fine grain model used in this 
paper. Sections 4, 5, and 6 presents the main results of this paper – timed automata 
models of tasks, OSEK compliant OS kernel and interrupt service routine (ISR). 
Section 7 demonstrates the proposed approach on an automated gearbox case study 
and Section 8 compares the task's response time analysis made by the model-checking 
approach and by the classical time-demand analysis. The paper is concluded with 
Section 8.4. 

2 OSEK/VDX overview 

This section surveys the basic features of an operating system compliant with 
OSEK/VDX Operating System specification, version 2.2.3 (OSEK, 2005) (further 
called OSEK). OSEK is a simple static multitasking singleprocessor executive for 
electronic control units (ECU) used in automotive applications. Small memory 
demand requires simple services, which can be modeled by timed automata of 
reasonable size. All objects of the system are created in compilation time. Therefore 
they can be modeled by timed automata and static data structures. 

2.1 Task management 

OSEK provides static priority based, preemptive and non-preemptive scheduling 
(OSEK, 2005), but we consider only non-preemptive scheduling in this paper. Even 
though OSEK distinguishes basic and extended tasks, we consider only extended 
ones, since basic tasks are only a subset variant of extended ones and both are 
modeled in the same way. 

Tasks, created as suspended at the system generation time, become ready after 
activation by the OS service ActivateTask called from ISR or another task. The highest 
priority ready task starts running. The running task may terminate its execution by 
calling the service TerminateTask and become suspended or it may voluntarily 
relinquish the processor by calling the service Schedule and become ready. If there is 
no higher-priority ready task, calling of the service Schedule does not affect the task 
execution. Extended tasks are, moreover, allowed to use the system call WaitEvent, 
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which may result in a waiting state. To become ready, the waiting task requires the 
event (which it is waiting for) to be set. 

2.2 Event management 

OSEK provides an event management for task synchronization. The event is 
represented by one bit in a byte assigned to an extended task - the event’s owner. The 
event is therefore identified by its owner and its name (or mask specifying more than 
one event). The event owner may wait for the event and clear the event (services 
WaitEvent and ClearEvent). All tasks may set or get the binary value of a non-
suspended task event (services SetEvent and GetEvent). 

2.3 Resource management 

Resource management is used to coordinate the access of several tasks (and interrupt 
service routines) to the critical section. The resource access protocol is used to provide 
mutually exclusive access, to prevent priority inversion and deadlock. According to 
this protocol, the priority ceiling is statically assigned to the resource at the system 
generation time. Its value is equal to the highest priority of all tasks (or ISR) accessing 
the resource. At run time, the priority of the task occupying the resource is increased 
to the resource priority ceiling. Task priority is reset to the previous value after 
releasing the resource. Consequently, no task (or ISR) ever tries to access the 
occupied resource and therefore no task can be blocked on the resource (notice that 
the OSEK specification does not allow any blocking OS services inside the critical 
section). 

In non-preemptive scheduling, the mutually exclusive access of several tasks to the 
critical section is provided just by its non-preemptability and by the restriction of 
calling the OS services Schedule, WaitEvent and TerminateTask from the critical 
section. Simultaneous access of a task and an ISR to the critical section can be 
prevented by disabling interrupts within the critical section or by using resources. 

2.4 Interrupt management 

OSEK distinguishes interrupt service routines (ISRs) of category 1 that do not use any 
OS services (no influence on the task management) and ISR of category 2 allowing all 
OS services except some services dedicated entirely to tasks (WaitEvent, 
TerminateTask). There is no difference between both categories from the modeling 
point of view. When a task with priority higher than the interrupted one is activated by 
an OS service called from the ISR, the interrupted task is not preempted due to non-
preemptive scheduling. Even when the processor is idling, when an interrupt occurs, 
no rescheduling takes place at the OS service called from the ISR, but the OS service 
only changes states of tasks, and the rescheduling takes place at the end of the ISR. 
Therefore, when several tasks are activated in the ISR, it does not depend on their 
activation order, but the highest priority one is scheduled at the end of the ISR (when 
no task is currently running). 
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3 Fine grain model of multitasking application 

The fine grain model treats the internal structure of the tasks and the interrupt service 
routines (ISR), the OS functionality and the controlled environment behavior. All 
components are modeled by timed automata synchronized via channels and by shared 
variables. The task model consists of several blocks of code called computations, calls 
of OS services, selected variables, code branching and loops (affected by values of 
selected variables). Computations are defined by the BCET (the best-case execution 
time) and the WCET (the worst-case execution time). Considering the execution time 
as an interval 〈BCET, WCET〉, it allows one to incorporate the uncertainty of the 
execution time due to non-modeled code branching inside the computations, cycle 
stealing by a DMA device, etc. When a general property of the model is analyzed by 
an exhaustive state space search (made by a model checking tool), the execution time 
of a task must be specified by an interval covering all possible cases, i.e. 〈BCET, 
WCET〉. Due to the possibility of a scheduling anomaly, the WCET of computations 
does not necessarily lead to the worst-case response time of the whole task. 
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IR
Q

OS Service Call
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Figure 3.1 Overview of entire timed automata model 

The structure of the entire model is shown in Figure 3.1. Rectangular blocks represent 
particular timed automata (e.g. task automaton in Figure 4.1 b) or OS service 
automaton in Figure 5.3). Synchronization of timed automata is expressed by arcs 
labeled by the name of the synchronization channel (ActivateTask, EndSysCall, etc.). 
The most important data structures (e.g. Q, P, State) are shown on the right side of the 
figure. The essential components are explained in Sections 4, 5 and 6. 
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Since the schedulability is one of the most often analyzed properties, it is attractive to 
compare our fine grain model based on timed automata with the classical scheduling 
theory task model based on the WCET of the whole task, its minimum inter-arrival 
time and its blocking time related to resources (Buttazzo, 1997), (Sha, et al., 1991), 
(Liu, 2000). Classical response time analysis based on such model computes the worst 
case finishing time of the task by adding together its worst case execution time, 
duration of preemption by higher-priority tasks in the worst case inter-arrival times 
and phasing, and the worst case blocking by lower-priority tasks on shared resources. 
Such worst-case finishing time is a conservative abstraction of all possible finishing 
times but it could be a too pessimistic abstraction in many applications, since all the 
mentioned worst cases do not occur at the same time (Bailey, et al., 1995). 

