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Abstract—This work proposes a distributed algorithm for the
energy optimal routing in wireless sensor network. The routing
problem is described as a minimum-cost multi-commodity net-
work flow problem by Linear programming. Based on the convex
programming theory we use the dual decomposition theorem to
derive the distributed algorithm. The algorithm computes the
energy optimal routing in the network without any central node
or the knowledge about the whole network structure. Each node
only needs to know the flow which is supposed to send or receive
and the costs and capacities of the neighboring links.

I. INTRODUCTION

A. Motivation

Our work is focused on a distributed algorithm for data flow

routing through the multi-hop static network. An example of a

target application is a network periodically sensing some con-

sumption variables (like gas consumption, water consumption,

etc.) in large objects. Each sensing device produces a data

flow of a particular volume, which is supposed to be routed

through the network. The objective is to optimize the energy

consumption for the data transfer (minimal possible energy

consumption), while constrained by communication capacities

for each communication link in the network (maximum data

volume which can be transferred trough the link per a time

unit).

There are many communication protocols designed for

the data routing in wireless sensor networks however, to

achieve the energy optimal routing which complies with the

communication capacities, the system usually needs a central

computational point with the knowledge of the actual network

structure and parameters (e.g. [1]). The existence of such a

computational point decreases the robustness of the system

against the network damage and increases the communication

load of the network. Furthermore, the routing of such infor-

mation (the actual network structure and parameters) has to

be solved in the case of the centralized algorithm.

In this paper, we propose a distributed algorithm, which

computes the energy optimal routing without the need of any

central computational or data point. The algorithm supposes

that each node knows only the capacity and the cost (energy

consumption per sent data unit) of the outgoing communica-

tion links of the node and the data which it is supposed to send

and receive. The main purpose of this paper is to present the

principle of new distributed routing algorithms rather than to

present an application ready algorithm. We believe that the

presented approach can lead to a new efficient and highly

adaptive routing algorithms for sensor networks.

B. Related Works

Traditionally, the routing problems for data networks have

often been formulated as linear or convex multi-commodity

network flow routing problems e.g. [2], [3], [4] for which many

efficient solution methods exist [5], [6], [7], [8]. One of the

advantages of this method is that several cost functions and

constraints can be put together (e.g. different types of capacity

and energy consumption constraints, Real-time constraints,

etc.). Using the same underlying model, we can easily combine

the solution of different works focused on partial problems.

There are several works, which focus on the decomposition

of network problems described by convex optimization. A

systematic presentation of the decomposition techniques for

network utility maximization (NUM) is presented in [9], [10],

[11]. The authors present several mathematical approaches to

structural decomposition of the NUM problems and classify

them. In [12], [13], [14] the authors use the dual decompo-

sition to decompose cross-layer optimization problems into

optimization of separated layers. The presented approaches

lead to structural decomposition (e.g. to routing layer, capacity

layer...) which is not suitable for derivation of the in-network

distributed algorithm.

The decomposition of an optimal routing problem is pre-

sented e.g. in [15], [16], where the authors have focused

on the node-path formulation of the routing problem and

use the dual decomposition to find the distributed algorithm.

The presented algorithms can be described as a negotiation

between the source node and the path load. This approach is

suitable for problems with a small number of communication



paths. However, in sensor networks routing problems, where

many possible communication paths exist, we have to find a

different way to distribute the routing algorithm. Moreover,

these algorithms are limited to a strictly convex cost functions

and fail in the case of linear cost functions.

C. Contribution and Outline

The main contributions of this paper are:

1) Introduction of a new distributed algorithm based on

a dual decomposition of the node-link formulation of

the routing problem. (The existing approaches use only

the node-path formulation, which leads to different al-

gorithms)

2) Presentation of an approach to distribute a general

linear problems by dual decomposition (according to our

knowledge, all works using the dual decomposition on

the routing problems are limited to strictly convex cost

functions and fail in the linear case).

The paper is organized as follows: Section II briefly de-

scribes the multi-commodity network flow model. In Section

III the distributed algorithm and its derivation are presented.

An example and computational complexity experiments are

given in Section IV. Section V concludes the paper and

mentions the future work.

