
Mixed-Criticality Scheduling of Messages in Time-Triggered Protocols

Zdeněk Hanzálek
Department of Control Engineering
Faculty of Electrical Engineering

Czech Technical University in Prague
and Porsche Engineering Services, s.r.o.

hanzalek@fel.cvut.cz

Tomáš Tunys
Department of Cybernetics

Faculty of Electrical Engineering
Czech Technical University in Prague

tunystom@fel.cvut.cz

Abstract

In different communication protocols, a message re-
transmission is often used to increase reliability. Mes-
sages with higher criticality are allowed for more re-
transmissions and therefore different execution time val-
ues should be specified for each criticality level of the
given message. The paper deals with a problem of the
static scheduling of mixed-criticality messages on a com-
munication resource (collision domain) without preemp-
tion. On the basis of the current state of the art in
the mixed-criticality scheduling, our problem, denoted as
1|ri, di,mc = L|βCmax + α

∑

T , is formulated. We
use two metaheuristic methods used to solve the mixed-
criticality scheduling problem.

1 Introduction

The problem we address in this paper is motivated by
increasing trend to study and researchmixed-criticality
scheduling. It follows right from the attempts of em-
bedded systems to provide multiple functionalities upon
a single shared platform. Therefore, the systems become
mixtures of critical functionalities that need to pass a cer-
tification process; and non-critical functionalities, which
do not.

We can look at the making of an embedded system as
a struggle between its designers that wish to make the
system as efficient as possible in order to provide maxi-
mum performance, and the certification authority requir-
ing guarantees of the worst-case behavior. The research
of the mixed-criticality scheduling is therefore aimed to-
wards the construction of scheduling policies such that on
the one hand they will help these mixed-criticality systems
to facilitate the certification process (see [3]), but on the
other hand they will also make good use of the shared re-
sources.
1

1Acknowledgments: This work relates to Department of the Navy
Grant N62909-12-1-7009 issued by Office Naval Research Global. The
United States Government has a royalty-free license throughout the
world in all copyrightable material contained herein.

1.1. Mixed-criticality and communication protocols.

We demonstrate our motivation to study the non-
preemptive mixed-criticality scheduling on a communi-
cation protocol that will use the concept of criticality to
improve its reliability and to make better use of the band-
width. We may look at a communication bus as a re-
source that is being shared by plenty of different mes-
sages – jobs. It is not so hard to imagine a situation in
which some of the messages need to carry more important
information than the others. These important messages
would correspond to high-critical jobs and, therefore, they
may be transmitted at the expense of other less important
messages that, on the contrary, would correspond to low-
critical jobs. With this we acquire a mixed-criticality sys-
tem represented by the messages and their criticality (im-
portance). The non-preemptiveness arises from the nature
of the protocol – the messages on a MAC layer must not be
chunked, i.e. the corresponding jobs cannot be preempted.

Based on the observation that ”the more confidence one
needs in a task execution time bound, the larger and more
conservative that bound tends to be in practice” Vestal [7]
proposed that different execution time values should be
specified for each criticality level of a given job. Our idea
is to use the concept of criticalities, when the message re-
transmissions are allowed up to the criticality of the mes-
sage and they lead to multiple execution times.

Consider an important message is not delivered,
then the following questions arise: How should the
dispatching system respond to this particular situation?
Is it possible to resend the message and to deliver all
messages on time? These questions relate to a problem of
MC scheduling. We study this problem in the context of
the time-triggered protocols where the static part/segment
of the period has a fixed schedule handling periodic
messages with zero jitter and the dynamic part/segment is
used for aperiodic messages. We are trying to tackle the
optimization version of the mixed-criticality scheduling
problem, while minimizing the length of the static part in
order to leave room for the dynamic part.

1.2. Related work and paper outline
In this paper we work with the model of mixed-

criticality (MC) systems formulated by Baruah, Li, and
Stougie in [1]. Baruah, in [4], provides a proof of in-
tractability of a problem to decide whether the given MC
instance is schedulable or not (MC Schedulability prob-
lem). In [2], the former results are elaborated further and
a new scheduling algorithm is proposed - OCBP (Own
Criticality-Based Priority) - that is capable of scheduling
a subset of MC instances according to recursively created
priority list in polynomial time. The OCBP algorithm
also creates a sufficient MC-schedulability test, i.e. an
MC instance that is so-called OCBP-schedulable is also
MC-schedulable. It is worth pointing out that according
to the same source, the first person who identified and fo-
malized the scheduling problem that arises from multiple
certification requirements was Vestal in [7].

In [1], the need for a new scheduling theory by
demonstrating the failure of the existing approaches
(reservations-basedand priority-based) in solving the
MC schedulability problem is also justified.

In Section 2, we present the problem statement and the
formal model for the representation of mixed-criticality
systems based on Baruah, Li, and Stougie in [1]. In Sec-
tion 3, we refer to two metaheuristic algorithms2 for solv-
ing the proposed problem.