Exhaustive analysis of fine grain model behavior (automatically completed by model 
checking tool UPPAAL) considers the task finishing times corresponding to the 
realistic phasing, the realistic blocking and the realistic execution time in relation to 
the modeled code branching. Therefore, the result is as precise as the model. The price 
paid for the exhaustive analysis is higher complexity. 

We will demonstrate the advantage of the model containing the tasks internal structure 
in a simple example. Let us consider two tasks, higher-priority Task1 and lower-
priority Task2 listed in Figure 3.2. Task1 is activated with a period 12. Depending on 
the variable data, it performs either LongComputation taking 8 time units or 
ShortComputation taking only 2 time units. Task2 is activated if and only if 
ShortComputation is executed. Task2 execution takes 10 time units. 

Task1 
{ 
 if (Data==OK) 
  { 
  LongComputation; 
 } 
 else 
 { 
  ShortComputation; 
  ActivateTask (Task2); 
 } 
} 

Task2 
{ 
 Computation; 
} 
 

Figure 3.2 Tasks pseudocode 

Figure 3.3 shows that both tasks are finished prior to their next activation in both 
cases, Data==OK and Data!=OK. 

Data==OK Data!=OK Data==OK

t
Task2

Task1
t4 8 12 16 20 24 28 32

4 8 12 16 20 24 28 320  
Figure 3.3 Schedule considering tasks internal structure 

Let us analyze the application by demand analysis (Liu, 2000) based on a simple 
model considering only the WCET and the period of tasks. Without knowledge of 
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Task1's internal structure, we must consider its WCET1 to be equal to 8 and activation 
of Task2 must be considered at each period of Task1. 

In the case of preemptive scheduling, Task1 is always finished 8 time units after the 
beginning of the period, but the worst-case response time of Task2 is 10+3*8=34 (see 
Figure 3.4), which exceeds its period. 

t

Task2

Task1
t4 8 12 16 20 24 28 32

4 8 12 16 20 24 28 320  
Figure 3.4 Schedule ignoring tasks internal structure 

In the case of non-preemptive scheduling, the worst-case response time of both tasks 
is 10+8=18, which is longer than the activation period. 

4 Task model 

Each task instance is modeled by one timed automaton that is synchronized with the 
OS model via channels depicted as arrows in Figure 3.1. Figure 4.1 demonstrates the 
modeling methodology in the example of a simple task executing computations 
Comp1 and Comp2 and calling OS services SetEvent (task, event) and TerminateTask. 

Timed automata are depicted in the UPPAAL notation (Larsen, et al., 2001), where 
the location with double circles represents the initial location. Each location can be 
labeled by its name and time invariant (both in bold font). Invariant in the form 
“c<=U”, allows it to stay in the location only when the valuation of the clock 
variable c is smaller than or equal to integer U. Each transition can be labeled by 
synchronization (channel name with ‘?’ or ‘!’), guard (logical terms separated by a 
comma, e.g., c>=L[1], State[1]==RUNNING) and assignment (assignments using the 
sign ‘:=’ separated by a comma). 

Task1() 
{ 
 Comp1; 
 WaitEvent(E1); 
 Comp2; 
 TerminateTask(); 
} 
 

Comp1
c<=U

TerminateTask

WaitEvent

Comp2
c<=U

Return[ID]?
c:=0,
L:=BCET1,
U:=WCET1

c>=L, ID==RunID
WaitEventCh!

ParEvent:=E1

Return[ID]?
c:=0,L:=BCET2,U:=WCET2

TerminateTaskCh!
c>=L, ID==RunID

a) Pseudo-code b) Task timed automaton 
Figure 4.1 Simple task example 

Each computation is represented by one location of the same name (e.g. Comp1). 
Time spent in this location (measured by clock c) represents the computation’s 
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finishing time (i.e. time necessary for its execution including interrupts) and is 
bounded by values stored as integer variables L and U (provided by time invariant 
c≤U and guard c≥L). Clock c is reset and variables L and U are initialized by the 
BCET and the WCET of the computation on the transition incoming at the 
corresponding location (e.g. c:=0, L:=BCET1, U:=WCET1 on the transition leading 
to Comp1). Variables L and U are increased when the task is interrupted (provided by 
timed automaton modeling ISR; see section 6). Notice that due to non-preemptive 
scheduling, only one clock c can be shared by all task timed automata, which 
considerably reduces the size of the state space. The guard ID==RunID prevents the 
task timed automaton from progressing when it is not scheduled (i.e. an ISR is 
executed). Constant ID is a unique identifier (0,1,2,...) of tasks and ISR. 

OS service call is modeled by the transition synchronized via the channel of the 
corresponding name (e.g. WaitEventCh!) with the automaton modeling the OS service 
functionality, and by the location of the corresponding name (e.g. WaitEvent) in which 
the task is waiting a return from the service (channel Return[ID]?). OS service 
parameters, if they are required, are delivered through shared variables ParTask and 
ParEvent. Notice that some OS services (e.g. Schedule or WaitEvent) can cause 
rescheduling. In this case, the return from the called service occurs after finishing all 
higher-priority tasks. 

Realize that the task can be running or interrupted when its model is in a location 
corresponding to a computation. When the task model is in location corresponding to 
an OS service, OS executes the service and then the task can continue its execution 
(e.g. service SetEvent), or the task is blocked while waiting for an external event 
(service WaitEvent), or the task is ready to execute but a higher priority task is 
executed (service Schedule) or the task is suspended (service TerminateTask). Even 
though the task code in Figure 4.1 a) is linear (it does not contain any loops), the 
timed automaton in Figure 4.1 b) is cyclic since the suspended task (task timed 
automaton is in the location TerminateTask) can be activated and start its execution 
from the beginning. This is also the reason why location TerminateTask is the initial 
one. 

