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Abstract—Some digital signal processing applications can be
executed faster by moving parts of application implementation
into hardware. Platforms, like Xilinx Virtex-4 4VFX12, allow
a user to run software in embedded processor and offload
computations to the set of hardware modules. The article deals
with optimal schedule synthesis techniques for tasks executed
on such platform using Priced Timed Automata and UPPAAL
CORA tool. It shows a schedule synthesis techniques minimising
makespan or sum of completion times criterion. Moreover,
it presents a synthesis methodology considering a fraction of
resource capacity, called resource budget and maximization of
processor utilization for tasks with bounded period. Case studies
and FPGA experiments are finally presented.

I. INTRODUCTION

Some software applications can be executed faster by

moving of application implementation into hardware. There

are some platforms, like Xilinx Virtex-4 4VFX12 [16], that

allow user to run software in embedded processor and offload

computations to the set of hardware modules in user defined

coprocessors. These platforms are typically used for digital

signal processing (DSP) applications, were complex computa-

tion is required [7].
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Fig. 1. An application under consideration

Let us suppose the software application running on the

embedded processor, that shares a set of co–processors im-

plemented in the hardware. The problem is how to effectively

implement the set of tasks in that generic resource.

The article deals with schedule synthesis techniques that

find an optimal task assignment on the Field-Programmable
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Gate Array (FPGA) platform using timed automata. We show

a schedule synthesis techniques minimising schedule length

Λmax, called makespan, and sum of completion times
∑

Λj

criterion (denoted Cmax and
∑

Cj in [6] notation). Moreover,

we present a synthesis methodology to guarantee the resource

budget [11], [10] and a methodology to maximize the proces-

sor utilization for tasks with bounded period.

The scheduling problems considered in the article are char-

acterised by set S = {t1, t2, ...tn} of n tasks with precedence

constraints, a set of dedicated processors P . The computation
time of task tj is Ctj

. The study proposes both sporadic and

periodic task scheduling synthesis.

For the schedule synthesis techniques UPPAAL-CORA tool

is used [5]. It implements a branch and bound algorithm [6] for

cost–optimal reachability analysis using Linearly Priced Timed

Automata (LPTA). LPTA is a priced transition system and it

is an extension of timed automata (TA) to optimal scheduling

and planing problems.

The article is structured as follows. Subsection I-A surveys

the related work. The proposed schedule synthesis techniques

are presented in Section II. Schedule synthesis that minimise

makespan criterion is described in Subsection II-A, minimisa-

tion of the sum of completion times is shown in Subsection

II-B. How to find the optimal schedule of periodic tasks,

sharing coprocessor resources, with respect to a processor

budget is given in Subsection II-C. Finally, the maximization

of processor utilization for tasks with bounded period is shown

in Subsection II-D. An experiment is shown in Section III.

A. Related work

Authors in [12] show a methodology for time optimal

production scheme generation using timed automata and

OpenKronos [14]. The optimal production schemes are gener-

ated using the algorithms for reachability analysis of timed

automata implemented in OpenKronos. In compare to our

approach the application paper does not propose periodic task

scheduling synthesis.

Job-shop scheduling problem can be modelled as a special

class of acyclic timed automata, see [1]. Finding an optimal

schedule corresponds to the search of the shortest (in term

of elapsed time) path in the timed automaton state space.

The approach of the finding of the shortest paths in timed

automata is similar to the approach presented in our article.



Nevertheless, our case is not job–shop problem, since some of

the application tasks are processed in more than one processor

simultaneously.

Similar comparison can be provided in the case of the

non-preemptive scheduling problem for job-shop scheduling,

solved in [8], [9]. These techniques specify pre-defined goal

locations of an automaton and use reachability analysis to

construct traces leading to the goal locations. The traces are

used as schedules.

TIMES tool [4] based on reachability analysis of timed au-

tomata supports the following scheduling policies: rate mono-

tonic, deadline monotonic, fixed-priority scheduling (with user

defined priorities), earliest deadline first (EDF), and first come

first served (FCFS). All scheduling policies support preemptive

or non-preemptive task sets. In our case we generate an off–

line schedule.

