
1

Timing Analysis of a Linux-Based CAN-to-CAN
Gateway

Michal Sojka, Pavel Pı́ša, Oliver Hartkopp, Ondřej Špinka and Zdeněk Hanzálek, Member, IEEE

Abstract—The aim of this paper is to briefly introduce an
open-source Linux-based CAN-to-CAN gateway and to provide
a thorough timing analysis and measurement of packet latencies,
introduced by such a gateway into a real-time networked system.
The testing methods and results are presented in detail and
moreover, the complete data set, consisting of gigabytes of data
and more than 600 graphs, as well as the source codes of
our testing tools, are available for download in our public
repositories. This allows other researches interested in this topic
to independently review our results and methods, as well as to
use them as a base for their own experiments. Our methods
and results are relevant not only for the special case of CAN-to-
CAN routing, but also for the whole Linux networking system in
general. The introduced gateway itself is a public available open-
source component using the existing Linux Kernel networking
infrastructure for the Controller Area Network protocol family
(PF CAN).

I. INTRODUCTION

CONTROLLER Area Network (CAN) is still by far the
most widespread networking standard used in the auto-

motive industry today, even in the most recent vehicle designs.
Although there are more modern solutions available on the
market [1] [2] (such as FlexRay or various industrial Ethernet
standards), CAN represents a reliable, cheap, proven and well-
known quantity, all merits most valued among the industrial
community. Thanks to its non-destructive and strictly deter-
ministic packet arbitration, CAN also exhibits very predictable
behavior, making it ideally suited for real-time distributed
systems. Because of these indisputable qualities, it is unlikely
that the CAN is going to be phased out in foreseeable future.

With the rapidly growing complexity and level of distri-
bution of the electronic systems aboard modern vehicles [2],
some kind of logical structure for the on-board networks
comes into the focus. The separation of several vehicle net-
works can be used to isolate various subsystems, in order to
minimize the likelihood of unwanted interactions. For exam-
ple, it is highly desirable to isolate the critical systems (such as
engine control, braking, Advanced Driver Assistance Systems
(ADAS), power steering, airbags etc.) from the non-essential
parts (such as air conditioning, entertainment system, control
of power windows, mirrors and the like), and also one from
the other (to a certain degree). This need will be pronounced

M. Sojka, P. Pı́ša, O. Špinka and Z. Hanzálek are with the Department
of Control Engineering, Faculty of Electrical Engineering, Czech Technical
University, Karlovo náměstı́ 13, 121 35 Prague 2, Czech Republic. e-
mail: sojkam1@fel.cvut.cz, pisa@cmp.felk.cvut.cz, spinkao@fel.cvut.cz, han-
zalek@fel.cvut.cz

O. Hartkopp is with Volkswagen Group Research, Brieffach 1777, 38436
Wolfsburg, Germany. e-mail: oliver.hartkopp@volkswagen.de

Manuscript received December 31, 2010; revised January 31, 2010.

with the upcoming advent of drive-by-wire vehicles and Inter-
vehicle Communications (IVC) [3].

On the other hand, it is still necessary to maintain some level
of communication among various subsystems. For instance,
a vehicle diagnosis system must be able to extract data
from all other units, but certainly should not be connected
to every vehicle bus directly. This is important not only
to prevent any unwanted interactions among the electronic
systems themselves, but - for example - also to physically
prevent maintenance personnel from a direct access to critical
vehicle buses through the diagnosis interface.

Therefore, network segmentation [4] was introduced in
order to cope with these issues. There are also other reasons
for that; for example, segmentation allows to connect networks
using different communicating protocols and/or physical layers
through a common gateway. It is not uncommon that different
buses are used for different purposes in a modern car - for
example, critical ECUs (Electronic Control Units) are usually
connected via CAN, while low bandwidth body electronics
like power windows often runs on LIN (Local Interconnect
Network), for cost reasons. Also, Internet protocols will
undoubtedly find their way into passenger cars in the near
future, allowing for direct audio and video streams into the
entertainment system [5] [6], but also for constant monitoring
of the car’s health. For this purpose, an Ethernet-to-CAN
gateway would be required.

Another important reason for a separate vehicle network
is rapid prototyping and hardware reusability [7] [8]; it is
convenient if one can quickly connect existing subsystems
(possibly from different vendors), despite the fact that they
were never designed to work together and possibly use in-
compatible communication protocols [9]. For that purpose,
a CAN-to-CAN gateway is needed, capable of simple data
conversions; for example, it might alter the packet IDs (CAN
Identifier), do some data processing in the CAN data payload
(like unit conversions), recalculate the CRC (because the IDs
and/or data were altered) and so on. Obviously, such gateway
must satisfy very strict real-time requirements, especially if it
connects critical control systems.