5 OS kernel model 

The OS kernel model consists of integer variables representing the OS objects (e.g. 
ready queue), the timed automata representing OS services functionality, and the 
timed automaton sorting the ready queue according to priorities (SortQueue). See the 
model overview in Figure 3.1. 

5.1 Kernel variables 

The task priority is stored in a global array P, indexed by ID. Higher number 
represents higher priority. P can be a constant when the resource management is not 
modeled. 

The task state is stored in the array State at the index corresponding to task ID. The 
task state is either SUSPENDED, WAITING, READY or RUNNING. However it is 
necessary to distinguish only the state SUSPENDED from all others in the proposed 



     10

model. Therefore the symbols WAITING, READY or RUNNING have the same value 
in the model. 

The variable RunID stores ID of the currently running task or interrupt service routine. 

IDs of all tasks, which are ready for execution, are stored in the ready queue modeled 
as a global array Q (see Figure 3.1). IDs of tasks are stored at the lowest positions in 
the array. The variable wQ contains the first empty position in Q. Tasks are ordered in 
descending order according to their priorities in Q. The ready task with the highest 
priority is always at the position zero; the ready task with the lowest priority is always 
at the position wQ-1. 

The queue must be reordered according to tasks priorities after writing a new task and 
all elements of the queue must be shifted to the left after reading the highest priority 
ready task from the zero position. Both these mechanisms are provided by the 
automaton SortQueue depicted in Figure 5.1. 

WaitwQ<sizeQ
wQCh?

i:=wQ, j:=i, wQ++
i!=0

j:= i-1

i==0 || j==0
QSorted!

i:=0,j:=0,tmp:=0

P[Q[i]]<=P[Q[j]]
QSorted!

i:=0, j:=0, tmp:=0

P[Q[i]]>P[Q[j]]

tmp:=Q[i], Q[i]:=Q[j],
Q[j]:=tmp, i--

rQCh?

i:=0
i<wQ

Q[i]:=Q[i+1],
i++

i==wQ

Q[i]:=0, wQ:=(wQ==0 ? 0: wQ-1),
i:=0

QSorted!

 
Figure 5.1 SortQ automaton 

The reordering mechanism is started by the synchronization channel wQCh after 
writing a new ID to Q[wQ]. The pointer wQ is then increased and priorities of tasks in 
neighboring position in Q are compared (started from wQ) and if there is a higher 
priority task in a higher position, IDs are swapped. The termination of this mechanism 
is announced by the channel QSorted. Shifting of Q after reading Q[0] is started by 
the synchronization channel rQCh and its finishing is announced by the channel 
QSorted. 

Notice that it would be possible to implement the ready queue as a circular buffer. The 
top of the queue would not always be at position zero, but it would be pointed by the 
pointer (lets call it rQ) that is increased after reading the highest priority task. It is not 
necessary to shift elements of Q in this case. A circular buffer would, therefore, be a 
more elegant approach from the programming point of view, but it is not appropriate 
for verification purposes, since such a model generates a bigger state space. Realize 
that two different configurations of a circular buffer containing the same tasks but 
stored in different positions (different rQ and wQ) are represented by two different 
states in the state space, but they represent the same situation from the application 
point of view. Contrary to that, all situations when Q contains the same tasks are 
represented by only one state in our approach, since the same set of tasks is always 
stored in the same position in Q (from zero to wQ-1). 

Events are represented by the integer array Event associating one byte Event[ID] to 
each task. Each bit in Event[ID] represents one event that can be set or cleared. 



     11

Moreover, the integer array WaitMask represents events, which the corresponding task 
is waiting for. 

Variables L and U are necessary for model execution of the task code. As it has been 
already stated in Section 4, the variables are used to store lower and upper margins of 
the finishing time of the current started computation. These integers are initialized by 
the BCET and WCET respectively, at the start of the computation and they are 
increased by an ISR BCET and WCET respectively when an interrupt occurs 
(provided by a timed automaton modeling the ISR). 

5.2 OS services 

Each OS service is modeled by a timed automaton representing its functionality 
defined by OSEK specification (OSEK, 2005). The automaton is waiting in its initial 
location until its function is called from the task model (by synchronization via the 
corresponding channel e.g. WaitEventCh). Then it manipulates the tasks' states, ready 
queue and other operating system objects (e.g. events). OS services Schedule, 
WaitEvent and TerminateTask can, moreover, reschedule the current tasks. This is 
done by choosing the highest priority ready task and storing its ID in the variable 
RunID. The next computation of the RunID task is then started by taking a transition 
synchronized by channel Return[RunID]. Models of all OSEK services can be found 
on: http://dce.felk.cvut.cz/waszniowski/RTVerif/ RTVerif.htm 

As an example of a service model, we introduce WaitEvent(Mask) service that causes 
the task to wait for events specified by Mask. Figure 5.2 shows WaitEvent OS service 
functionality in pseudo-code. The corresponding automaton is in Figure 5.3. It is 
supposed that interrupts are disabled within the whole service. Locations marked by 
“C“ are so called committed locations. The committed location is left immediately 
without any interference from another automaton that is not in committed location. 
Since all locations in the OS services automata, except the initial one, are committed 
locations, the whole service is atomic from the point of view of the tasks and the 
controlled environment models. The execution time of the OS services is involved in 
the execution times of computations calling them. 

WaitEvent (Mask) 
{ 
 if ((Event[RunID] & Mask) == 0)  
 { 
  State[RunID] := WAITING; 
  WaitMask[RunID] := Mask; 
  RunID := Extract Top of ReadyQ; 
  ContextSwitch; 
  State[RunID] := RUNNING; 
 } 
 return E_OK; 
}; 

Figure 5.2 WaitEvent OS service pseudo-code 
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Wait

if

(Event[RunID] & ParEvent)==0
State[RunID]:=WAITING,
WaitMask[RunID]:=ParEvent

wQ==0
RunID:=IDLE

(Event[RunID] & ParEvent)!=0

Return[RunID]!

wQ>0

RunID:=Q[0], State[RunID]:=RUNNING
rQCh!