A scheduling framework integrating specification and

schedule generation for real–time systems is presented in [3].

It proposes cyclic or sporadic task scheduling analysis using

timed Petri nets and timed automata. It includes precedence

constraints and resource sharing. Using the framework, an on–

line non–preemptive schedule can be generated. Our approach

is the timed automata based only, we are able to produce off-

line scheduler.

From the budget reservation point of view of, [2] proposes a

Constant Bandwidth Server (CBS). It is an on-line scheduling

methodology reserving a fraction of the processor bandwidth

to each task. It integrates hard and soft real-time computing in

a single system, under the EDF scheduling algorithm. Method

to resource budget bound in rate monotonic scheduling envi-

ronment has been proposed in [10].

B. Contribution

The article contributions are the following: (a) Implementa-

tion of schedule synthesis techniques based on timed automata

into FPGA platform, (b) approach to maximization of proces-

sor utilization for tasks with bounded period and (c) schedule

synthesis technique of periodic tasks, sharing a co-processor

resources, with respect to a processor budget.

II. SCHEDULE SYNTHESIS TECHNIQUES

This section presents a set of scheduling techniques, based

on timed automata, for a processor-based system presented

above. For better understanding of the problem under con-

sideration the target platform and the software configuration

should be explained.

As presented above we are interested to the platforms that

combine embedded processor and FPGA. The Xilinx Virtex-4

4VFX12 platform, see Figure I, provides one PowerPC 405 32-

bit RISC processor core [15] and FPGA in single device both

interconnected via special interfaces as Auxiliary Processor

Unit interface (APU) [15].

The APU enables tight integration between an application-

specific function and the processor pipeline. It allows a de-

signer to extend native PowerPC 405 instruction set with a

custom instruction called Fabric Co–processor Module (FCM).

The FCM interacts with PowerPC through the APU con-

troller using a set of PowerPC-FCM instructions. APU con-

troller decodes those instructions, it determines what resources

are needed and passes required information from PowerPC

to FCM and vice versa. For example, the APU controller

determines if an instruction is a read, a write, if it needs source

data from General Purpose Register, etc.

The PowerPC instruction set is extended. There are three

different instruction classes defined by their interaction with

the normal processor pipeline execution: Autonomous, Non–

Autonomous Blocking and Non–Autonomous Non–blocking

instruction class. In our article the Non–Autonomous Blocking

instruction class si supposed. This class of instructions stall

the pipeline until the PowerPC-FCM instruction is done. For

example an instruction that takes data from the FCM and

writes it to a PowerPC register. Such instruction that cannot

be predictably aborted and later re-issued must be blocking.

Our system configuration consists of PowerPC running a

multi–task application sharing a set of FCM in FPGA, e.g.

see Figure 2.
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Fig. 2. Problem structure

The problem under consideration is to find the optimal

schedule of a given task set interacting with a set of co–

processor modules. The optimal schedule result is derived

from the best cost diagnostic trace given by timed automata

verification using UPPAAL CORA tool.
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Fig. 3. Set of 3 tasks executed on dedicated processors

A. Minimisation of makespan

The subsection shows how to find the optimal schedule with

respect to makespan criterion. Let us have a processor running

multi–task application consisting of 3 non–periodic tasks. Each

task is sharing two FCMs via an APU controller, see Figure 2.



Set of 3 tasks executed on dedicated processors is shown in

graph in Figure 3.
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Fig. 4. Abstracted set of 3 tasks executed on dedicated processors

Execution of each task, identified by an id, is divided into

five parts. Each part notation is part label/Ctid
/processor.

At the beginning, the data to the FCM are pre–processed

in PowerPC, represented by part labelled t{id},1. Further the

processor interacts with the FCM via APU controller, the FCM

decodes the instruction and the data are loaded into FCM, part

label is t{id},2. When the APU controller operation is finished

the FCM function is executed, t{id},3 label. When the FCM

function is finished, the result data are prepared to be stored

back to the processor application via APU, t{id},4 label. The

resulting data are post–processed in processor, label t{id},5 .