For this and other purposes, a universal Linux-based gate-
way was developed in the course of the SocketCAN project
[10] by Volkswagen Group Research in Wolfsburg. This
gateway is designed for CAN-to-CAN and future Ethernet-to-
CAN processing and allows packet filtering, data manipulation
and checksum calculation for routed CAN data frames. The
gateway is not only open-source under the GNU-GPL license;
based on the existing PF CAN infrastructure, it can be fully
integrated into the Linux kernel, making it easily accessible

2

for CAN developers. Since the gateway is designed for use in
real-time systems, it had to undergo a set of comprehensive
tests, focused on measuring packet latencies under various
conditions. These extensive tests were recently performed by
the Department of Control Engineering at the Czech Technical
University in Prague, on behalf and in collaboration with the
Volkswagen Group Research.

This paper briefly presents the gateway itself, but is primar-
ily focused on the tests and testing methodology for precise
packet latency measurements (which was inspired by [11]
[12] [13] [14]). Our testing methods and results are presented
in detail and moreover, the complete data set, consisting of
gigabytes of data and more than 600 graphs, as well as the
source codes of our testing tools, are available for download in
our public repositories [15] [16]. This allows other researches
interested in this topic to independently review our results
and methods, as well as to use them as a base for their own
experiments. Our methods and results are relevant not only
for the special case of CAN-to-CAN routing, but also for the
Linux networking system in general, which basically covers
everything from CAN to Ethernet, Bluetooth, Zigbee and other
networks.

The paper is organized as follows: the next section intro-
duces the gateway, while section III describes the methodology
of the latency measurement tests. Section IV extensively
summarizes the results, followed by conclusion.

II. LINUX-BASED GATEWAY

The CAN-to-CAN gateway, presented in this paper, is a
software component using the CAN protocol family network
infrastructure of the Linux kernel. The Linux CAN subsystem
was contributed by the Volkswagen Group Research under
GNU-GPL license in 2006 and consists of a new network
protocol family (PF CAN) and the idea to implement CAN
hardware drivers using the network driver model known from
ethernet devices. The protocol layer part and the network
drivers have been finalized within the open-source project
’SocketCAN’ [10] until it became part of the Linux mainline
kernel in 2008.

The SocketCAN approach is extensively using the Linux
networking infrastructure, which is the main factor determin-
ing its inherent assets and shortcomings. The main asset of this
approach is that SocketCAN is simple to use, making CAN
communication no different to normal TCP/IP communication
from the Application Interface (API) point of view. The
very same functions are being used to handle the device
and datapackets, the only notable difference being the data-
holding structure, which includes the header of the CAN
datapacket and is restricted to eight bytes of payload data.
This approach also greatly simplifies routing packets among
multiple networks, for example between CAN and Ethernet,
which is a highly desirable asset (as explained in section I).

The drawback of this architecture is that it might be hard
to achieve desired timing properties and reliability, especially
under heavy bus load. SocketCAN is using the same data han-
dling infrastructure as Ethernet and other networking devices
(Bluetooth, Zigbee etc.), which makes it prone to negative
influence by other communication (as was shown in [17]).

Fig. 1. Testbed configuration

The CAN gateway itself integrates seemless into the CAN
subsystem code, and therefore runs in kernel-space. A CAN
gateway generally can be run in user-space also, however,
that approach has significant drawbacks (see section IV-B).
The gateway allows point-to-point or multi-hop routing, packet
filtering and modifying, and also enables packet routing among
multiple network protocols. However, the last feature is exper-
imental and requires further development. The regarded CAN
gateway component is widely configurable via the common
netlink protocol.

For the following measurements and tests a MPC5200 SoC
(PowerPC) platform runnig several different Linux kernels (see
section III-D) was used as gateway hardware.

III. TESTING METHODOLOGY

A. The Testbed

The testbed, used for packet latency measurements, consists
of a PC computer (a Pentium 4 at 2.4 GHz with hyper-
threading, 2 GB RAM), equipped with Kvaser PCI quad-CAN
SJA1000-based adapter, connected to both CAN interfaces of
the gateway. The PC and the gateway are also connected
via Ethernet (using a dedicated adapter on the PC), while
the other Ethernet adapter of the PC is connected to a local
network. The traffic on the second adapter could slightly
influence measurement accuracy, therefore it is suspended
while running the tests. The Ethernet connection between the
PC and the gateway serves multiple purposes; it is used to
boot the gateway (using TFTP and NFS services), configure
it and download firmware updates (using SSH), and also to
generate traffic during the tests. The connection is direct,
using a crossed cable, to ensure that there are no switches or
other networking elements in the way, which could otherwise
influence the tests. The complete setup is shown in Figure 1.