WaitEventCh?

QSorted?

 
Figure 5.3 WaitEvent OS service automaton 

6 Interrupt service routine model 

In this section we present a timed automata model of an ISR. The ISR can interrupt 
the execution of a task. It is modeled by increasing the bounds of the interrupted task 
execution time (stored in variables L, U) by the bounds of the ISR execution time 
(BCET_ISR, WCET_ISR). We show that this approach brings an over-approximation 
to the model. 

For reasons of simplicity, only one ISR is assumed to exist in this article, but it can be 
generalized when all hardware details are considered. The ISR is modeled by a timed 
automaton modeling application dependent code in the same way as the task code. 
Moreover, there is an initialization part preventing a task scheduling inside the ISR. 
RunID is stored in the local variable InterruptedID and the ID of the ISR (IsrID) is 
written to the variable RunID. Therefore the OS services called from the ISR do not 
schedule any task (because RunID!=IDLE). Values of L and U are increased by the 
BCET_ISR and WCET_ISR respectively. Further, there is a finalization part providing 
task scheduling at the end of the ISR (as it is required by OSEK specification (OSEK, 
2005)). Either InterruptedID or, if it is equal to IDLE, the ID from the top of the ready 
queue is written to the variable RunID. An example of ISR pseudocode is in Figure 
7.4 and the corresponding timed automaton is in Figure 7.10.  

 

Lets us explore the approach for taking the ISR execution time into account in the 
interrupted task execution time. When the interrupt occurs the execution time bounds 
of the interrupted computation (stored in variables L and U) should be prolonged by 
the duration of the ISR execution. Since the right duration of the interruption cannot 
be measured in timed automata (a clock variable cannot be stopped or stored), the 
bounds L and U are increased by bounds of the possible ISR execution time 
BCET_ISR and WCET_ISR. This introduces an additional non-determinism to the 
model since the modeled duration of the interrupted task interruption is not necessary 
equal to the ISR execution (what holds in the real system). Therefore the set of real 
system behaviors is a subset of the modeled behaviors, i.e. the model is an over-
approximation of the real system. 

To illustrate the over-approximation let us consider for example a computation of task 
T with the execution time CT∈[1,4] interrupted by an ISR with the execution time 
CISR∈[2,4]. All possible relative finishing times of the interrupted computation versus 
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the ISR execution time in the real system and in the proposed model are depicted in 
Figure 6.1. Finishing time of the interrupted computation is equal to its execution time 
CT plus interruption duration. Interruption duration is bounded by bounds of CISR in 
the model but it is equal to the actual execution time of ISR in the real system. 

dISR

dT

0 2 4

6

8

0

2

4

FT

CISR

Modelled behaviour

Real behaviour
CISR in [2,4]

CT in [1,4]
FT =

 C IS
R

 
Figure 6.1 Possible values of relative finishing time FT of the interrupted computation 

of the task T versus the ISR execution time CISR 

Figure 6.1 shows that not all modeled behaviors can occur in the real system. It is very 
important to keep this fact in mind during the verification process, since the over-
approximation does not preserve a general property. It means that it cannot be 
automatically concluded that a general property satisfied by the model is also satisfied 
by the real system. On the other hand, it is important from the practical point of view, 
that over-approximation preserves safety and bounded liveness properties (Berard, et 
al., 2001). A safety property states that, under certain conditions, an undesirable event 
never occurs. A bounded liveness property states that, under certain condition, some 
desirable event will occur within some deadline. See examples in Section 7. 

Please realize that the model is over-approximate only in the case that the WCET_ISR 
differs from the BCET_ISR. 

Schedulability is an often verified property, exploring whether computations are 
finished prior to their deadlines (dISR and dT in Figure 6.1) in all situations. Figure 6.1 
shows that the worst case finishing time of the task or ISR is the same in the model 
and in the real system. A result of the schedulability analysis based on this model is 
therefore correct and corresponds to reality (it is not pessimistic). 

7 Gear box Case Study 

7.1 System description 

The proposed modeling methodology is demonstrated on an automated gearbox 
control system. The controlled system consists of a five-speed gearbox and a dry 
clutch. The gearbox mechanics are depicted in Figure 7.1. They consist of three shift 
rails and a shift finger actuated by SelectServo and ShiftServo. SelectServo can move 
the shift finger from a slot of one rail to another one. ShiftServo engages one of two 
gears (odd or even) or neutral by moving the selected rail by the shift finger. The 
direction of the shift finger movement is limited by a gait. 
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Figure 7.1 Gear box mechanism 

The gearbox is controlled by a single processor control unit running an OSEK 
compliant OS. The application software consists of three tasks (SlipCtrlTask, 
SelectGearTask, GearBoxCtrlTask) and one ISR. 

The ISR (see pseudocode in Figure 7.4) is periodically invoked by a timer (with the 
period 10) and by the clutch, ShiftServo or SelectServo when their position changes. 
The source of the interrupt is specified by bits bTimerInt, bClutchInt, bShiftServoInt 
and bSelectServoInt. According to the source of the interrupt, tasks are activated 
(bTimerInt) or an event is set (bClutchInt, bShiftServoInt and bSelectServoInt). 

Task SlipCtrlTask (see pseudocode in Figure 7.2) is periodically activated by ISR. Its 
priority is 2 and its period is 10. It provides slip control and torque tracking but its 
detailed functionality is not relevant to verification, therefore, it is not considered 
here. Only its computation time is modeled. 

Task SelectGearTask (see pseudocode in Figure 7.3) is periodically activated by ISR. 
Its priority is 0 and its period is 500. It selects the appropriate transmission rate, writes 
it to the variable DesiredGear, and if the desired gear differs from the current one, it 
activates task GearBoxCtrlTask that controls changing of the gear. Also the model of 
this task is very rough. 

