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Abstract

This paper presents a design methodology for a hybrid Hardware-
in-the-Loop (HIL) tester tool, based on both discrete event system the-
ory, given by timed automata, and continuous systems theory, given by
difference equations. It is implemented using an FPGA platform that
guarantees speed enhancement, time accuracy and extensibility with no
performance loss. We have focused on the implementation of a discrete
event system, specifically timed automata into FPGA, and we have linked
them with continuous systems implemented as filters in fixed point arith-
metic. The paper shows a methodology, which employs widely used tools
(Matlab, UPPAAL) as a user interface, and which implements the FPGA
based tester tool.

keyword Hardware-in-the-Loop, Real-Time System Testing, Model checking,
Timed Automata, FPGA, Hybrid System, System Control

1 Introduction

Hardware-in-the-Loop (HIL) applications are used by design and test engineers
to evaluate and validate, e.g. vehicle components (electronic control units, etc.),
during the development of new systems. Rather than testing these components
in complete system setups, HIL allows the testing of new components and pro-
totypes, so called Implementation Under Test (IUT).

Replacing the rest of the system by a model implemented in a computer
(Tester tool) increases the flexibility and the rate of test scenarios. The phys-
ical components being tested respond to the simulated signals as if they were
operating in a real environment. Therefore, they can not distinguish between
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the signals sent by other physical components and signals provided by models
running on a computer.

This paper presents the design methodology of a tester tool. The objective
of the tool is to check the behavior of the IUT while simulating the behavior
of the controlled system. The tool has to be able to automatically analyze the
behavior of the IUT and to vary the parameters of the system so that the IUT
is forced to operate in different conditions. In most applications, the controlled
system incorporates complex dynamics of physical nature, usually captured as a
continuous change of continuous states on one hand and as complex dynamics of
logic nature conveniently modeled by discrete states and events on other hand.
Therefore, our tester tool is a hybrid, i.e. it is based on both the discrete event
system theory, given by timed automata [3], and continuous systems theory,
given by difference equations [23, 24]. In order to avoid implementation errors,
a high level of specification is required, so that the application expert can eas-
ily implement the system model, test cases and their analyses. The choice of
such high level specifications, which are widely supported, enables us to execute
a preliminary analysis (using Matlab/Simulink or UPPAAL) without incorpo-
rating any specific hardware, which simplifies the implementation of the tester
tool.

Figure 1 shows a setup of the tester tool. The system model block emulates
environment interacting with IUT. It is given by the timed automata and by
the difference equations. The tester block includes test cases and checks the
behavior of the IUT. It is collection of timed automata executing a test and
monitoring specified properties.

test case executor & test analyzer

Verdict interface

e.g. microprocessor platform

Property satisfied: TRUE / FALSE

(time and logic properties)

Tester

(timed automata, difference eqation)
model of hybrid system

System model
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Figure 1: Hardware in the loop conception

Simulation tools for continuous systems (like Matlab-Simulink) and model
checking tools for discrete event systems (like UPPAAL) are often used during
the analysis and design phases of hardware and software designs (e.g. [17, 18]).
Such model based designs usually lead to a modular structure, and the behavior
of the modules is often analyzed separately in different tools, especially in the
case of complex hybrid systems that are not tractable in polynomial time.
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On the other hand, the testing phase of the model based design requires a
compact solution in order to describe the complete system behavior. Therefore,
in this article, we have followed this practice: we have assumed separate modules
of the system, which are described and analyzed by appropriate tools (widely
treated in the literature [7, 16]) and we have used these models as parts of the
hybrid tester tool.

Our tester tool is implemented by using the FPGA platform that guarantees,
not only speed performance, but also time accuracy, and has quite good exten-
sibility with no performance loss as well. Compared to the operating system
based platforms, the FPGA platform is able to achieve a much faster sampling
frequency. Moreover, the FPGA platform is not affected by the rather complex
behavior of the operating system services, interrupt handling, etc. In contrast
to the typical sampling period of 10 µsec achieved in real-time operating sys-
tems like RTLinux [11] or OCERA [25], a sampling period of less than 100 nsec

can be achieved on the FPGA platform. More importantly, is the fact that, the
FPGA platform has zero jitter since it is synchronous HW, and the separate
parts do not influence each other. On the other hand, the operating system
based platforms are well supported by widely used development tools.

1.1 Background

The hybrid tester tool presented in this article combines a discrete-event system,
in the form of timed automata, and a continuous system in the form of difference
equations.

Timed automata [3] are finite state automata, consisting of states (locations)
and transitions, among these states. The transitions are extended by clocks
that are used to specify quantitative time. Clocks are variables having non-
negative real values, that can be reset. The difference between two clocks can
be compared to a constant. In the initial system state, all clock values are zero,
then all evolve at the same speed, synchronously with time.

The main feature of the timed automata approach, is that it can be verified
using temporal logic [9]. It allows a user to check if any specification property
of the model is satisfied or not. It is suitable in order to inspect the model due
to deadlock, logical and timed conditions, for example.