The software configuration is kept as simple as possible, in
order to expel any software tasks that could have any influence
on the tests. On the gateway, only a Linux kernel and Dropbear
SSH server run (and obviously the gateway itself). On the PC,
a stripped-down Debian distribution is used. The tasks that
generate the test traffic and measure the gateway latency (as
will be explained in sections III-B and III-C) are assigned the
highest real-time priority and their memory spaces are locked,
in order to prevent swapping. SocketCAN was used on both
the gateway and the PC as the CAN driver.

3

CAN bus 0

CAN bus 1

time

msg 1

msg 1'

message latency

Fig. 2. Definition of packet latency

B. Measurement Methodology

CAN traffic is produced by the PC, using its can0 interface.
As can be seen in Figure 1, this interface is directly routed to
the can1 interface of the PC, as well as to the gateway. The
can1 interface is configured as passive and serves to determine
exact time when each packet was actually transmitted. This
is necessary in order to exclude various delays between the
packet being stacked into the transmit queue and its actual
transmission, which may be introduced on the PC side. When
a packet is received by the can1 interface, a high-priority
interrupt is initiated and the packet is assigned a timestamp.
This is done directly in the interrupt handler by the Linux
kernel, hence there are no additional latencies associated with
this process and the timestamp is very accurate.

The packets coming from the gateway are received by
the can2 interface of the PC. Incoming packets are assigned
timestamps using the same mechanism described in previous
article. The packet latency can then be determined as the
difference between timestamps of the can1 and can2 interfaces
for each packet. It is important to note that both timestamps
are associated using the same clock, which ensures maximal
accuracy, which could not be achieved if different clocks were
used.

The definition of the packet latency is shown in Figure
2. The figure emphasizes the fact that the transmitted and
received frames must not necessarily be the same, since the
frame could have been manipulated by the gateway, as was
explained in sections I and II. Therefore, it is necessary to
exactly determine which received packet corresponds to which
transmitted one, and this mechanism must be also able to cope
with possible packet loss. For this purpose, the first two bytes
of data are used to associate a unique number to each packet.
This number serves as an index for a lookup table, in which
the timestamps are stored. This also allows to easily detect
packet losses (when the corresponding field in the lookup table
contains just one timestamp after a certain timeout, which
is set to 1 s by default). This mechanism is also immune
to possible changes in the reception order, which might be
introduced by the gateway (for example, when some packets
are manipulated and others are not).

C. Traffic and Load Generators

Different traffic patterns were used in order to gain the
broadest pool of comprehensive data. Let us look at each test
case in detail.

Flood traffic is a test case focused on full bus utilization.
The messages were sent as fast as possible, in order to check

whether the gateway drops any messages under full load.
In this case, the TX queue on the PC is full most of the
time. To achieve true burst flow of the packets without any
delays, it was necessary to increase the length of the Linux
transmission queue from 10 to 200 messages. Without this,
the write() system call returned -ENOBUS even though
the poll() system call signalized that there was free space
in the buffers, and therefore it was not possible to maintain
burst packet flow.

In the test case called 50% bus load, the packets were sent
periodically, with period equal to the message transmission
time multiplied by two. This case was meant to simulate some
reasonable real-life bus load.

One message at a time is a case focused on precisely
measuring packet latency under various controlled conditions
in the gateway. In this mode the next packet was sent only
after reception of the previous one. For the case of packet
loss, a built-in timeout of one second was implemented.

The IDs and data lengths of the messages are configurable
and were altered during the tests, in order to determine their
influence (if any) on the packet latencies.

In order to determine the influence of processor load on
packet latencies, a simulated computing load was imposed to
the gateway. The load was generated using the hackbench
tool [18].

To determine the influence of Ethernet traffic on packet
latencies, the gateway was put under considerable Ethernet
load in some tests. Ethernet traffic was generated by the PC
using standard ping and floodping tools. The influence
of these traffic generators on precision of the timestamps on
the PC side is negligible, since the timestamps are assigned
directly within the high-priority receive interrupt handler and
no shared queues come into play.

D. SocketCAN and Kernel Versions

The tests were carried out with three different Linux kernels
in the gateway. First, version 2.6.33.7 was used. The CAN
subsystem mainline code was replaced by revision 1199 from
the SocketCAN project SVN repository, the latest available at
the moment. The second kernel was 2.6.33.7-rt29 (the latest
available version with rt-preempt patchset at the time), along
with the same SocketCAN revision. The motivation for this
was to use the same kernel and SocketCAN versions, with and
without rt-preempt patchset, in order to determine its influence.
The last kernel was 2.6.36.2, the latest available at the moment.

The standard CAN gateway code from the SocketCAN SVN
repository was slightly modified to allow for routing of a
single packet multiple times as described in Section IV-E.
Additionally, a small bug that caused occasional crashes with
latest kernels was fixed in the gateway. This fix was distributed
to the maintainer and co-author Oliver Hartkopp and is already
implemented in the later SocketCAN SVN revisions.