SlipCtrlTask()  // Activated periodically 
{ 
 // Slip control, torque tracking, clutch protection 
 if (ClutchState == CLOSED) 
  CompSlipCtrl; 
 TerminateTask(); 
}; 

Figure 7.2 Slip control task pseudocode 

SelectGearTask()  // Activated periodically 
{ 
 if (GBReady) 
 {// Select gear according to current car conditions 
  CompDesiredGear; 
  if (DesiredGear != CurrentGear) 
   ActivateTask (GearBoxCtrlTask); 
 } 
 TerminateTask(); 
}; 

Figure 7.3 Select Gear task pseudocode 
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ISR()   // IRQ sources - TIMER, Clutch, ShiftServo, SelectServo 
{ 
 // Initialization part – for modeling purposes 
 InterruptedID := RunID; 
 RunID := IsrID; 
 U += U_IsrID;   // Prolong Interrupted task by constants U_IsrID and L_IsrID 
 L += L_IsrID; 
 
 // User defined code 
 while (bTimerInt || bClutchInt || bShiftServoInt || bSelectServoInt) 
 { 
  Comp; 
  if (bTimerInt) 
  { 
   bTimerInt:=0; 
   clk:=(clk>MAX_CLK ? 1 : clk+1); 
   if (clk% SlipCtrlTaskPeriod == 0) 
    ActivateTask(SlipCtrlTask); 
   if (clk% SelectGearTaskPeriod == 0) 
    ActivateTask(SelectGearTask); 
  } 
  else if (bClutchInt) 
  { 
   bClutchInt:=0; 
   SetEvent (GearBoxCtrlTask, ClutchEvent); 
  } 
  else if (bShiftServoInt) 
  { 
   bShiftServoInt:=0; 
   SetEvent (GearBoxCtrlTask, ShiftServoEvent); 
  } 
  else if (bSelectServoInt) 
   { 
   bSelectServoInt:=0; 
   SetEvent (GearBoxCtrlTask, SelectServoEvent); 
  } 
 } 
 
 // Finalization part (Scheduling point) – for modeling purposes 
 if (InterruptedID != IDLE) 
 { 
  RunID := InterruptedID; 
  Return to Interrupted Task; 
 } 
 else if (ReadyQueue is Empty) 
 { 
  RunID := IDLE; 
  Return to IDLE task; 
 } 
 else 
 { 
  RunID := Extract Top of ReadyQ; 
  Return to RunID task; 
 } 
}; 

Figure 7.4 Interrupt service routine pseudocode 
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GearBoxCtrlTask()  // Activated by SelectGearTask 
{ 
 GBReady := 0; 
 ClearEvent  (ClutchEvent ); 
 OpenClutch;          // Send command to clutch 
 WaitEvent (ClutchEvent); 
 if (CurrentShift != NEUTRAL) 
 { 
  // Disengage 
  ClearEvent (ShiftServoEvent); 
  ShiftServo_Goto (NEUTRAL);    // Send command to ShiftServo 
  WaitEvent (ShiftServoEvent); 
 } 
 if (DesiredGear != NEUTRAL) 
 { 
  // Select shifting rail 
  DesiredRail := (DesiredGear-1)/2;   // integer division 
  DesiredShift := (DesiredGear–1)%2+1; // modulo operation 
  if (DesiredRail != CurrentRail) 
  { 
   // Select 
   ClearEvent (SelectServoEvent); 
   SelectServo_Goto (DesiredRail);   // Send command to SelectServo 
   WaitEvent (SelectServoEvent); 
  } 
  // Shift 
  ClearEvent (ShiftServoEvent); 
  ShiftServo_Goto (DesiredShift);   // Send command to ShiftServo 
  WaitEvent (ShiftServoEvent); 
 } 
 ClearEvent  (ClutchEvent ); 
 CloseClutch;           // Send command to clutch 
 WaitEvent (ClutchEvent); 
 GBReady := 1; 
 CurrentGear:=DesiredGear; 
 TerminateTask(); 
}; 

Figure 7.5 Gear Box Control task pseudocode 

Task GearBoxCtrlTask (see pseudocode in Figure 7.5) has priority 1. It sends a 
command to open the clutch first, then it waits for the event ClutchEvent signaling 
that the clutch is open. If NEUTRAL is not currently engaged, it disengages the 
current gear by sending the command to the ShiftServo to move the shift finger to the 
neutral position and waits for the event ShiftServoEvent. Then the new gear, stored in 
variable DesiredGear, can be engaged. First, the rail and shift direction corresponding 
to the DesiredGear are computed and stored in the variable DesiredRail (Rail 0, 1, or 
2) and DesiredShift (ODD or EVEN). Then if the DesiredRail is not currently selected, 
the command to the SelectServo is sent to move the shift finger to the position of the 
DesiredRail. When the DesiredRail is selected (signalled by the event 
SelectServoEvent) the DesiredGear is engaged by sending the command to the 
ShiftServo to move the selected rail to DesiredShift position. After finishing the 
ShiftServo movement (signalled by the event ShiftServoEvent), the command to close 
the clutch is sent and when the clutch is closed (signaled by the event ClutchEvent), 
the variable CurrentGear is updated and the task is terminated. 
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7.2 Model 

A model of the whole system consists of timed automata representing the controlled 
system (Clutch, SelectServo and ShiftServo), a hardware of a control unit (periodic 
timer generating interrupts), an OS (services ActivateTask, TerminateTask, SetEvent, 
WaitEvent and automaton SortQueue), three application tasks (SlipCtrlTask, 
SelectGearTask, GearBoxCtrlTask) and one ISR. An overview of the whole model is 
depicted in Figure 7.6 and Figure 7.7. Figure 7.6 shows the timed automata 
synchronization via the channels and Figure 7.7 shows events and variables shared by 
the timed automata in the model. The variables and timed automata modeling OS have 
been explained in the previous section, therefore they are omitted in both figures. 
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Figure 7.6 Model overview – timed automata (rectangles) and synchronizations via 

channels (arrows) 
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Figure 7.7 Model overview – timed automata (rectangles) and shared variables (ovals) 

Since the Timer timed automaton is very simple, it is not depicted here. It only waits 
in its initial location and periodically generates interrupt via the channel IRQ and the 
variable bTimerInt. 
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The Clutch timed automaton is depicted in Figure 7.8. It is in the location Closed or 
Opened in a steady state. When the Clutch receives the command to open or close (via 
channel OpenClutch or CloseClutch respectively), it moves to Opening or Closing 
respectively. After the time bounded by ShiftTime and ShiftTimeU, the Clutch reaches 
a new steady state and generates an interrupt request (IRQ) via the channel IRQ. 