The UPPAAL tool [5] used in this paper allows the user to design timed au-
tomata and to verify the automata using the mentioned temporal logic. More-
over, it offers an XML API for model export as well. The tool has been used as
a design tool for timed automata that have been implemented into hardware.

Timed automata implementation into FPGA is inspired by [2]. The paper
shows a way how to transform a timed automata (TA) into a program. The
global time is represented by one running clock. For each clock of a timed
automaton there is one integer variable (called digitized interpretation of TA).
Such a variable is set to the value of the global time whenever the clock is reset.
Consequently, the difference between this variable and global time represents
the clock value. Each channel, used to synchronize the evolution of two timed
automata, is replaced by one logic variable which is triggered synchronously with
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all other channels in the model. A zeno behavior (a model has zeno behavior if
it can take an infinite amount of actions in finite time) is not supported in our
FPGA implementation.

The continuous part [24] of the tester tool is realized using difference equa-
tions that are able to represent a continuous system with periodic sampling
(called discrete-time systems). The transfer function G(z) of such a system
influences the physical layout of the arithmetic and storage units in the FPGA.

The continuous part may have the following influence on the discrete part:
when the continuous state variable reaches a certain threshold, a state in dis-
crete part changes. The discrete part may have the following influence on the
continuous part: when the state in discrete part changes, the parameters of
continuous part are changed.

The tester tool was implemented in high performance FPGA, where several
arithmetic operations can be executed within a period close to tens of nsec (Xil-
inx Virtex 4 XC4VFX12-F668-10C). As presented, a discrete-event system, as a
set of timed automata, is designed in UPPAAL. A continuous system is designed
as a transfer function using the Matlab control toolbox. Both a discrete-event
and a continuous system are transformed into FPGA using the Xilinx System
Generator, Matlab/Simulink toolbox (XSG). The toolbox can generate the final
VHDL code for a target FPGA platform.

1.2 Related work

The related tools are briefly described in the following paragraphs, including
comparison with our approach.

The TTG tool [14] is an off-line test generator (complete test scenarios and
property results are computed a-priory and before test execution). The tool is
based on the IF modeling language [8] and is able to generate a set of test cases
for an IUT represented by a timed automata. Compared to our approach the
TTG tool does not cover continuous systems.

The UPPAAL-TRON [12, 15, 20] is a tool for on-line testing (a single test
primitive is generated from the model and at the time it is then immediately
executed on the IUT) based on the discrete event system description using the
timed automata. The tool both generates test cases to the IUT and checks
test properties to be verified at the same time. The tool is executed on a UNIX
platform, however, it can not guarantee the system time resolution of the FPGA.
Moreover, it is not able to test an IUT using a hybrid system approach.

On the other hand, our tool only executes the test cases that are manually
constructed, whereas TTG, UPPAAL-TRON and UPPAAL-COVER [12] gen-
erate the test cases automatically. In particular we assume the test cases to be
based on the system requirements and to be written in the form of TA including
fixed-point representation of continuous variables.

SoftCom [26] is an industrial HIL application that simulates industrial en-
vironment activities to react with an IUT, i.e. a programmable logic controller
(called PLC). The application is based on discrete event systems based on state
machines. However, SoftCom is an application developed for a Windows OS or
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a non real-time Unix OS. The time resolution of these systems is approximately
100 msec, thus not very high. Moreover, it does not support hybrid system
testing.

LabView FPGA [22] is a HIL application that allows a user to test the IUT
running at a very high time resolution. The user can design their own HIL
using the LabView environment supporting both discrete event and continuous
systems. Such a HIL can be directly set into the FPGA. However, compared to
our approach the tool misses the discrete-event system timed automata repre-
sentation, and for that reason, an interconnection with model checking tool is
not straightforward.

Another tool, CarMaker [13] is used for testing vehicle embedded control
systems. The system is used for the development of vehicle embedded control
systems interacting with a discrete event and a continuous system environment
as well. Nevertheless, CarMaker, similarly to LabView FPGA, does not support
timed automata.

1.3 Paper contributions

The main contributions of this paper are:

(a) A methodology which incorporates widely used tools (Matlab used for
controller design and simulation and UPPAAL for discrete event system
design and model checking) as a user interface, and also implements the
FPGA based tester tool. (see Subsection 2.1)

(b) A novel approach to the implementation of timed automata into the
FPGA. This approach enables the combination of formal model check-
ing in UPPAAL with HIL on the FPGA.

(c) Implementation of a high performance tester tool achieving a sampling
period in the order of 100 nsec.