All kernels used for testing are available in our git repository
[19], in the branches called cangw-test, cangw-test-rt and
cangw-test-36.

4

IV. RESULTS

In this section, the most important results shall be presented
and discussed. It should be noted that the results shown
here represent only the most relevant ones to support our
conclusions; the extensive set of 630 graphs and several
gigabytes of data are available in [16].

Measured latencies of individual packets were processed
statistically, and histograms (latency profiles) were generated
from the data. A latency profile (see, for example, Figure 4)
is a sort of backward-cumulative histogram with logarithmic
vertical axis. The advantage of using latency profiles is that
the worst-case behavior (bottom right part of the graph)
is “magnified” by the logarithmic scale. Given two points
(t1,m1) and (t2,m2) from a latency profile, where t1 < t2,
we can say that m1 − m2 messages have the latency in the
range (t1t2). Additionally, the rightmost point (tw,mw) shows
that there were mw messages with the worst-case latency tw.

Since the range of the packet latencies can significantly vary
among the runs of a single test case, performed under different
conditions, the horizontal axis (time) is scaled logarithmically
too (in most cases). This allows to use the same scale for
all graphs corresponding to a single test, making them easily
comparable.

To evaluate the precision of the time measurements, we
measured the time between sending the frame from the can0
interface and its reception on can1. As these two interfaces
are connected to the same bus, the delay only includes mes-
sage transmission time and operating system overhead. It is
important to determine this overhead and its dependency on the
Ethernet traffic, since the same overhead affects the timestamp
associated with the packet reception on can2 interface.

The experiment was performed by measuring the latencies
of 10000 consecutive packets and statistically evaluating the
results. Same experiment was repeated with traffic generated
on the Ethernet interface, in order to determine how much
does this this traffic affect the timestamp accuracy.

It was determined that without the Ethernet load, for 99.9%
of packets the delay was less than 10µs. Only 0.1% of packets
were received within additional 20µs.

With the Ethernet load generated and received by the PC,
99.9% of packets fell within 100µs. Remaining 0.1% of
packets were received within 200µs at most. Since the latency
introduced by the gateway is much larger than that (as will be
shown by following results), this precision is still well within
acceptable limits.

A. Simple Gateway

The first test was performed on a simple gateway, configured
to repeat all packets without any filtering or modifications. The
block diagram can be seen in Figure 3.

The bus was fully utilized (burst traffic was generated by
the PC). The results are shown in Figure 4. The latencies span
from 60µs for packets carrying two-byte data to 110µs for
eight-byte data packets. These results almost exactly match
theoretical best times, given by the message transmission times
(60µs and 108µs respectively, not taking bit-stuffing into
account).

Fig. 3. Simple gateway configuration.

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [ms]

Single GW job for all messages, no modifications
(GW kernel 2.6.33.7-00007-g9c0ff90, Traffic flood, Load none)

2 byte messages
4 byte messages
6 byte messages
8 byte messages

Fig. 4. Latency profile of a simple gateway

No packets were lost in unloaded case. Two packets (out of
10000) were lost under CPU load, while approximately 20%
of packets were lost under full Ethernet load. This is caused
by sharing RX queues among CAN and Ethernet packets in
SocketCAN, as is explained in detail in our previous work
[17].

B. User-Space Gateway

The previous “simple gateway” experiment was performed
on the gateway running in kernel-space, as it is implemented
by default (see section II). For the sake of completeness, this
experiment was repeated with the gateway running in the user-
space, in order to evaluate the difference.

With one-packet-at-time (the next packet is transmitted only
after the reception of the previous one), the latency of the
gateway increased by approx. 17µs (Figure 5 above). In case
of flood traffic, the latency of the user-space gateway increased
dramatically (Figure 5 below) and packets became to be lost.

Please note that all other experiments were run with the
kernel-space gateway.

C. Gateway with Packet Filtering

The most common application of a CAN-to-CAN gateway
is packet filtering. In this mode, the gateway retransmits only
packets satisfying certain filter specifications. Most commonly,
bit masks are used to filter packets according their IDs.

1) Single-ID Filters: In this test, a set of 2048 different
filters was constructed. Each filter matched exactly one packet
ID, corresponding to the number of the filter. The complete
filter set allowed only packets with IDs smaller than 2048 to
pass. The filter set was deliberately made much more complex
than necessary for that particular task, in order to impose some
meaningful packet processing load on the gateway. In this

5

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [ms]

Kernel vs. userspace GW, no modifications
(GW kernel 2.6.33.7-00007-g9c0ff90, Traffic oneatatime, Load none)

Userspace GW, 2 byte messages
Userspace GW, 8 byte messages

Kernel GW, 2 byte messages
Kernel GW, 8 byte messages

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [ms]

Kernel vs. userspace GW, no modifications
(GW kernel 2.6.33.7-00007-g9c0ff90, Traffic flood, Load none)

Userspace GW, 2 byte messages
Userspace GW, 8 byte messages

Kernel GW, 2 byte messages
Kernel GW, 8 byte messages

Fig. 5. Kernel-space versus user-space gateway – single message traffic and
flood traffic.

case, the filtering algorithm has to search through the filters
to determine whether to route a given packet.