2 Problem Statement

Before we embark onto the problem statement we re-
state here the formal model of the mixed-criticality sys-
tems, which appeared in [1], and has been further elabo-
rated on in [2]. We follow the terminology and the formal
model described in the latter source and we adopt it as
follows: A mixed-criticality (MC) system withL ∈ N

criticality levels is defined as a finite collection of MC
jobs. A mixed-criticality job is characterized by a 4-tuple
of parameters:Ji = (ri, di, χi, Pi), whereri ∈ R

+

denotes the release time (often calledoffset in the real-
time scheduling community),di ∈ R

+ denotes the due
date,χi ∈ {1, 2, . . . ,L} denotes the criticality of the
job (the larger the value, the higher the criticality), and
Pi : {1, 2, . . . ,L} → R

+ specifies the Worst Case Exe-
cution Time (WCET) estimate of the job for each level of
criticality. We assume thatPi is a non-decreasing partial
function, i.e.

∀ℓ1, ℓ2 ∈ {1, 2, . . . , χi}, ℓ1 ≤ ℓ2 : Pi(ℓ1) ≤ Pi(ℓ2)

MC instance. An MC instance is specified as a finite
set of MC jobs:IMC = {J1, . . . , Jn}.

Behavior. The semantics of the specified model is as
follows: each jobJi of an MC instanceIMC needs to start
its execution after a time instantri and should be com-
pleted till di. Within this time interval, the job is contin-
uously (without interruption) executed for some amount

2http://support.dce.felk.cvut.cz/pub/hanzalek/MCScheduling/index.htm

of time γi, which is not knowna priori. The timeγi be-
comes revealed only by actually executing the job until it
signalsthat it has been completed. In different execution
runs each of theγi may take different value, so the collec-
tion of specificγi values of a single run is referred to the
behaviorof theIMC .

Scheduling strategy. A scheduling strategyfor in-
stanceIMC specifies, for all possible behaviors ofIMC ,
which job (if any) to execute at each instant in time. A
scheduling strategydoes not have a priori knowledge of
the behavior ofIMC , hence at each instant, scheduling
decisions are made based only on theγi values of the al-
ready scheduled jobs.
Correctness. A scheduling strategy iscorrect if it
satisfies the following criterion for eachℓ ≥ 1: when
scheduling any behavior of criticality levelℓ, it ensures
that every jobJi with χi ≥ ℓ receives sufficient execution
time to signal its completion.

2.1 Optimization problem
Given an MC instance IMC comprised of

n jobs with maximum criticality level L (i.e.,
χi ≤ L∀i ∈ {1, . . . , n}), we are concerned with
a problem of designing a correct non-preemptive
scheduling strategy that minimizes the makespan of the
scheduled instance. We extend the Graham’s notation as
1|ri, di,mc = L|βCmax + α

∑

T , where1 denotes a
single resource,ri denotes the release date (often called
an offset),di stands for the due-date, the middle param-
eter mc denotes the maximum criticality level of the
scheduled instance, and the objective is a minimization of
the maximum completion timeCmax.

Example. Consider the following MC instanceIMC

comprised of 4 messages corresponding to 4 jobs, i.e.
I = {J1, J2, J3, J4}, whereJ2 andJ4 have a criticality
of 2 and the others have a criticality of 1. This setting
creates a mixed-criticality system with 2 criticality levels,
where the execution times of a jobJi are denoted by 2-
tuple[Pi(1), Pi(2)], wherePi(1) corresponds to the trans-
mission time of the message on the resource andPi(2)
corresponds to the transmission and retransmission time.
The specification of the system is as follows:

• J1 = (0, 4, 1, [2, 2])

• J2 = (0, 6, 2, [2, 5])

• J3 = (5, 8, 1, [1, 1])

• J4 = (4, 9, 2, [1, 3])

The behavior of this instance has a criticality of 1 only
if the execution times ofJ2 andJ4, i.e. γ2 andγ4, do
not exceed 2 or 1 units, respectively, otherwise it has a
criticality of 2. On the other hand, any behavior for which
the execution timeγ2 or γ4 exceeds 5 or 3 units, or any
behavior of criticality 1 for which the execution timesγ1

2

andγ3 exceeds 2 or 1 units, respectively, is by definition
errorneous.

0

cr
it
ic
a
li
ty

time
1 2 3 4 5 6 7 8

1

2

9

J2 J1 J4 J3

J2 J4

Figure 1. An optimal schedule for the IMC

instance. The certificate of optimality is
the length of the schedule at criticality level
2 that is 8 units long and it cannot be
lower since the criticality–2 jobs are exe-
cuted without idle times when they both ex-
ceed their criticality 1 WCETs.