Due to Non–Autonomous Blocking instruction, used for an

interaction with FCM, the set of task can be abstracted, see

Figure 4. Since the FCM instruction can not be aborted by

any processor activity, the APU operation t{id},2 and t{id},4

are integrated in part t{id},1 and t{id},5 respectively. For that,

the possible APU model is neglected in the system.

Timed automaton of the processor, the task, and the FCM

are presented in Figure 5 a), b) and d). Due to the makespan

criterion the cost is computed separately in Schedule detector

timed automaton (Figure 5 c)).

To find the optimal schedule with makespan criterion, the

CTL* [5] property E<> SD.ScheduleFound should be

satisfied. The optimal schedule can be derived from the best

cost diagnostic trace. The optimal schedule is depicted in

Figure 6. The best cost is equal to 22 time units so the

makespan is equal to 22.

The proposed result can be directly implemented into

PowerPC using e.g ANSII-C or PowerPC assembler. The

accordant dispatcher task will schedule each application task

as presented in experiment section III.

ILP approach: The problem studied in this subsection,

minimization of Λmax, can be also conveniently formulated

as Integer Linear Programming problem using the approach

adopted in [13]. This approach is based on so called scheduling

of multiprocessor tasks with general precedence relations.

Timed automata ILP by GLPK solver
[sec] [sec]

3 tasks 0.2 0.1
12 tasks 120 unsolved

TABLE I

ILP AND TA APPROACH PERFORMANCE COMPARISON OF Λmax

RunningIdle

procDone?

procRun?

a) Processor

WaitStoreData

Busy
comp_time <= C

Idle

fcmDone[ID]!

comp_time >= C

fcmRun[ID]?
comp_time = 0

b) FCM

ScheduleFound

Computed

cost’==1

finished >= NUMOFTASKS

c) Schedule detector
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Fig. 5. Λmax problem, timed automata
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The optimal schedule is same as presented in Figure 6,

nevertheless Table I compares performance of both approaches

achieving the same objective criterion. As presented, for 12

tasks the ILP is not able to reach the optimal solution.
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Fig. 7. Sum of completion times problem, task timed automaton



B. Minimisation of sum of completion times

This subsection presents, how to find the optimal schedule

with respect to the sum of completion times criterion.

The demonstrated configuration is similar to the one pre-

sented for makespan synthesis. The dedicated task set is

depicted in Figure 4. Timed automaton of the processor and

the FCM have been presented in Figure 5 a) and b).

Due to the sum of completion times criterion the cost is not

computed using Schedule detector automaton, but in every task

location where time behaviour is modelled, except the location

Terminated (task is finished there). For that, the task automaton

has to be modified, see Figure 7.

To find the optimal schedule with sum of completion

times criterion, the property E<> t1.Terminated &&
t2.Terminated && ... && tn.Terminated should

be satisfied. The optimal schedule can be derived from the

best cost diagnostic trace. The optimal schedule is the same

to the schedule depicted in Figure 6. The best cost of sum of

completion times is 22.

WaitNextPeriod
tperiod <= PERIOD

NextPeriod

StoreFromFCM

APUcomp
comp_time <= APUC

Terminated

ReleaseProcessor_

PostComp
comp_time <= InstrC

ReleaseProcessor

Waiting

LoadToFcm
comp_time <= APUC

PreComp

comp_time <= InstrC

Ready

tperiod == PERIOD
tperiod = 0

counter++

fcmDone[fcmID]?
comp_time = 0

procDone!

comp_time >= InstrC

procRun!

procDone!

comp_time == APUC
comp_time = 0

comp_time == APUC
fcmRun[fcmID]!

comp_time == InstrC
comp_time = 0

procRun!
comp_time = 0

a) Task

RunningIdle
cost’==1

procDone?

procRun?

b) Processor

WaitNextPeriod
tperiod <= PERIOD

NextPeriod

Terminated

Busy
comp_time <= CTB

Idle

tperiod == PERIOD
tperiod = 0

counter++

comp_time == CTB
procDone!

procRun!
comp_time = 0

c) Required budget task

Fig. 8. Budget guarantee timed automata

C. Guarantee of budget available on PowerPC

This subsection presents a technique how to find the optimal

schedule of periodic tasks, sharing the FCM resources, with

respect to PowerPC processor budget.