Two test cases were set up. In the first one, filters satisfying
the mask 0xC00007FF were constructed. These filters match
only the Standard Frame Format (SFF) packet IDs. In this
case, the SocketCAN keeps the filters in a static pre-allocated
lookup table, the key being the message ID. That table has
2048 entries, so the filter can be located very quickly by
indexing this table.

The other case is based on filters satisfying the mask
0x000007FF. That mask allows both SFF and EFF (Extended
Frame Format) packets to pass. In that case, the filters are
stored within a dynamic linked list (because of much greater
number of possible packet IDs), which must be traversed
linearly in order to find out whether the packet ID matches
one of them or not. Obviously, this algorithm imposes much
greater processing penalty than the lookup table indexing used
in the first case.

The resulting performance is shown in Figure 6. It can
be seen that the SFF-only filters had negligible impact and
the packet latencies are almost the same as they were in the
previous experiment (simple gateway). The second test case
tells a different story - Once the filters were stored in a linked
list, the performance deteriorated greatly. For example, the
best-case latency in this case went down to 400µs (from
100µs in the SFF case).

2) Filters under Heavy Traffic: Since the time needed
to process all 2048 filters in the list is higher than the
transmission time of a packet, the gateway must drop some

 1

 10

 100

 1000

 10000

 0.05 0.1 0.15 0.2 0.25 0.3

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [ms]

2048 GW jobs (one per id, mask C00007FF), no modifications
(GW kernel 2.6.33.7-00007-g9c0ff90, Traffic oneatatime, Load none)

Message id 0
Message id 255
Message id 511
Message id 767

Message id 1023
Message id 1279
Message id 1535
Message id 1791
Message id 2047

 1

 10

 100

 1000

 10000

 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [ms]

2048 GW jobs (one per id, mask 0x7FF), no modifications
(GW kernel 2.6.33.7-00007-g9c0ff90, Traffic oneatatime, Load none)

Message id 0
Message id 255
Message id 511
Message id 767

Message id 1023
Message id 1279
Message id 1535
Message id 1791
Message id 2047

Fig. 6. Gateway with 2048 filters. Above: Filters matching only SFF packets
Below: Filters matching both SFF and EFF packets

 1

 10

 100

 1000

 10000

 0.1 1 10 100

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [ms]

2048 GW jobs (one per id, mask 0x7FF), no modifications
(GW kernel 2.6.33.7-00007-g9c0ff90, Traffic flood, Load none)

Message id 0
Message id 255
Message id 511
Message id 767

Message id 1023
Message id 1279
Message id 1535
Message id 1791
Message id 2047

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

La
te

n
cy

 [
m

s]

Time [s]

2048 GW jobs (one per id, mask 0x7FF), no modifications
(GW kernel 2.6.33.7-00007-g9c0ff90, Traffic flood, Load none)

Message id 0
Message id 255
Message id 511
Message id 767

Message id 1023
Message id 1279
Message id 1535
Message id 1791
Message id 2047

Fig. 7. Too many filters cause the packets to be dropped under heavy traffic

6

 1

 10

 100

 1000

 10000

 140 150 160 170 180 190 200

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [µs]

Single GW job for all messages with modifications, 8 byte messages
(GW kernel 2.6.33.7-00007-g9c0ff90, Traffic oneatatime, Load none)

No modifications
Two modifications
Four modifications
Four modifications and XOR checksum
Four modifications and CRC8 checksum

Fig. 8. Message modification comparison.

of them under heavy load. In case of 100% bus utilization the
drop rate was near to 80% (see Figure 7). In the time chart
shown in Figure 7 below, the effect of the RX buffer is very
obvious. MPC5200 has a buffer for four packests. The four
isolated points at the beginning of each chunk correspond to
RX buffer filling. Once the buffer is filled, packets start to be
dropped.

D. Packet-Modifying Gateway

As was explained in section I, the gateway can also modify
packets while routing them to the other CAN interface. It was
determined that simple data and ID modifications have almost
no performance impact, as can be seen in Figure 8.

Interestingly enough, the packet latencies in this case even
tend to be slightly shorter than they were in the “simple
gateway” experiment. This may be probably attributed to the
way the C compiler optimizes the code. Packet modifications
are implemented within a loop, which is present in both the
“simple” and packet-modifying versions of the gateway. The
only difference is that in the “simple” version, the condition
within the loop always returns false, while in the packet-
modifying version it returns true, save for the last iteration.
Due to the “naive” branch prediction, the code is most likely
optimized for the “true” condition, making it run slightly faster
in that case, due to undisturbed instruction pipeline.