II. MULTI-COMMODITY NETWORK FLOW MODEL

In this section, we briefly summarize the basic terminology

and specify the multi-commodity network flow model. For

more details see e.g. [2], [5], [1].

The network is represented by an oriented graph, where

for each device able to send or receive data, a node of the

graph exists. The nodes are labeled as n = 1, . . . ,N. Directed

communication links are represented as ordered pairs (n1,n2)
of distinct nodes. The links are labeled as l = 1, . . . ,L. We

define the set of the links l leaving the node n as O(n) and

the set of the links l incoming to node n as I (n). The network

structure is described with an incidence matrix A′ in the node-

link form.

A′
n,l =







1, l ∈ I (n) (link l enters node n)

−1, l ∈ O(n) (link l leaves node n)

0, otherwise

(1)

By m we denote an index of the communication demand

and by M we denote set of all communication demands.

The communication demands can be seen as flow of various

commodities incoming/leaving the network in some nodes.

The flow of each communication demand has to satisfy the

flow conservation law at each node (for given commodity the

sum of flow incoming to the node is equal to the sum of

flow leaving the node). A′~x(m) =~s
(m)
out −~s

(m)
in , ∀m ∈ M . Where

the column vector ~s
(m)
in ≥~0 denotes the flow coming into the

network, the ~s
(m)
out ≥~0 denotes the flow leaving the network

and the ~x(m) ≥~0 denotes the flow routed through the network

for demand m. Notice, that a multi-source multi-sink problem

can be described in this way.

Total volume of the flow in the links over all communication

demands has to satisfy the capacity constraint ∑m∈M ~x(m) ≤~µ .

Where ~µ ≥~0 is column vector of the links capacities.

In summary, the network flow model imposes the following

constraints on the network flow variables ~x(m):

A′~x(m) = ~s
(m)
out −~s

(m)
in

∑
m∈M

~x(m) ≤ ~µ
∀m ∈ M

~x(m) ≥~0 ∀m ∈ M

(2)

The task of the total energy minimization is to minimize the

cost function fcost =~c′
T

∑m∈M ~x(m) by setting the flow vector

~x(m) for all m ∈ M subject to the system of inequalities (2).

The vector ~c′ is a column vector of the energy consumption

per sent data unit.

III. DECOMPOSITION OF THE ROUTING PROBLEM

Without lost of generality, we rewrite the optimal routing

problem into the equality form for more transparent presenta-

tion.
min
~x

~cT~x

subject to:

A~x = ~b

~x ≥ ~0

(3)

Where

A =











A′ 0 0 0

0
. . . 0

...

0 0 A′ 0

I I I I











~b =













~s
(1)
out −~s

(1)
in

...

~s
(M)
out −~s

(M)
in

~µ













(4)

~x =











~x(1)

...

~x(M)

~z′











~c =











~c′

...
~c′

~0











(5)

where I is the identity matrix.

To decompose the routing algorithm, we use a gradient

optimization method to solve its dual problem. However, the

linearity of the cost function of the problem (3) would cause

oscillations in the gradient algorithm and prevents to find the

optimal solution. Therefore, we use the proximal-point method

(for details see [5]) to modify the problem into a strictly

convex form, which allows the usage of the gradient method.

Using the proximal-point method the modified problem is:

min
~y

min
~x

~cT~x+ ε(~x−~y)T (~x−~y)

subject to:

A~x = ~b

~x ≥ ~0

(6)

where ε > 0.

Please notice that the set of optimal solutions for the

problem (6) is the same as for the problem (3). For optimal

solution of the problem (6) holds~x=~y. In this way the routing



problem has been separated into two nested subproblems. The

internal subproblem is minimization over the variable ~x and it

is strictly convex. The outer subproblem minimize the internal

one by the proximal-point variable ~y.

A. Dual Problem

To solve the internal subproblem of (6) (minimization over

the variable ~x) we present its dual problem, which allow

to derive the distributable gradient algorithm. According to

Slater’s conditions (see e.g. [7]) the optimal solution of the

dual and primal problems are equal.