1.4 Outline

The paper’s structure is as follows: Section 2 presents our hybrid HIL applica-
tion methodology. The HIL discrete event system implementation using timed
automata and continuous system implementation using difference equations are
both presented there. Section 3 shows three case studies. The first study de-
scribes HIL implementation using the discrete event approach only. The second
and third one show HIL implementation combining both discrete event systems
and continuous systems. Section 4 deals with the conclusion of the paper and
future work.
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2 Tester tool architecture and implementation

issues

HIL achieves a highly realistic simulation of equipment in an operational virtual
environment. A typical HIL system includes an IUT and a tester tool. The
structure of our HIL system is depicted in Figure 1. There are two main blocks,
a tester tool and an IUT. The tester tool produces an output test signal to
influence the IUT behavior and it reads the input signal to verify its reaction.

The tester tool consists of four parts.

System model: The System model specifies the system to be controlled by
the IUT controller. It generates an output signal to the IUT (IUT input
signals) and it reacts to the input signal from the implementation.

The system model implementation is given by the discrete event system
description (e.g. timed automaton) or by the continuous system represen-
tation (e.g. difference equation). Both can be combined.

The timed automata models are designed using the UPPAAL tool [5] and
transformed using the UPPAAL UTAP library [4]. The continuous system
model, designed in Matlab/Simulink, is described by difference equations
[17, 24].

Tester: The Tester block includes test cases and checks the behavior of the
IUT. A test case generates a set of signals that are transmitted into a
System model, influencing its states. Consequently, the tester analyzes
both the input and output signals and verifies the properties of the IUT
given by its IUT specification. The tester results are propagated via the
Verdict interface.

The test case executor and test analyzer implementation are based on the
discrete event system representation and on the continuous system as well.
The test analyzer is able to affect both time and logic properties.

HW interface: The HW interface transmits data signals from the System
model to the IUT and vice versa. It performs A/D and D/A conversion
when appropriate, e.g. pulse width modulation (PWM).

Verdict interface: The Verdict interface is a block that interprets the test
analyzer result for the user. It signals whether a given IUT property is
satisfied or not.

2.1 Tester tool implementation

The tester tool has been implemented on the FPGA platform. The FPGA plat-
form allows a designer to create its structure as needed. Moreover, it allows the
user to implement complex real-time structures and implement parallel archi-
tectures. Thanks to the platform, the tester tool is fully configurable and time
accurate.
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The tester tool was designed using the Xilinx System Generator (XSG), an
FPGA toolbox for the Matlab/Simulink IDE [28]. It makes it possible to design
an FPGA infrastructure in a user friendly interface without deep knowledge of
complex low level languages, like VHDL [29].

The tester tool implementation issues, like state machines, timed automata
or channels using the XSG, are presented in the following text.

Figure 2: State machine and timed automaton implementation in XSG

2.1.1 State machine implementation

The state machine structure, implementable in XSG, is shown in Figure 2a. The
automaton consists of the state register, the Matlab MCode file (MCode) and
the set of local variables.

The state register stores the value of the actual automaton state. The state
value is updated depending on the condition set in the MCode.

The MCode is a file containing a Matlab function with a Switch-Case state-
ment in Matlab like notation. The statement structure is given by the structure
of an accordant automaton.

7



1 function [ state new , channe l req , c lk new ] =
2 TA1( state , now clk , channel ack , c l k )

4 % Variable i n i t i a l i z a t i o n

5 state new = s t a t e ;
6 channe l req = 0 ;
7 c lk new = c lk ;

9 % Timed automaton s t a t e machine

10 swi tch s t a t e
11 case 1 % State1 − the i n i t i a l s t a t e

12 i f ( channe l ack == 1 )
13 channe l req = 0 ;
14 c lk new = now clk ;
15 state new = 2 ;
16 else

17 channe l req = 1 ;
18 end

19 case 2 % State2

20 i f ( ( now clk − c l k ) == 2 )
21 state new = 1 ;
22 end

23 otherwise
24 % an error occurred

25 state new = −1;
26 end

Figure 3: MCode listing of timed automaton
TA1 (see Figure 6)

Each Case statement represents the location and each if statement in the
Case represents the state to state transition constraint.

The registers are used to store an eventual automaton variable since it can
not be stored in the MCode. Because the variable register data type can differ
from the required input data type of the MCode, such variables have to be
converted to properly data type.

An MCode file content example is depicted in the listing in Figure 3.

2.1.2 Timed automata implementation

Our timed automata implementation is inspired by [2]. The paper shows the
transformation of timed automata into a program. The global time is captured
in the variable now clk, the only running clock. Even though the clock is a real
value in the timed automata, it may be represented by an integer value when
assuming periodic sampling. For each clock of the timed automaton there is one
static variable clk. Such a variable is set to the variable now clk whenever the
clock is reset. The difference between now clk and clk represents the clock value.
Each channel, used for synchronizing the evolution of two timed automata, is
replaced by one logic variable which is triggered synchronously with all the other
channels in the model.

The TA implementation into the FPGA is similar to the state machine im-
plementation described in the previous section. Moreover, the now clk generator
and one clock register, per each timed automaton clock variable, were added.
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Figure 4: Timed automaton clock implementation

Each clock is updated depending on the MCode structure.
The clock evaluation example is depicted in Figure 4. It presents the now clk

and clk history of variables and it shows an example of the periodic reset of the
variable clk. The clk sampling period is based on now clk. Its reset time is given
by timed automata constraints in the MCode.