First we will describe, how to model periodic tasks and

then, the scheduling synthesis follows.

Periodic task modelling: An example of the periodic

task is presented in Figure 8 a). The period is measured by

clock variable tperiod and by constant PERIOD, see locations

WaitNextPeriod and NextPeriod. The periodical task behaviour

is given by the transition Terminated → WaitNextPeriod.

Schedule synthesis: Due to periodic behaviour of each

task it is supposed that the schedule is the same for every

macro period (Tmacro). The Tmacro is given by interval from

the time when all tasks are in their location NextPeriod to the

next closest time when all tasks are again in the same location.

To identify an existence of a Tmacro, the CTL property E<>
t1.NextPeriod && ... && tn.NextPeriod &&
global timer > 0 should be satisfied. (global timer

is a clock variable used as global timer). The Tmacro is given

as Tmacro = Tt{id}
∗countert{id}

where id is a task identifier,

the Tt{id}
is task period, given by PERIOD constant, and the

countert{id}
is value of task cycles, derived from the TA

counter variable.

Case study: The demonstration configuration consists of

a processor running two tasks t1, t2 each using its FCM. The

periods are Tt1 = 14 and Tt2 = 56. The required budget is

given by its period Ttb
= 7 and the computation time Ctb

= 2.
The set of tasks is shown in Figure 9.
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FCM2

tb,1/2/PowerPC

Parameters: Tt1
= 14, Tt2

= 56, Ttb
= 7

Fig. 9. Set of 3 tasks executed on dedicated processors, including required
budget task tb
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The required budget is modelled as a periodic task tb,
called required budget task, that occupies the processor for

computation time comp time equal to constant CTB. The Ttb

is equal to constant PERIOD. The task model and the budget



model are presented in Figure 8 a) and c). The processor

automaton is shown in Figure 8 b). The cost variable is used

to define the processor utilization.

To find the optimal schedule, the property

E<> t1.NextPeriod && t2.NextPeriod &&
ReqBudget.NextPeriod && t2.counter==1 should

be satisfied. The optimal schedule can be derived from the

best cost diagnostic trace. The optimal schedule is depicted

in Figure 10. Also this schedule can by directly implemented

to PowerPC.

D. Maximization of processor utilization for tasks with

bounded period

This subsection presents a technique that finds the optimal

schedule for periodic task set, sharing one processor, where

period of each task is given by lower and upper bound. The

aim is to find each task period so the schedule is feasible

and to maximize the shared processor utilization, within the

meaning of
∑

C
T
.

Case study: Let us suppose a system consisting of set

of periodic tasks t1, t2 and t3. Tasks computation times are

Ct1 = 4, Ct2 = 3 and Ct3 = 3. Admissible tasks integer value
of periods are defined as follows Tt1 = 〈5; 7〉, Tt2 = 〈13; 15〉
and Tt3 = 〈54; 56〉.
Timed automaton of Task is presented in Figure 11 a). It

consists of WaitNextPeriod, NextPeriod, Ready and Running

locations. WaitNextPeriod, NextPeriod locations set the task

period using nextPeriod[taskID] channel. Ready location

waits for the processor timed automata when it is idle (channel

procRun). The Running location models the task computation

time given by constant C and its processor release (channel

procDone).

The processor automaton is the same the one presented in

Figure 8 b).
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b) Observer for interval 〈m; m + 2〉

Fig. 11. Optimal period timed automata

The observer model ( see Figure 11 b) ) is used to set one of

the possible task periods from the given period interval. Each

observer belongs to one task model. It consist of the initial–

committed location Choose with several output transitions that

are not constrained. Therefore, the model can choose one of

the possible transitions at the system initialisation. Locations

T1 ... Tn and subsequent self–loop transition set the related

task period. The period in this structure is set by clock variable

tperiod. Each loop period is given by an integers from task

period interval, the loop activates corresponding task using the

nextPeriod[taskID] channel.