The SelectServo timed automaton is depicted in Figure 7.9. The automaton is in one 
location corresponding to Rail0, Rail1 or Rail2 in a steady state. When the command 
to select a new rail is received via the channel SelectCh, the SelectServo automaton 
moves to the DesiredRail (BetweenRail0andRail1 and BetweenRail1andRail2). When 
the DesiredRail is reached, an IRQ is generated via the channel IRQ. 
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Figure 7.8 Clutch timed automaton 
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Figure 7.9 SelectServo timed automaton 

The ShiftServo timed automaton (not depicted here) differs from the SelectServo timed 
automaton only in a few details. Locations Rail0, Rail1, Rail2, BetweenRail0andRail1 
and BetweenRail1andRail2 are replaced by OddPos, NeutralPos, EvenPos, 
BetweenNeutralAndOdd and BetweenNeutralAndEven. Variables and channels related 
to selecting (DesiredRail, CurrentRail, SelectCh, bSelectServoInt) are replaced by 
variables and channels related to shifting (DesiredShift, CurrentShift, ShiftCh, 
bShiftServoInt). Moreover, the time spent in locations BetweenNeutralAndOdd and 
BetweenNeutralAndEven is not 100 time units but 200 time units. 
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Figure 7.10 ISR timed automaton 

Timed automata modeling tasks SlipCtrlTask, SelectGearTask and GearBoxCtrlTask 
and ISR function are depicted in Figure 7.11, Figure 7.12, Figure 7.13 and Figure 
7.10, respectively. They have been obtained by translating tasks pseudocedes from 
Figure 7.2, Figure 7.3, Figure 7.5 as well as Figure 7.4 to timed automata according to 
the methodology described in Sections 4 and 6, respectively. 

Notice that the computation of the DesiredGear in the SelectGearTask is modeled by 
non-deterministic choice in the SelectGearTask timed automaton. Therefore, all 
possibilities are explored by the model-checking tool. Notice also that the OS service 
ClearEvent is very simple (Event[ID]:=Event[ID]&!ClutchEvent); it is not modeled 
by a special automaton but it is modeled directly in the GearBoxCtrlTask timed 
automaton (see Figure 7.13). 
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Figure 7.11 SlipCtrlTask timed automaton 
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Figure 7.12 SelectGearTask timed automaton 

7.3 Formal verification 

The following properties are required for proper function of the system: 

Safety properties: 

P1. Shifting is allowed only when the clutch is open 

P2. Selecting is allowed only when the shift servo is in neutral 

P3. Shifting is allowed only when a rail is selected 

P4. Clutch cannot be open longer than 650 time units 

Bounded liveness: 

P5 – P11. When new desired gear (NEUTRAL, 1...5, R) is selected, it is engaged in 
1020 time units 

Deadlock-freeness: 

P12. The system is deadlock free 

Notice that since multiple tasks activation is disabled in the model, deadlock-freeness 
(P12) guarantees that all tasks are finished prior to their new activation in the next 
period. Therefore the property P12 can be interpreted as schedulability (deadlines at 
the end of periods). 

Please realize that the deadlock-freeness is not proved to be preserved by the over-
approximation described in Section 6. It can be therefore verified only in the case of 
the WCET_ISR equal to the BCET_ISR that holds in this model. 
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Figure 7.13 GearBoxCtrlTask timed automaton 



     22

The above listed properties have been formalized in UPPAAL requirement 
specification language as follows: 

P1. A[] Clutch.Closed imply (ShiftServo.OddPos or ShiftServo.NeutralPos or 
ShiftServo.EvenPos) 

P2. A[] not (SelectServo.Rail0 or SelectServo.Rail1 or SelectServo.Rail2) imply 
ShiftServo.NeutralPos 

P3. A[] not ShiftServo.NeutralPos imply (SelectServo.Rail0 or SelectServo.Rail1 or 
SelectServo.Rail2) 

P4. A[] Clutch.Opened imply Clutch.t<=650 

P5. (DesiredGear==0 and SelectGearTask.ActivateTask) --> (ShiftServo.NeutralPos 
and rt1<=1020) 

P6. (DesiredGear==1 and SelectGearTask.ActivateTask) --> (ShiftServo.OddPos and 
SelectServo.Rail0 and rt1<=1020) 

P7. (DesiredGear==2 and SelectGearTask.ActivateTask) -  

P8 – P11 Similar to P6 and P7-> (ShiftServo.EvenPos and SelectServo.Rail0 and 
rt1<=1020) 

P12. A[] not deadlock 

In UPPAAL requirement specification language the syntax A[] f represents the 
computation tree logic (CTL) formula ∀  f (i.e. “invariantly holds f”), and the syntax 
p --> q denotes a CTL property ∀  (p ⇒ ∀  q) (i.e. “whenever p holds, eventually q 
will hold as well”). Notice that the clock rt1 measuring the response time in all 
bounded liveness properties P5 – P11 is reset when the new DesiredGear is selected 
in the SelectGearTask timed automaton depicted in Figure 7.12. 

All the above mentioned properties of the system have been successfully verified by 
model-checker UPPAAL 3.4.7 running on Windows 2000 on PC AMD Athlon 1GHz, 
with 1.3GB RAM. The time required for verification of all of these twelve properties 
is 58 seconds. The required memory is 78 MB. The most demanding properties are the 
bounded liveness properties. Realize that time and memory requirements drastically 
grow with the complexity of the model. Even though the memory requirement of 
78MB is acceptable, an augmentation of the model by other tasks can easily make the 
verification impossible. 