The variable now clk is incremented each sampling period. The sampling
period is given by the length of the FPGA clock cycle and by the number of
the FPGA clock cycles needed to evaluate the continuous part and the discrete
part. The length of the FPGA clock cycle is given, namely, by the complexity
of the arithmetic operations performed in the continuous part (see the chain of
the multiplication and addition units in Figure 7) and the complexity of buses
in the discrete parts. The shortest possible FPGA clock cycle is about 50 nsec,
assuming the continuous system of the third order and 16-bit fixed point logics
on the Xilinx Virtex 4 XC4VFX12-F668-10C.

The existence of the urgent locations and channels in the timed automaton
requires repetitive calls of the corresponding timed automaton function (e.g.
Figure 3). For example, when a sequence of three urgent locations is assumed,
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then at least four repetitive calls are needed. Therefore, the sampling period
has to be greater than Texec, the time needed to update all FPGA internal
processes. For example, the sampling period of the timed automata is set to 4
clock cycles in Figure 4.

The implementation of the timed automaton location-to-location transition
is bounded by a time constraint interval and can be resolved by an approach
based on the principle that only one sample from the interval is chosen. In timed
automata, while using invariants and guards, a transition can be taken within
the given time interval. This non-deterministic feature, related to the system
parameter for which only the lower and upper bounds are known, can be handled
in the tester tool while using a stochastic approach. In Figure 3, the stochastic
approach can be implemented by using a function randTI() that generates a
random value given by a probability distribution function on the time interval.
In the case of a normal distribution on the interval [2, 4] (invariant clk ≤ 4
and guard clk ≥ 2 in Figure 6a, code line 20 should be changed into if((now clk-
clk) == randTI(normal,2,4)). Such function with normal probability distribution
function can be realized by a linear feedback shift register [21] using [27].

Model-checking by the timed automata is an integer based formalism. For
that both clocks and timed automata variables are interpreted as integers. The
continuous variables have to be represented in appropriate units, so that their
integer representations offer required precisions.

Channel implementation A primitive implementation of channels for the
synchronization of state automata is shown in Figure 5. The figure presents two
automata using one channel to coordinate their activities.

channel block

A1 A2
Automaton Automaton

channel_req_A1 channel_req_A2

channel_ack_A2channel_ack_A1

synchronization

c
h
a
n
n
e
l

and

channel_ack_A2

channel_req_A2channel_req_A1

channel_ack_A1
Register

Figure 5: Channel implementation

Each automaton uses two variables. The first variable, channel req Ax, acti-
vates the synchronization process, the second one, channel ack Ax acknowledges
to the automaton that the synchronization process is completed.

The channel structure is depicted in the dotted box in Figure 5. The struc-
ture uses the one logic operand AND and one register to avoid an algebraic
loop.
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channel?
clk=0

clk>=5
clk=0

b) TA2

Figure 6: Timed automata example in UPPAAL like notation

Timed automata example An example of the timed automata transforma-
tion into XSG is presented in the following paragraphs.

Figure 6 shows two timed automata in UPPAAL like notation. Each au-
tomaton uses a local clock variable clk. Both automata are synchronized by the
synchronization channel channel.

The automaton TA1 has two locations State1 and State2. TA1 waits for
TA2 in the initial location State1 using channel. If the synchronization event
occurs the clk is reset to zero and TA1 passes into location State2. The au-
tomaton waits here for 2 time units. It is given by the constraint in the invariant
and transition State1 → State2 guard. After that, the clock clk is reset and
TA1 returns to State1.

In a similar way, TA2 starts in the initial location State1. After synchro-
nization, it waits in the State2 location for 5 time units and returns to the
State1 location.

The transformation from TA1 into MCode is listed in Figure 3.
The TA2 transformation into MCode is similar to TA1. It differs only in

code line 20 where (now clk - clk) is compared to 5 sampling periods.
In order to retrieve a sequence of states leading to a given state, a diagnostic

trace can be implemented by using a circular buffer that stores a time stamp,
state information and variable at each state turn.

2.1.3 Discrete-time system implementation

The continuous system model is implemented as a digital filter [17, 23]. The
general form of the filter transfer function between the output Y (z) and the
input X(z) is given by:

G(z) =
Y (z)

X(z)
=

b0 + b1z
−1 + · · · + bmz−m

1 + a1z−1 + · · · + anz−n
(1)

where m is the maximal order of the numerator Y (z) and n is the maximal
order of the denominator X(z). Without loss of generality, we suppose the
system to be pure, i.e. n ≥ m. With respect to the transfer function of z−1 that
represents a delay of one sampling period, the equation can be modified into:
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Figure 7: Transfer function of the 3rd order system implemented in Matlab XSG

y(k) = b0x(k) + b1x(k − 1) + · · · + bmx(k − m)

−a1y(k − 1) − · · · − any(k − n) (2)

The y(k) is the k-th sample of the output and x(k) is k-th sample of the
input. It can be directly implemented into an FPGA platform using delay
elements, adders and multipliers.