The Lagrangian function of the problem (6) is:

L(~x,~y,~θ) =~cT~x+ ε(~x−~y)T (~x−~y)+~θ T (A~x−~b) (7)

Where ~x ≥~0 is primal variable and ~θ is dual variable. The

dual function W is:

W (~y,~θ) = min
~x≥~0

L(~x,~y,~θ) (8)

Differentiation of the Lagrangian function (7) gives:

∇xL = ~c+AT~θ +2ε(~x−~y) (9)

∇yL = −2ε(~x−~y) (10)

The dual problem of (6) is:

max
~θ

W (~y,~θ) (11)

And its gradient:

∇θW = A~x−~b (12)

B. Dual Gradient Algorithm

Using the dual problem (11) and the dual function (8) we

rewrite the routing problem (6) into form:

min
~y

max
~θ

min
~x≥~0

L(~x,~y,~θ) (13)

A gradient algorithm created from Equation (13) consist of 3

nested loops (one loop for each variable). The internal loop

solves the subproblem (8) using the gradient of the Lagrangian

function (9). The middle loop solves the dual problem (11)

using its gradient (12). The outer loop minimizes over the

proximal-point variable ~y using the gradient (10).

LOOP 1

LOOP 2

LOOP 3

~x =
[

~x−α∇xL
]+

END 3
~θ = ~θ +α∇θW

END 2

~y =~y−α∇yL

END 1

(14)

Where α > 0 is a constant step size of the algorithm. However,

distributed version of such algorithm would have problems

with termination of the middle loop and with synchronization

of the loops between the nodes in the network. Moreover

the nested loops would cause a cubic increase of number of

internal iterations.

To overcome these problems, we join all the loops into

gradient algorithm with only one loop, where we update all

the variables ~y,~θ ,~x simultaneously. Using Equations (9), (10)

and (12) we derive one iteration of the algorithm:

~xk+1 =
[

~xk −α
(

~c+AT~θk +2ε(~xk −~yk)
)

]+

~yk+1 = ~yk +α2ε(~xk −~yk)

~θk+1 = ~θk +α(A~xk −~b)

(15)

The α > 0 is a constant step size of the algorithm, k denotes

the iteration number and symbol [..]+ denotes a positive or

zero value in each component of the vector [..]+ = max(~0, ..).
The correctness of such algorithm is not seen directly form its

derivation and has to be proven. The proof of the algorithm

convergence is not a trivial problem and we have presented it

in [17]. A necessary condition for the algorithm convergence

is α ≤ 1/2ε . Moreover, we have performed several simulation

experiments to test the algorithm convergence in Section IV.

The variables~x0,~y0 and ~θ0 are set to arbitrary initial values.

The closer the values are to the final solution, the faster

the algorithm converges. This property can be used in the

case of minor changes of the network structure during its

operation or in case of a pre-computed routing e.g. based

on Dijkstra’s algorithm. However, we will not investigate this

problem further in this paper.

C. Distributed Algorithm

The system of equations (15) is a description of one iteration

of the distributable routing algorithm. However, to define the

distributed algorithm for each node, we have to rewrite the

equations (15) using (4), (5). Moreover we need to define for

the variables ~θk and ~yk:

~θk =













~θ
(1)
k
...

~θk

(M)

λk













~yk =













~y
(1)
k
...

~y
(M)
k
~z′′k













(16)

The presented distributed algorithm is running on each node

in the network and it is synchronized by the communication

between the nodes. The algorithm for node n is presented in

Table I.

We use x
(m)
k,i , y

(m)
k,i , θ

(m)
k,i , ci etc. to denote the i-th component

of the corresponding vector.

Due to the structure of the matrix A and vectors ~xk, ~yk, ~b
and ~θk we rewrite the expressions (15) in order to compute

the flow of the communication demand m in the link l into

form of Equation (17). Where the expression l− denotes index

of the start node of the link l and l+ denotes index of the end

node of the link l.

Each node n is responsible for computation of the flow

volume of the links leaving the node n and for computation of

the corresponding dual variables. Therefore, node n computes



Table I
DISTRIBUTED ROUTING ALGORITHM EXECUTED IN NODE n.

1) Initialize the variables:

x
(m)
0,l = x

(m)
start,l ∀m ∈ M ∀l ∈ O(n)

y
(m)
0,l = y

(m)
start,l ∀m ∈ M ∀l ∈ O(n)

λ0,l = λstart,l ∀l ∈ O(n)

θ
(m)
0,n = θ

(m)
start,n ∀m ∈ M

z′0,l = z′start,l ∀l ∈ O(n)

z′′0,l = z′′start,l ∀l ∈ O(n)

k = 0

2) Send/receive the variables to/from the neighbors.