8 Response time analysis 

The previous section presents the verification possibilities of the model-checking 
methods. One of the many properties that can be verified by model-checking is, 
whether a task response time satisfies its deadline. This section compares a task 
response time analysis based on the classical scheduling theory (Klein, et al., 1993) 
and (Palencia and Harbour, 1998) to the one based on the model-checking approach 
proposed in this paper. Both these approaches are applied on the SlipCtrTask and the 
GearBoxCtrlTask and the worst-case response times (WCRT) obtained by both 
approaches are compared. The results show, that the worst-case response times 
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obtained by the model-checking approach are, due to a more detailed model and 
exhaustive state space analysis, less pessimistic. In the case of the SlipCtrlTask, the 
advantage of the model-checking approach is based on the information contained in 
the controlled environment model and the model of the task internal structure. In the 
case of the GearBoxCtrlTask containing self-suspension, the advantage of the model-
checking approach is based on exhaustive analysis of the model state space. 

On the other hand, exhaustive analysis of the state-space (very quickly growing with 
the number of tasks, computations and variables) limits the size of applications for 
which the model-checking method can be used. Therefore, we do not want to present 
the model-checking approach as a universal method for response time analysis but as 
an alternative approach providing some reasonable advantages in some cases. 

8.1 WCRT of the SlipCtrlTask by Scheduling theory based approach. 

Let us explore the response time of the SlipctrlTask from its activation within the ISR 
(see pseudo code in Figure 7.4) till its termination. The scheduling theory based 
response time analysis deals with the following information. 

The WCET of the SlipCtrTask is 2 time units. Even though the SlipCtrTask is 
executed at the highest priority, its response time can be prolonged by the longest non-
preemptable part of any lower-priority task, and by an ISR. The longest non-
preemptable block in the system is the task SelectGearTask whose WCET is 10. The 
ISR is invoked by the timer (with period 10), the clutch (with minimal inter-arrival 
time 200), the SelectServo (with minimal inter-arrival time 100), and the ShiftServo 
(with minimal inter-arrival time 200). Servicing each of the mentioned requests takes 
one time unit. 

The WCRT of SlipCtrlTask in the worst-case phasing (all interrupts occurred and the 
longest non-preemptable block just began) is 17 (2+10+2*1+1+1+1). 

Notice that the timer ISR is considered twice, since it is invoked twice prior the 
SlipCtrlTask is finished (after 17 time units). 

8.2 WCRT of the SlipCtrlTask by model-checking approach 

Contrary to the scheduling theory based approach presented in the previous section, 
the model-checking approach considers only the possible phasing determined by the 
detailed model of the controlled environment (the gearbox mechanism: Clutch, 
SelectServo and ShiftServo) and the control algorithm (GearBoxCtrlTask). It is 
impossible in this phasing that all interrupts are invoked by the Clutch, SelectServo 
and ShiftServo simultaneously. The model-checking tool, moreover, explores the right 
blocking time of the SlipCtrlTask by lower priority tasks. 

We explore the WCRT of the SlipCtrTask in the following way: The response time of 
the task is measured by the clock variable rt0, which is reset when the SlipCtrlTask is 
activated in ISR, at the transition leading to the location ActivateTask0. Then the 
following property is verified: “Always, when the end of the SlipCtrlTask (location 
End) is reached, the inequality rt0<=WCRT holds”. This property is formalized in the 
UPPAAL requirement specification language as follows: 
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A[] SlipCtrlTask.End imply rt0<= WCRT. 

Then the verification is made by UPPAAL for the particular value of the WCRT. 
First, the value of the WCRT must be estimated by the designer and then, if the 
formula is satisfied, its value can be decreased. The smallest value of the WCRT can 
be found in several iterations. Notice that algorithms also exist for parametric model-
checking verifying whether a state is reachable in a model with an uncertain parameter 
(the WCRT in the observer automaton). However, this problem is undecidable in 
general (Alur, et al., 1993). The smallest value of the WCRT is therefore found by the 
interval bisection. The WCRT of SlipCtrlTask obtained by the model-checking 
approach is 5. This result is a significantly smaller value than in the case of the 
scheduling theory approach (see Section 8.1). This result is valid only in the case 
when the SlipCtrlTask is never activated more than once before it is finished. This 
requirement is expressed by the property A[] nActivated[SlipCtrlTaskID]<1 and it has 
been successfully verified in the proposed model. 

Both of these properties have been successfully verified by the model-checker 
UPPAAL 3.4.9 running on Windows 2000 on PC AMD Athlon 1GHz, with 1.3GB 
RAM. The time required for verification of both of these properties is 7 seconds. The 
required memory is 57 MB. 

8.3 WCRT of GearBoxCtrlTask by Scheduling theory based approach. 

It is clear from the GearBoxCtrlTask pseudocode listed in Figure 7.5 that the task 
suspends itself several times while waiting for external events. This fact must be 
considered in the WCRT analysis since the suspended task had to compete for the 
processor again after the end of the suspension. The worst-case execution path of 
GearBoxCtrlTask is in Figure 8.1. It consists of six computations (Comp1 to Comp6) 
separated by five self-suspensions (WaitEvent(...)). The WCET of all computations are 
1 and the worst-case self-suspension times (WCSST) are 200. 

GearBoxCtrlTask – worst-case execution path 
{ 
 Comp1;           // WCET1 = 1 
 WaitEvent (ClutchEvent);    // WCSST1 = 200 
 Comp2;           // WCET2 = 1 
 WaitEvent (ShiftServoEvent);   // WCSST2 = 200 
 Comp3;           // WCET3 = 1 
 WaitEvent (SelectServoEvent);  // WCSST3 = 2*100 
 Comp4;           // WCET4 = 1 
 WaitEvent (ShiftServoEvent);  // WCSST4 = 200 
 Comp5;           // WCET5 = 1 
 WaitEvent (ClutchEvent);   // WCSST5 = 200 
 Comp6;           // WCET6 = 1 
}; 

Figure 8.1 GearBoxCtrlTask worst-case execution path 

Palencia and Harbour (1998) proposed an offset-based approach for response-time 
analysis of tasks with static and dynamic offsets that can be successfully applied to 
tasks with self-suspension. The response-time analysis based on this approach has 
been implemented in the tool MAST (González Harbour, et al., 2001) that can be 
downloaded at http://mast.unican.es/mast.html. We have used this tool to compute the 
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WCRT of GearBoxCtrlTask. The WCRT of GearBoxCtrlTask obtained by offset-
based approach is 1021. 