For example, a 3rd order transfer function can be implemented by using XSG
as shown in Figure 7.

An example of the transfer function response to the input step function
is depicted in Figure 8. The figure shows the ys(k) of the transfer function
implemented in the standard Matlab/Simulink, yx(k) of the transfer function
implemented in the XSG toolbox and yf (k), the response of the transfer function
implemented in the FPGA. The XSG yx(k) deviation is given by the fixed point
logic accuracy, preset in the toolbox arithmetic. The XSG simulation is bit-
exact to the FPGA implementation, which means the simulated system behavior
is identical to the system behavior finally implemented in the target FPGA
platform (samples of yx(k) and yf (k) are completely identical in Figure 7).

3 Case studies

This section shows three case studies. The first case study is composed using
the timed automata. The second case study combines both timed automata
and difference equation implementations. The third case study is more complex
while focusing on scalability and flexible reuse of the components of the second
case study.
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3.1 Case study 1 - Airbag control

This case study deals with the on-line testing of an electronic control unit (ECU)
that is responsible for airbag control. An airbag is a flexible membrane or en-
velope, inflatable to contain air or some other gas. Airbags are most commonly
used for cushioning, in particular after very rapid deceleration, in the case of
an automobile collision. The airbag system consists of three basic parts, crash
sensor, a controller, and an inflater device. It is a highly safety critical applica-
tion.

The case study structure is illustrated in Figure 9. The sensor detects a car
impact. If it detects the impact (a deceleration crosses over a safety limit) the
controller should execute the airbag deployment by the inflater. The controller
has the responsibility to activate the inflater within a specified time after the
sensor alarm occurs.

Controller Inflater

active/inactive

Sensor

deceleration

below/over limit

Figure 9: Case study 1: Airbag control system

A very simple controller algorithm, the sensor functionality and the inflater
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Figure 10: Case study 1: Acceleration sensor, Controller and Inflation device
timed automata

functionality are presented in Figure 10.
The goal is to validate the controller whenever it activates the inflater within

a specified time after the sensor event.
The case study implementation scheme of HIL is presented in Figure 11.

It consists of a system model simulating the sensor and inflater activity, the
controller under test and tester containing three property blocks and the test
case presented below.

The system model is composed of timed automata representing the sensor
and the inflater (see Figure 10a and 10c). The controller under test including
its simple dynamics depicted by timed automaton (inflator activated state is
reached at most 17 sampling periods after impact) is shown in Figure 10b. These
timed automata are transformed into XSG using the methodology depicted in
Subsection 2.1 including the synchronization channels impact and deploy.

The tester consists of the test case executor and the set of properties to be
verified. The test executor activates the system model block and all property
blocks as presented below. The tester and the properties are given by timed
automata, which have a sampling period of 100 nsec.

There is just one test case implemented for this case study. The test case
activates the system model sensor at 2 µsec. All property blocks are activated
at that time, the property results are analyzed at 5 µsec.

There are three properties to be verified. Each property is transformed into
the timed automata model as explained in Subsection 2.1. The list of properties
is as follows:

Property 1 “The controller always activates the inflater within 2.0 µsec from
the moment when the sensor is activated.”. For the property timed au-
tomaton see Figure 12a.

Property 2 “The controller always activates the inflater within 1.5 µsec from
when the sensor is activated.”. For the property timed automaton see
Figure 12b.
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Property 3 “Does the state in which the inflater is activated exist?”. The
accordant automaton is depicted in Figure 12c.
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Figure 11: Case study 1: Implementation scheme of the case study HIL

The controller under test is implemented using the timed automata approach
(the controller timed automaton now clk update time is 0.1 µsec) . Its structure
is depicted in Figure 10b. When the sensor is activated, the controller receives
the synchronization signal impact (consequently, the transition check sensor →
inflater activation comp in Figure 10b is activated). Furthermore, it computes
a reaction and it activates the inflater by the signal deploy within 17 time units
(inflater activation comp → inflater activated).

Figure 13 shows the state evolution of the controller and the sensor in the
upper plot and evolution of each verified property in the bottom one.

The sensor is activated at 2 µsec. The controller evolves at that time in
check sensor → inflater activation comp and switches to the inflater activa-

ted after 1.7 µsec (computation time of the controller). The bottom plot of
Figure 13 shows the following results:

Property 1 The property is satisfied. The inflater is activated at 1.7 µsec.

Property 2 The property is not satisfied. The inflater is not activated within
1.5 µsec.

Property 3 The property is satisfied. The inflater activated state occurs at
1.7 µsec.
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Figure 12: Case study 1: Properties to be verified
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Figure 13: Case study 1: Tester output

Therefore the tests of the airbag controller have shown its ability to deploy
the inflater within 2 µsec as required.