However, the authors must admit that this little mystery was
not yet investigated in detail, since the difference is negligible
and almost within the level of noise (although persistently
present when the experiment was repeated over and over
again). Therefore, it is not an issue and not on the top of
our priority list, although it will be thoroughly inspected in
the future.

E. Multi-Hop Gateway

The gateway can also be used as a multi-hop router,
connecting multiple buses. Due to the hardware limitations of
the MPC5200 platform, which has only two CAN interfaces,
additional virtual CAN interfaces had to be used in this
experiment.

Two test cases were prepared for this experiment. In the
first one, a single virtual interface (denoted vcan0) was added

can0
GW0
nop

GW(n+1)
nop can1

GW2
id⇒id+1

id

id

id+
1 id

+
1

id+n

id
+
2

GWn
id⇒id+1

id+n-1

id+n

MPC5200

id id+n
vcan0

GW1
id⇒id+1

Fig. 9. Multi-hop gateway with a single virtual CAN interface (vcan0).

can0
GW0

id⇒id+1
id+1

MPC5200

id GW2
id⇒id+1 can1

id+2 id+3
vcan0

GW1
id⇒id+1

id+2id+1
vcan1

Fig. 10. Multi-hop gateway with two virtual CAN interfaces

to the existing two (denoted can0 and can1). Each packet,
received by the can0 interface, was rerouted to the virtual
interface vcan0. This interface was configured as a loopback,
sending each packet back again (with simulated transmission
delays). The packet ID was then incremented and the packet
was sent back to vcan0 to emulate another pass. This was
repeated several times, and afterwards the packet was routed
to the physical interface can1 and sent back to the PC. This
test case (Figure 9) was designed to evaluate the latencies
introduced by the virtual interface. The packet was run through
that interface several times in order to compute an “average
latency”, since each run may have been affected by some non-
deterministic interruptions.

In the other test case, two virtual interfaces (vcan0 and
vcan1) were serially connected between the physical can0
and can1 interfaces (Figure 10). Each incoming packet was
routed through that chain, its ID being increased when pass-
ing both vcan0 and vcan1 (in order to make the results
comparable with the previous test case).

In both cases only the “fast” SFF-exclusive filters (mask
0xC00007FF) were used (as explained in section IV-C1).

The results are presented in Figure 11. In order to make
them comparable, the first graph shows a test case when each
packet was run two times through the single vcan0 interface.
It can be seen that the additional delay in the first test case was
around 20 − 25µs, while in the second case it was slightly
longer, about 30µs. These numbers give us an estimate of
approx. 11µs per hop in the first case and 14µs per hop in the
second. This slight difference was expected and can be easily
explained by greater memory demands of the two interfaces,
resulting in increased cache misses.

When both test cases were run with flood traffic, packet
losses started to occur with increasing number of hops. In
the case with a single virtual interface, packet losses started
at eight hops, while in the second case with multiple virtual
interfaces, it was already at six hops. This is consistent with
the slightly increased overhead represented by the two separate
virtual interfaces.

F. Gateway Load

All experiments shown so far were repeated under different
CPU and Ethernet loads, in order to investigate their influence

7

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [ms]

Chained GW jobs on a single VCAN interface
(GW kernel 2.6.33.7-00007-g9c0ff90, Traffic oneatatime, Load none)

2 GW jobs, 1 vcan
4 GW jobs, 1 vcan
6 GW jobs, 1 vcan
8 GW jobs, 1 vcan

10 GW jobs, 1 vcan
12 GW jobs, 1 vcan

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [ms]

Chained GW jobs on multiple VCAN interfaces
(GW kernel 2.6.33.7-00007-g9c0ff90, Traffic oneatatime, Load none)

1 GW jobs, 0 vcans
2 GW jobs, 1 vcans
4 GW jobs, 3 vcans
6 GW jobs, 5 vcans
8 GW jobs, 7 vcans

10 GW jobs, 9 vcans

Fig. 11. Multi-Hop gateways. Above: Single virtual interface Below: two
virtual interfaces

on packet latencies. Figure 12 shows the results for the
“simple gateway” experiment, shown in section IV-A, under
different loads. The CPU load adds approximately 100µs to
the processing time. The influence of the Ethernet load is
much worse; the worst-case latency increased ten times from
0.3ms to almost 3ms. From the bottom graph, it seems
likely that processing of a single 60 kB ping packet takes
approximately 2.5ms and this time is simply added to the
latency, experienced by the CAN message. The reason for this
is that the Linux kernel processes all incoming packets in the
same soft-IRQ in a non-preemptive manner, as is explained in
[17].

The differences observed in other experiments run under
different loads were similar.