Send: x
(m)
k,l ∀m ∈ M ,∀l ∈ O(n)

θ
(m)
k,n ∀m ∈ M

Receive: x
(m)
k,l ∀m ∈ M ,∀l ∈ I (n)

θ
(m)
l−

∀m ∈ M ,∀l ∈ I (n)

3) Evaluate the equations for k+1 and for ∀l ∈ O(n) and ∀m ∈ M :

x
(m)
k+1,l =

[

x
(m)
k,l −

− α
(

c′l +θ
(m)
k,l+

−θ
(m)
k,n +λk,l +2ε(x

(m)
k,l − y

(m)
k,l )

)

]+

y
(m)
k+1,l = y

(m)
k,l +2αε(x

(m)
k,l − y

(m)
k,l )

z′k+1,l =
[

z′k,l −α
(

λk,l +2ε(z′k,l − z′′k,l)
)

]+

z′′k+1,l = z′′k,l −α
(

2ε(z′k,l − z′′k,l)
)

θ
(m)
k+1,n = θ

(m)
k,n +

+ α( ∑
i∈I (n)

x
(m)
k,i − ∑

i∈O(n)
x
(m)
k,i −~s

(m)
out,n +~s

(m)
in,n)

λk+1,l = λk,l +α( ∑
m∈M

x
(m)
k,l + z′k,l −µl)

(17)

4) k = k+1, go to step 2 and start a new iteration loop.

x
(m)
k+1,l and y

(m)
k+1,l for all l ∈ O(n) and all m ∈ M , z′k+1,l and

z′′k+1,l and λk+1,l for all l ∈ O(n) and θ
(m)
k+1,n for all m ∈ M .

The algorithm for node n is presented in Table I. In step

1, the algorithm initializes the variables. In steps 2 the node

communicates the variables to the neighbor nodes. In step 3

the node computes new values of the k-th iteration.

In (17), node n computes x
(m)
k+1,l for all links leaving node

n. It is a function of the local variables x
(m)
k,l , y

(m)
k,l , λk,l , θ

(m)
k,n

and the variables θ
(m)
k,l+

of the neighbor nodes. Similarly, the

computation of the others variables is a function of the local

variables and the variables of the neighbor nodes that are

within one hop communication distance.

IV. EXPERIMENTS

To demonstrate the behavior and the correctness of the

distributed routing algorithm, we have performed several ex-

periments in Matlab. We have focused on a basic problem,

where for each communication demand one node is supposed

to send data flow to one sink node (i.e. multi-commodity

mono-source, mono-sink problem). s
(m)
in,n1

= 1 for the source

node n1 and s
(m)
out,n2

= 1 for the sink node n2 of communication
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Figure 1. Optimal data flow routing (multi-commodity, mono-source, mono-
sink problem)

demand m.

The random networks for the experiments have been con-

structed as follows: We consider a square field of size [size ×
size], where the size is changing during the experiments. The

field is divided into sub-squares of size [1 × 1]. One node is

randomly placed into each sub-square and the communication

distance is set to 1.5 (i.e. node n1 can communicate with

node n2, if and only if their Euclidean distance is less than

1.5). Please notice, that our network is close to the “unit-disk

network” [18]. The communication costs ~c′ per transmitted

data flow unit have been set as the power of the distance

between the nodes. The link capacities have been set to one

µl = 1. The constants of the algorithm have been set as:

α = 0.03, ε = 0.3. The initial values x
(m)
start,l , y

(m)
start,l , θ

(m)
start,n

have been set to 0 and z′start,l = µl and z′′start,l = µl for all

experiments except IV-B. Only feasible problems are used.

During the experiments we evaluate the number of iterations

k needed to achieve the optimal solution as a number of

iterations needed to achieve 0.01% deviation of the cost

function from the optimal value during last 100 iterations.

(the optimal value was computed separately by a centralized

algorithm for evaluation purposes only)

A. Example

To present the resulting optimal data flow routing in the

network and the progress of the Lagrangian function during the

computation, we have performed an experiment based on the

network described above. The field size has been set to 10 (i.e.