3.2 Case study 2 - Motor control

This case study deals with testing of controllers given by continuous system
representation. It presents the combination of a continuous system (system
model, controller) with a discrete event system (property blocks, test executor).
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The study tests several properties of the servo-system with or without friction
to the shaft. The system consists of a motor and a controller. The controller
operates the motor to a reference angular velocity ωref .

The motor behavior can be described by the following equations:

∂i

∂t
= −

R

L
i −

ξ

L
ω +

1

L
u

∂ω

∂t
=

ξ

J
i −

1

J
mz (3)

In this system, R is the terminal resistance, L is the terminal inductance,
ξ is the torque constant, ω is the angular velocity, u is the applied armature
voltage, i is the armature current, J is the equivalent moment of inertia of the
motor and load referred to the motor and mz is the torque load given by the
friction to the shaft, for example.

Using the motor Maxon A-max 26 [19], the transfer function ω
u
, with mz =

0 Nm and Ts = 1 msec, is:

G(z) =
2.652z + 0.3143

z2 − 0.9202z + 0.0001003
(4)

when the servo-system has the friction to the shaft mz = 0.1 ∗ 10−3 Nm the
transfer function, with Ts = 1 msec, is:

Gf (z) =
2.559z + 0.2924

z2 − 0.8483z + 9.249 ∗ 10−5
(5)

There are two controllers tested separately in this case study. The first
controller is given by the transfer function:

GC1(z) =
0.1055z − 0.0939

z − 1
(6)

with sampling period Ts = 1 msec. The transfer function of the second
controller is:

GC2(z) = 0.2 (7)

The goal is to test, whether a given controller is able to operate both systems
given by the transfer Functions 4 and 5. Each controller has to be able to
satisfy the below mentioned properties in both operating conditions, i.e. with
or without friction at the shaft.

It is required to verify the following:
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• The motor angular velocity should be stabilized in the interval (9, 11)
Rad s−1 within 15 msec when the operating conditions are changed (i.e.
when the reference velocity is changed from speed 0 Rads−1 to a non zero
velocity or when the friction mz has changed).

• The motor angular velocity should not exceed 12, when the test is enabled.
Rad s−1 .

The structure of the HIL is depicted in Figure 14. All the tester tool parts
except the interfaces have been implemented using XSG. The speed of the con-
tinuous part is degraded by the performance of ADC and DAC. The problem
with DAC can be partially solved while implementing Pulse Width Modulation
(PWM) in FPGA for a specific controlled system (e.g. in the servo-motor case
study, the motor behaves like a low pass filter with a time constant which deter-
mines the period of the PWM). The problem with ADC, in the servo-motor case
study, can be solved by implementation of the IRC speed detector in FPGA.
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Figure 14: Case study 2: Tester structure

The controllers are implemented using the Matlab/Simulink discrete transfer
function blocks. They are directly connected to the tester tool via XSG in/out
interfaces.

The tester tool consists of the parts depicted in Section 2. All the necessary
details of each part are given in the following paragraphs.

The System model includes the Reference block and Motor block. The Ref-
erence block sets up the required motor angular velocity ωref . The Motor block
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Figure 15: Case study 2: Properties timed automata

influences the tested controller. It is given as a system with time varying pa-
rameters. Based on the test executor structure (may be conveniently depicted
by timed automaton), the test executor changes parameters of the transfer func-
tion from (4) to (5). The Motor transfer function sampling period is set up to
1 µsec (using XSG up sampling and down sampling blocks).

The Tester consists of a Test case executor and three Property blocks to
be verified. The Test case executor simulates a situation when the motor is
started from 0 Rad s−1 to ωref = 10 Rad s−1 at 10 msec (see Figure 16, the
upper chart). The motor brakes are applied so the friction at the motor shaft is
mz = 10−4 Nm at 60 msec. Testing is finished at 110 msec. The motor behavior
within the first interval [10, 60) msec is given by Equation 4, the behavior in
the interval [60, 110] msec is given by Equation 5. Otherwise the behavior is
given by G(z) = 1.

For that purpose, the Test case executor simultaneously enables the Refer-
ence block to propagate the ωref to the tested controller, it enables Parameters
1 and it activates the Property 1 and Property 3 blocks as well (see Figure
16, the bottom chart). At 60 msec the Test case executor switches the motor
parameters from Parameters 1 to Parameters 2, and consequently the Property
2 block is activated.

The properties to be verified are derived from the case study requirements.
Each property is implemented using timed automata as presented in Subsec-
tion 2.1. The Property block sampling period is 100 µsec. The description of
each property and equivalent timed automata are the following:

Property 1 “The motor angular velocity is always stabilized in the interval (9,
11) Rad s−1 within 15 msec.” Figure 15a shows the property automaton.
The property test is activated at 10 msec and it is analyzed at 60 msec.