G. Differences between Linux Kernels

All tests were also repeated with three different kernel ver-
sions (2.6.33.7, 2.6.33.7-rt and 2.6.36.2), in order to determine
especially the difference between standard and rt kernels.

The difference between 2.6.33 and 2.6.36 was very small
- in all experiments the latencies of the 2.6.36 kernel were
approximately 10µs higher, which can be attributed to the
evolution of the Linux networking stack, aimed to optimize
overall data throughput rather than latencies of individual
packets.

Much more interesting is the comparison between standard
and rt 2.6.33 kernels. Oddly enough, the rt kernel actually
exhibited worse behavior than the standard one, when the

 1

 10

 100

 1000

 10000

 0.1 1 10 100

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [ms]

Single GW job for all messages, no modifications
(GW kernel 2.6.33.7-00007-g9c0ff90, Traffic 50, Load none)

2 byte messages
4 byte messages
6 byte messages
8 byte messages

 1

 10

 100

 1000

 10000

 0.1 1 10 100

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [ms]

Single GW job for all messages, no modifications
(GW kernel 2.6.33.7-00007-g9c0ff90, Traffic 50, Load cpu)

2 byte messages
4 byte messages
6 byte messages
8 byte messages

 1

 10

 100

 1000

 10000

 0.1 1 10 100

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [ms]

Single GW job for all messages, no modifications
(GW kernel 2.6.33.7-00007-g9c0ff90, Traffic 50, Load eth)

2 byte messages
4 byte messages
6 byte messages
8 byte messages

Fig. 12. Performance under different loads – no load, CPU load and Ethernet
load

gateway was running in kernel-space. In this case, the packet
latencies in the rt kernel were about 70µs longer compared
to the non-rt version. This could be attributed to somewhat
greater overhead of the rt kernel (which, on the other hand,
leads to greater predictability and stability of the latencies), but
the worst-case behavior of the rt kernel shows latencies as long
as 50 ms (as can be seen in Figure 13). This indicates that there
is probably something seriously wrong with this particular
version of the rt patch, since our previous experience and
results of our previous work [17] show visible improvement
of the rt version over the standard one in case of older kernels.

The 2.6.33-rt kernel showed significant improvement when
the gateway run in user-space. In that case (refer to Figure
14) the worst-case latency experienced by the rt kernel was
about 2 ms, while the non-rt version exhibited delays as long
as 130 ms (Figure 5). Interestingly, the performance of the

8

 1

 10

 100

 1000

 10000

 0.1 1 10 100

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [ms]

2048 GW jobs (one per id, mask 0x7FF), no modifications
(GW kernel 2.6.33.7-00007-g9c0ff90, Traffic oneatatime, Load cpu)

Message id 0
Message id 255
Message id 511
Message id 767

Message id 1023
Message id 1279
Message id 1535
Message id 1791
Message id 2047

 1

 10

 100

 1000

 10000

 0.1 1 10 100

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [ms]

2048 GW jobs (one per id, mask 0x7FF), no modifications
(GW kernel 2.6.33.7-rt29-00004-g92487e4, Traffic oneatatime, Load cpu)

Message id 0
Message id 255
Message id 511
Message id 767

Message id 1023
Message id 1279
Message id 1535
Message id 1791
Message id 2047

Fig. 13. Standard (above) and rt (below) 2.6.33 kernels under CPU load

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

La
te

n
cy

 p
ro

fi
le

 [
m

e
ss

a
g

e
s]

Time [ms]

Kernel vs. userspace GW, no modifications
(GW kernel 2.6.33.7-rt29-00004-g92487e4, Traffic flood, Load none)

Userspace GW, 2 byte messages
Userspace GW, 8 byte messages

Kernel GW, 2 byte messages
Kernel GW, 8 byte messages

Fig. 14. User-space gateway under 2.6.33.7-rt kernel.

gateway in user-space under the rt kernel was better than in
kernel-space, which, again, indicates some serious problem
with this particular version of the rt patch.

V. CONCLUSION

This paper presented the timing analysis of a Linux-based
CAN-to-CAN gateway and studied influence of various factors
(like CPU bus load, kernel versions etc.) on packet latencies.
The results indicate that the gateway itself introduces no
significant overhead under real-life bus loads and working
conditions and can reliably work as a part of a distributed
embedded system.

On the other hand, it must be noted that especially excessive
Ethernet traffic and improperly constructed packet filters can

lead to significant performance penalties and possible packet
losses. The CAN subsystem, which forms the core of the
examinated CAN gateway, is inherently prone to problems
under heavy bus loads, not only on CAN bus, but also on
other networking devices, as was already demonstrated in our
previous work [17]. On the other hand, it is a standard and
easy-to-use solution, integrated in Linux kernel mainline, and
therefore forms the framework of choice for most developers.