The depicted example of the observer is defined for interval

〈m; m + 2〉. If the m is equal to 5, the possible modelled

period is Ttid
∈ {5, 6, 7}.
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Fig. 12. Optimal schedule for taskset with bounded periods

To find the optimal schedule, the property

E<> t1.NextPeriod && t2.NextPeriod &&
t3.NextPeriod && global timer > 0 has to

be satisfied. Each optimal period value is given by the

selection of period branch of the accordant observer timed

automaton, where the selection is based on the result of the

best cost diagnostic trace. For the case study it is Tt1 = 7,
Tt2 = 14 and Tt3 = 56.
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Fig. 13. Hardware structure

The optimal schedule is depicted in Figure 12. The proces-

sor utilization mentioned is 94.96% because the the sum of

the processor idle time cost = 9, and the makespan is 56. For
that 100− 9 · (56/100) = 94.96%.

III. EXPERIMENTS ON FPGA PLATFORM

The section shows the use of the minimisation of makespan

schedule technique directly at Xilinx Virtex-4 4VFX12 plat-



form. Due to the FPGA architecture the application is divided

into FCMs in FPGA (hardware) and dispatcher task running

on PowerPC (software).

The hardware structure (Figure 13) includes 3 FCM arith-

metic units. Each unit increments an input number received

from PowerPC and delays the output for user defined time.

The input data from APU are stored into buffer B1. The output

data to be uploaded by APU are stored in one-place buffer B2.

Each FCM works as a delay module set to 10000 ns.
The application in PowerPC uses the scheduling technique

presented in subsection II-A. The system parameters are

Ct1,1
= Ct2,1

= Ct3,1
= 1000 ns, Ct1,3

= Ct2,3
= Ct3,3

=
10000 ns and Ct1,5

= Ct2,5
= Ct3,5

= 1000 ns.
Optimal schedule with makespan 24000ns and the dis-

patcher task code, derived from the schedule, are depicted in

Figure 14. The FPGA behavior is shown in Figure 15. Each

FCM occupation is visible in fcmc1 busy and fcmc2 busy line.

0 0.5 1 1.5 2 2.5

x 10
4

PowerPC

FCM1

FCM2

t

t
1,1

t
1,3

t
1,5

t
2,1

t
2,3

t
2,5

t
3,1

t
3,3

t
3,5

1 void dispatcherTask(){
2 // Reset all FCM units
3 fcm_reset();
4 // Write data into FCM1 and FCM2
5 fcm_write(FCM1, src[0]); //t_{1,1}
6 fcm_write(FCM2, src[0]); //t_{2,1}
7 fcm_wait(FCM1); //t_{1,5}
8 dst[FCM1] = fcm_read(FCM1); //
9 fcm_write(FCM1, src[0]); //t_{3,1}
10 fcm_wait(FCM2); //t_{2,5}
11 dst[FCM2] = fcm_read(FCM2); //
12 fcm_wait(FCM1); //t_{3,5}
13 dst[FCM1] = fcm_read(FCM1); //
14 }

Fig. 14. Optimal schedule and dispatcher task listing

Fig. 15. Modelsim FPGA simulation

IV. CONCLUSION

Based on Priced Timed Automata (UPPAAL CORA tool),

the article shows a schedule synthesis techniques minimising

makespan and sum of completion times criterion. Moreover,

it presents a synthesis methodology to guarantee the budget

available on processor and maximization of processor uti-

lization for tasks with bounded periods. The study considers

that tasks are either executed once or they are periodic. A

simple experiment, that shows an implementation of a given

task schedule directly into presented FPGA platform, is finally

presented.

Complexity of the state space given by timed automata is

well known drawback. It can be solved by simplification of

the models as presented in subsection II-A.

In this work, the real-time operating system behaviour is

neglected. In further work we would concentrate on synthesis

and implementation of applications running on a real-time

operating system (e.g. Linux with fully preemptive patch) with

the FCM co–processor.
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