Property 2 “The motor angular velocity is always stabilized in the interval (9,
11) Rad s−1 within 15 msec.” The property timed automaton is identical
with the property 1. The property test is activated at 60 msec and it is
analyzed at 110 msec.
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Property 3 “The motor angular velocity does not exceed 12 Rad s−1 .” The
automaton is shown in Figure 15b. The property test is activated at
10 msec and it is analyzed at 110 msec.

The controllers under test are given by the transfer functions GC1(z) and
GC2(z) shown in Equation 6 and 7, respectively.

The test results for controller 1 are depicted in Figure 16. The upper plot
shows the motor input voltage u given by the controller operation, the motor
angular velocity output ω and reference velocity ωref . The bottom plot depicts
the Verdict interface output.
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Figure 16: Case study 2: HIL inputs and outputs for controller 1

The model checking results are as follows:

Property 1 The property is satisfied. As presented in Figure 16, the controller
controls the velocity to the required reference within 15 msec from the
beginning of the test. The test of property 1, enabled within the time
interval [10, 60) msec, shows the property is satisfied, i.e. the location
not satisfied in Figure 15 is not reached.

Property 2 The property is satisfied. Although the motor angular velocity is
influenced by friction to the shaft at 60 msec, the controller is able to keep
the velocity at the required value. The test of property 2, enabled within
the time interval [60, 110] msec shows that the property is satisfied.
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Property 3 The property is satisfied as well. During the test interval
[10, 110] msec the motor velocity does not overshoot the 12 Rads−1boundary.

The test results for controller 2 are presented in Figure 17. The property
results are the following:
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Figure 17: Case study 2: HIL inputs and outputs for controller 2

Property 1 The property is not satisfied. As presented in Figure 17, the con-
troller is not able to stabilize the required velocity. The test of Property
1, enabled within the time interval [10, 60) msec, shows the property is
not satisfied.

Property 2 The property is not satisfied. The controller is not able to operate
the velocity in the required interval. The test of Property 2, enabled
within the time interval [60, 110] msec shows the property is not satisfied
because the value is below the required value interval (9, 11) Rad s−1 .

Property 3 The property is not satisfied as well. During the test interval, the
velocity overshoots 12 Rad s−1 boundary at 4 msec from the beginning of
the test.

3.3 Paper machine case study

This subsection deals with a case study focusing on the scalability and flexible
reuse of the components in the second case study.
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The Fourdrinier Machine [6] is the basis for the most modern paper making,
and it accomplishes all the steps needed to transform a source of wood pulp
into a final paper product. Figure 18 shows a simplified structure of all major
sections of the machine.

Our case study is related to the dryer section which dries the wood pulp as
it turns into pure paper. The dryer section includes several tens of steam cans.
The whole machine is actuated by several different motors. The line speed is
almost always above 3 meters per second, and may exceed 5 meters per second.

Dryer Section
Calendar Stack

Flow Spreader

Press Section

Fourdrinier Table

Heat Box Reel

Figure 18: Fourdrinier paper machine

The HIL tester case study configuration can be kept in the same manner as
the one depicted in Figure 14. It consists of a system model including 10 motors
and a set of property observers as presented previously. The main task is to
verify a set of controllers of angular velocity. Controllers are set the same as
controller 1 in case study 2. The motors can be divided into 3 classes depending
on their mechanical and electrical parameters, namely on J , the equivalent
moment of inertia of the motor, and a load referred to the motor shaft.

It is necessary to verify the same properties as in the second case study. In
addition we need to verify:

• The motor angular velocity should not exceed an angular velocity of any
other motor by more than ±0.1 Rad s−1 (±5.73 degrees).

Therefore:

Properties 1, 2 and 3 are the same as properties 1, 2, and 3 in the second
case study.

Property 4 “Angular velocity difference of the motor x and of the motor y

does not exceed range ±0.1 Rad s−1 ”. The test begins when the friction
mz is changed (60 ms).

The timed automata observers for properties 1, 2 and 3 were shown in Fig-
ure 15. A general timed automaton of property 4 is depicted in Figure 19. Based
on the three motor classes, three property 4 observers have been designed.

The tester results are depicted in Figure 20 and 21. Figure 20 shows the
step response for the three classes of the motors in the upper chart. The results
of properties 1,2, and 3 in the chart below are grouped due to the same tester
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Figure 19: A general timed automaton of the property

results for all motor classes. Properties 1, 2, and 3 are satisfied for all tested
controllers.

Figure 20 presents the results of property 4. The upper chart presents veloc-
ity difference ∆ωx−y

between motor class x and motor class y. The lower chart
shows results of property 4 for motor class 1 and 2 (denoted Property 4 1-2), 2
and 3 (denoted Property 4 2-3) and finally 3 and 1 (denoted Property 4 3-1).

Property 4 1-2 for motor class 1 and 2 is satisfied. Angular velocity difference
is less than 0.1 Rad s−1 .

Property 4 2-3 for motor class 2 and 3 is satisfied. Angular velocity difference
is less than 0.1 Rad s−1 .