It was also clearly demonstrated that the kernel-space solu-
tion works much better than the user-space solution, and that it
can be beneficial to use standard non-rt kernels (providing that
the gateway runs in kernel-space). This allows to avoid greater
overhead and resulting performance penalty of rt kernels,
providing that the standard kernel is properly configured and
CPU load is not excessive.

Our future work will focus primarily on Ethernet-to-CAN
routing, since such system will be required in the near future,
with the advent of Ethernet and Internet protocols in cars. This
implies that special attention must be given to the solution
of current issues affecting CAN packet delays under heavy
Ethernet load.

REFERENCES

[1] T. Nolte, H. Hansson, and L. L. Bello, “Automotive communications-
past, current and future,” in 10th IEEE Conference on Emerging Tech-
nologies and Factory Automation (ETFA), Catania, Italy, 2005, pp. 992–
1000.

[2] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in
automotive communication systems,” Proceedings of the IEEE, vol.
93(6), pp. 1204–1223, 2005.

[3] L. Wischhof, A. Ebner, and H. Rohling, “Information dissemination in
self-organizing intervehicle networks,” IEEE Transactions on Intelligent
Transportation Systems, vol. 6(1), pp. 90–101, 2005.

[4] M.-Y. Lee, S.-M. Chung, and H.-W. Jin, “Automotive network gateway
to control electronic units through MOST network,” in IEEE Interna-
tional Conference on Consumer Electronics (ICCE), Los Angeles, USA,
2010, pp. 309–310.

[5] L. Guglielmetti, “Standardizing automotive multimedia interfaces,”
IEEE Transactions on Multimedia, vol. 10(2), pp. 76–78, 2003.

[6] K. Sato, T. Koita, and S. McCormick, “Design and implementation
of a vehicle interface protocol using an ieee 1394 network,” The
EUROMICRO Journal of Systems Architecture, vol. 54(10), 2008.

[7] Y. Yacoub and A. Chevalier, “Rapid Prototyping with the Controller
Area Network (CAN),” in SAE World Congress, Detroit, USA, 2001.

[8] J. Stroop and R. Stolpe, “Prototyping of automotive control systems
in a time-triggered environment using flexray,” in IEEE International
Symposium on Intelligent Control, Munich, Germany, 2006, pp. 2332–
2337.

[9] P. Giusto, A. Ferrari, L. Lavagno, J.-Y. Brunel, E. Fourgeau, and
A. Sangiovanni-Vincentelli, “Automotive virtual integration platforms:
why’s, what’s, and how’s,” in IEEE International Conference on Com-
puter Design: VLSI in Computers and Processors, Freiburg, Germany,
2002, pp. 370–378.

[10] “The SocketCAN poject website,”
http://developer.berlios.de/projects/socketcan.

[11] H. Zeng, M. D. Natale, P. Giusto, and A. Sangiovanni-Vincentelli, “Sta-
tistical Analysis of Controller Area Network Message Response Times,”
in IEEE Symposium on Industrial Embedded Systems. Lausanne,
Switzerland: Ecole Polytechnique Federale de Lausanne, 2009.

[12] L. Almeida, J. Fonseca, and P. Fonseca, “A flexible time triggered com-
munication system based on the controller area network,” in Proceedings
of the FeT’99Fieldbus Systems and their Applications Conference,
Germany, 1999.

[13] J. L. Campos, J. J. Gutierrez, and M. G. Harbour, “CAN-RT-TOP:
Real-Time Task-Oriented Protocol over CAN for Analyzable Distributed
Applications,” in In 3rd International Workshop on Real-Time Networks
(formerly RTLIA), Catania, Sicily (Italy), 2004.

9

[14] T. Nolte, M. Nolin, and H. Hansson, “Real-time server-based commu-
nication for CAN,” IEEE Transactions on Industrial Informatics, vol.
1(3), pp. 192–201, 2005.

[15] M. Sojka, “CAN Benchmark git repository,” 2010. [Online]. Available:
http://rtime.felk.cvut.cz/gitweb/can-benchmark.git

[16] M. Sojka and P. Pı́ša, “Netlink-based CAN-to-CAN
gateway timing test results,” 2010. [Online]. Available:
http://rtime.felk.cvut.cz/can/benchmark/2/

[17] M. Sojka, P. Pı́ša, M. Petera, O. Špinka, and Z. Hanzálek, “A Compar-
ison of Linux CAN Drivers and their Applications,” in 5th IEEE In-
ternational Symposium on Industrial Embedded Systems (SIES), Trento,
Italy, 2010.

[18] “The hackbench tool project website,” 2009. [Online]. Available:
http://devresources.linux-foundation.org/craiger/hackbench

[19] M. Sojka and P. Pı́ša, “Linux kernel git repository for SocketCAN tests,”
2010. [Online]. Available: http://rtime.felk.cvut.cz/gitweb/shark/linux.git