Realize however that the offset-based approach does not consider branching affected 
by values of variables. Since the contribution of the higher priority task SlipCtrlTask 
to the WCRT of the GearBoxCtrTask strongly depends on the value of variable 
ClutchState (see Figure 7.2), and the blocking by the lower priority task 
SelectGearTask strongly depends on value of variable GBReady (see Figure 7.3), the 
model used for analysis by the tool MAST has been manually modified in the 
following way: The task SelectGearTask is not considered in the model, since it never 
blocks any computation of GearBoxCtrTask (GearBoxCtrTask is started at the end of 
SelectGearTask and the execution of SelectGearTask is blocked by the value of the 
variable GBReady that is zero during the execution of the whole GearBoxCtrTask). 
The task SlipCtrlTask cannot affect computations Comp2 to Comp5 of the task 
GearBoxCtrTask due to value of the variable ClutchState (see Figure 7.5). The 
contribution of the task SlipCtrlTask is therefore involved in the WCET of 
computations Comp1 and Comp6 and the task SlipCtrlTask is not considered in the 
model. 

This modification of the model prevents the pessimisms of the analysis caused by not 
considering the branching affected by values of variables. Realize however that such 
modification would be hard or even impossible for a more complex system structure 
and cannot be therefore understood as a systematic approach to analysis. We have 
done it only for a fair comparison with the model-checking approach. The WCRT of 
GearBoxCtrlTask obtained by offset-based approach without described modification 
is 1034. 

8.4 WCRT of the GearBoxCtrlTask by model-checking approach 

We explore the WCRT of the GearBoxCtrTask in a similar way as in the case of 
SlipCtrTask. The response time of GearBoxCtrlTask is measured by the clock variable 
rt1, which is reset when the GearBoxCtrlTask is activated in SelectGearTask, at the 
transition from location if2 to location ActivateTask. Then the following property is 
verified: “Always, when the end of GearBoxCtrlTask (location End) is reached, the 
inequality rt<=WCRT holds”. This property is formalized in the UPPAAL 
requirement specification language as follows: 

A[] GearBoxCtrlTask.End imply rt<= WCRT. 

Then the verification is made by UPPAAL for the particular value of the WCRT. The 
smallest value of the WCRT of GearBoxCtrlTask is 1011. This result is valid only in 
the case when GearBoxCtrlTask is never activated more than once before it is 
finished. This requirement is expressed by the property 
A[] nActivated[GearBoxCtrlTaskID]<1 and it has been successfully verified in the 
proposed model. 

Both of these properties have been successfully verified by model-checker UPPAAL 
3.4.9 running on Windows 2000 on PC AMD Athlon 1GHz, with 1.3GB RAM. The 
time required for verification of both of these properties is 8 seconds. The required 
memory is 61 MB. 
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The difference between the WCRT found by model-checking (1011) and scheduling 
theory (1021) seems to be minor. Realize however that the biggest part of the WCRT 
corresponds to the duration of the self-suspension (5*200). The pessimism of the 
scheduling theory approach (1021-1011) is therefore comparable with the exact time 
when the task is ready or executed (1011 - 5*200). 

9 Conclusions 

In this paper, we have demonstrated, how timed automata can be used for modeling of 
multitasking, non-preemptive applications. The complex time and logical properties of 
the proposed model, considering the values of variables, behavior of the controlled 
environment and an internal structure of the control system tasks (e.g. “Shifting is 
allowed only when the clutch is opened”, “Desired gear is engaged in 1020 time 
units”, “System is deadlock free”, “A task is finished within X time units”, etc.), can 
be automatically verified by a model-checking tool. 

Even when comparing to the task response time analysis, where classical scheduling 
theory can be applied, an advantage of the model-checking approach based on a fine 
grain timed automata model is that it considers the task internal structure and the 
controlled environment and it exhaustively analyzes its state space by a symbolic 
model-checking algorithm. Consequently, a more precise (less pessimistic) analysis is 
provided by the model-checking approach in the cases, when the analyzed application 
contains features that make the response time analysis pessimistic (e.g. branching in 
the tasks code, tasks self-suspension), or when the worst-case behavior, considered by 
the classical scheduling theory, can never occur in the controlled environment. It is 
clear however that the high memory requirements of the model-checking are 
preventing this method from becoming a universal response time analysis method. 

An exhaustive analysis of the detailed timed automata model subjects to state space 
explosion (which is a general property of most formal methods (Corbett, 1996)). 
Therefore, the proposed model is abstract as much as possible and it contains only 
information necessary for correct verification of the system specification. The 
operating system model uses only modest data structures, it does not use any clock 
variables, it does not allow any non-determinism and all locations are committed, 
which prevents paths interleaving and therefore restricts the explored state space. 
Moreover the OS model is scalable. Therefore only features used in the modeled 
application are used in the OS model. Notice also that OSEK is one of the most 
appropriate operating systems to be modeled by timed automata since it is static (all 
objects are created at compilation time) and it is designed for modest runtime 
environment of embedded devices. For example events and resources do not require 
any queue of waiting tasks. The model of an application tasks must be designed as a 
compromise between the model precision and its state space size. It is necessary to 
limit the size of modeled data, non-determinism and number of computations in order 
to obtain the model of reasonable size. In spite of these restrictions, the model-
checking approach is applicable for formal verification of realistic applications whose 
verification made manually by humans would be hard and error prone. 
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