100 nodes in the network) and the number of communication

demands has been set to 10.

The optimal data flow routing is shown in Figure 1. The

progress of the Lagrangian function (7) and its optimal value

are presented in Figure 2.

On the progress of the Lagrangian function the algorithm

convergence can be observed as difference from its optimal

value. Unfortunately, the progress of the Lagrangian function

is not generally monotonic, which makes the proof of the
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Figure 2. Progress of the Lagrangian function
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Figure 3. Algorithm convergence with random starting points.
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Figure 4. Number of iterations in relation to the number of nodes.

algorithm convergence more difficult.
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Figure 5. Number of iterations in relation to the number of communication
demands.

B. Algorithm convergence

We have preformed a set of experiments with random

starting points on random networks and we have evaluate the

algorithm convergence. The field size has been set to 10. There

are 10 communication demands in the network. The initial

values have been set randomly from intervals: x
(m)
start,l ∈ 〈0,2〉,

y
(m)
start,l ∈ 〈0,2〉, θ

(m)
start,n ∈ 〈−20,20〉, λ

(m)
start,l ∈ 〈−20,20〉 and

z′start,l = µl and z′′start,l = µl . The intervals have been chosen as

double value of maximum/minimum of typical optimal values.

The algorithm has been run 2800 times on random networks

and the results are presented on Figure 3. There is number

of iterations placed on the horizontal axis and number of

experiments which has been finished before the number of

iterations on the vertical axis.

This experiment provides an important practical verification

of the theoretical proof of the algorithm convergence. It can

be seen, that approximately 95% of the experiments have been

finished in 20000 iterations. It is obvious, that the number of

the iterations is too big for the practical implementation of

the algorithm. However, the main aim of this work was to

introduce a new approach for distributed routing algorithms.

The objective of our future work is to decrease the number of

iterations.

C. Number of iterations

To demonstrate the statistical behavior of the algorithm, we

have performed two tests. In the first one we have gradually

increased the field size from 3 to 13 (i.e. from 9 to 169

nodes) for 10 communication demands. In the second one

we have gradually increased the number of communication

demands for field size 10. The computation has been repeated,

on random networks, 300 times for each field size/number of

demands.

The results have been evaluated as a maximum, average and

minimum number of iterations needed to achieve the optimal

value and it is presented in Figure 4 for variable field size and

in Figure 5 for variable number of demands.



The important outcome of this experiment is the observa-

tion, that the number of the iterations is approximately linear. It

follows, that the algorithm is well applicable to a big networks

with many communication demands.

V. CONCLUSION

In this paper we have presented a distributed algorithm for

the energy optimal data flow routing in sensor networks. We

have described the routing problem as a multi-commodity

network flow optimization problem and used the dual de-

composition method to derive the distributed algorithm. The

algorithm does not need any central computational node with

knowledge about the whole network structure. This rapidly

increases the robustness of the algorithm in the case of

partial network damage. The algorithm uses only peer-to-peer

communication between the neighboring nodes which allows

the routing update using only the local communication. We

have performed several simulation experiments to evaluate the

algorithm behavior and to test its convergence. The mathemat-

ical proof of the algorithm convergence is available in [17].

The main purpose of this paper was to present the basic

concept of new distributed routing algorithms. From the ex-

perimental section it is seen that the presented algorithm is

not application ready because of the high number of itera-

tions, which would lead to high number of communications.

However the main strength of the algorithm is not to find the

whole optimal routing in unknown networks, but to adapt an

existing routing in case of local network changes (dead/new

node, lost of connection, etc.) where the number of iterations

should significantly decrease.

In future work we are going to improve the performance of

the algorithm, using heuristics based on a partial knowledge

about the network structure (e.g. node geographical position)

and heuristics based on Newton’s method, which should

significantly decrease the number of iterations. Moreover we

are going to evaluate the algorithm performance in the case

of local network changes.

Considering the fact, that the algorithm is based on Linear

programming formulation, we believe that the principle of the

algorithm and the approach used to its derivation can be used

to solve many different problems in the sensor networks area,

like resource sharing, network localization, object tracking,

etc.
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