Property 4 3-1 for motor class 3 and 1 is not satisfied. Angular velocity
difference exceeds 0.1 Rad s−1 at 63 msec.
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Figure 20: Controller 1 test, property 1, 2 and 3
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3.3.1 Implementation notes

This subsection summarizes the FPGA utilization for the proposed motor case
studies while using the following design tools: Matlab 7.1.0.246 (R14) Service
Pack 3, Xilinx System Generator v8.2 and Xilinx ISE 8.2.03i.

Utilization of the FPGA resources (Slices, Flip Flops, Look-Up-Tables) is
shown in Table 1. Column CS2 corresponds to the complete HIL tester for the
second case study. Column CS2+ extends the previous case by two additional
motors. Column CS3 corresponds to the complete HIL tester for the third case
study including 10 motors with controllers and observers of 4 properties.

CS2 CS2+ CS3
Slices 4258 (10%) 11289 (26%) 36296 (86%)
Slice Flip Flops 444 (1%) 778 (1%) 1947 (2%)
4 input LUTs 5456 (6%) 13991 (16%) 43931 (52%)

Table 1: FPGA utilization summary (in percents of XC4VFX100 resources)

CS2 fits into an XC4VFX12 chip, on the other hand, CS3 requires an
XC4VLX100 or XC4VFX100 chip family.

The resources of the FPGA for the continuous system model (as shown in
Figure 7) are consumed in linear proportion to the system order including the
FPGA interconnections relating each delay block (z−1) with one previous block,
one subsequent block, system output and the feedback. Also in the discrete
part (as shown in Figure 3), the resources of the FPGA are consumed in linear
proportion to the number of states and variables in the automaton.

Table 1 (summarizing sparsely interconnected systems) shows that, due to
the modular structure, the FPGA utilization grows proportionally to the num-
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ber of systems (both continuous and discrete event ones). The number of in-
terconnections relates to the structure of the system, which is under designer’s
control. The width of the interconnection data buses can be set according to
the application needs using bit-exact simulation in Matlab/XSG (considering
influence of 8/16/24/32 bit arithmetic on the precision of the FPGA imple-
mentation) and verification in UPPAAL (gives the possibility to find out the
minimum/maximum value of the particular integer variable).

4 Conclusion

The tester tool shown in this paper enables one to prove the quality of the de-
veloped controllers without them actually being assembled in the final product.
Testing the considered class of applications requires a high sampling frequency,
low jitter and scalability. Therefore, we have chosen an FPGA platform, syn-
chronous logic hardware, capable of achieving a high degree of parallelism.

Due to the hybrid nature of industrial applications, the presented method-
ology combines discrete event systems and continuous systems using timed au-
tomata and transfer function representation.

The sampling period of the tester tool is given by the length of the FPGA
clock cycle and by the number of the FPGA clock cycles needed to evaluate
the continuous part and the discrete part. The shortest possible FPGA clock
cycle is about 50 nsec, assuming a continuous system of the third order and
a 24-bit fixed point arithmetic unit on Xilinx Virtex 4. The existence of the
urgent locations and channels in the timed automaton requires repetitive calls
of the corresponding timed automaton function, which gives the number of
the FPGA clock cycles needed to evaluate the state of the timed automaton.
In normal applications (free of timed automata with long sequences of urgent
locations), one can easily approach the sampling period in hundreds of nsec. If,
an even shorter sampling period is required, then it is necessary to change the
quantization of the continuous values to a smaller set of discrete values, that
can be handled by smaller arithmetic units leading to a shorter clock cycle.

Moreover, using FPGA, used as the synchronous logics, jitter is less than
one clock cycle. The scalability of our tester tool is given by the size of the
FPGA only. Due to the physical parallelism, the blocks do not influence each
other.

On the other hand, when time and continuous variables require wide data
buses, the number of FPGA interconnections increase and becomes a limiting
factor (both for system model description and tested properties) of the presented
method.

In the future, we will focus on the interfaces, namely improvement of ADC
and DAC. Further work will also deal with a dynamic reconfiguration of the
FPGA that can be considered for on-line execution of test cases and automation
of the testing process. Since we are using the same formalism in the discrete-
event system part, one may also consider to join the automatic test generation
by UPPAAL-COVER and the test execution in our tool running at a very high
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time resolution.
Currently, we are using a Linux OS running on the PowerPC hard core

hosted on the same chip. This enables us to increase the flexibility and divide
the problem into a HW (set of FPGA coprocessors) and SW part.

We are also considering using Allen’s interval algebra [1] for the generation
of the test properties. It proposes thirteen basic relations between the time
intervals and the operations on them. The basic relations are precedes, meets,
overlaps, finished by, contains, starts, equals, started by, during, finished, over-
lapped by, met by and preceded by. Operations on relations are complement,
composition, converse, intersection and union. The test generation approach
based on this algebra has been presented in [10], where it is used for SysML
temporal observer design.
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