Figure 1 shows a solution of the1|ri, di,mc−2|βCmax+
α
∑

T problem given the described MC instanceIMC

in form of a schedule that determines for each behavior
which job is being executed at any time.

Non-preemptiveness. Due to the non-preemptive na-
ture of our problem it does not necessary mean that when
the behavior of an MC instance is revealed to be of crit-
icality ℓ > 1 then all jobsJi with χi < ℓ do not get
executed at all. In fact once the job that raises the criti-
cality level of the behavior finishes its execution some of
the jobs with lower criticality actually get executed. Con-
sider the behavior(2, 4, 1, 1) of the example MC instance
scheduled as depicted in Figure 1, clearly the jobJ3 will
be executed despite its criticality (χ3 = 1) is less than the
criticality level of behavior (ℓ = 2).

3 Metaheuristic Scheduling Algorithms

This section contains a brief description of 2
metaheuristic algorithms to solve the1|ri, di,mc =
L|βCmax + α

∑

T problem. The two described algo-
rithms have been implemented in native C# code without
use of any supporting libraries.

3.1 Multicriteria Evaluation Function
In both of these algorithms a multi-criteria evaluation

function is used to decide between two (or more)valid
solutions, which one of them is better.

Valid solutions. A solution of an MC in-
stance IMC = {J1, J2, . . . , Jn} is a mapping
S : {1, 2, . . . , n} → R

+
0 which assigns to each job

Ji a starting timeS(i). We call a solutionvalid, if
it obeys the release date constraint and it obeys the
correctness constraint (defined in Section 2). The overall
tardiness, dependent on the due dates, is incorporated in

the criterion function.

Encoding. As has been noted avalid solution of
the 1|ri, di,mc = L|βCmax + α

∑

T optimiza-
tion problem for an MC instance havingn jobs
is represented by the mappingS. Consider a
permutation π on {1, 2, . . . , n} for which applies
∀i, j ∈ {1, 2, . . . , n} : i ≤ j ⇒ S(π(i)) ≤ S(π(j)), i.e.
π represents the ordering of the jobs in a non-decreasing
order according to their start times. This permutation
π encodesthe associated solutionS. To avoid misun-
derstanding, instead ofS(π(i)) we useSπ(i) since this
way is referred to the start time as well as an associated
solution.

Evaluation. The multi-criteria evaluation function of an
encoded solutionπ has the following form

E(π) = α

n
∑

i=1

max{0, Sπ(i) + Pπ(i)

(

χπ(i)

)

− dπ(i)}

+ βCmax (1)

where the start timesS are defined as

Sπ(1) = rπ(1) (2)

Sπ(i) = max
j<i

{Sπ(j) + Pπ(j)(min{χπ(i), χπ(j)}), rπ(i)}

i = 2, . . . , n (3)

and the length of the scheduleCmax is

Cmax = max
i=1,...,n

{Sπ(i) + Pπ(i)(χπ(i))} (4)

3.2 Simulated Annealing Algorithm
The simulated annealing is a broadly used optimization

method for solving different kinds of problems. We have
implemented it to solve the specified problem; the pseudo-
code is depicted on3 partly insipred by [6].

3.3 Genetic algorithm
We have also used a genetic algorithm with elitism

to solve the problem, whose pseudo-code is on the same
web. We have implemented for it various selection meth-
ods, crossover, and mutation (permutation-based) opera-
tors, but the following list of selection methods and op-
erators contains only those which proved themselves bet-
ter than the others, and those are:Roulette Wheel Selec-
tion, Randomized Tournament Selection, Order Crossover
Operator, Position-Based Crossover Operator, Insertion
Mutation Operator, andExchange Mutation Operator.

4 Experimental Results

For experimental purposes, we used our own test instances
that were generated by methods described on the web.

3http://support.dce.felk.cvut.cz/pub/hanzalek/MCScheduling/index.htm

3

The performance and the results of the algorithms are pre-
sented in the tables at the end of this section.

4.1 Test Results
The following 5 tables show the results of the algo-

rithms for the described test sets.

Table 1. Results for test set T1. The num-
bers in the parentheses is the total sum of
the jobs’ tardiness. All genetic algorithms
ran for 5 minutes.

SAA GA1 GA2

n Cmax CPU [s] Cmax Cmax

50 925 (18) 0.81 802 (32) 801 (20)
100 1657 (201) 3.28 1269 (25) 1232 (29)
200 2737 (667) 13.55 2608 (125) 2630 (100)
300 5107 (224) 32.30 4575 (334) 4552 (253)

Table 2. Results for test set T2.
SAA GA1 GA2

n Cmax CPU [s] Cmax Cmax

50 2647 (0) 0.74 2647 (0) 2652 (0)
100 5882 (0) 3.23 5882 (0) 5882 (0)
200 10589 (0) 13.46 10589 (0) 10589 (0)
300 17006 (0) 32.42 17006 (21) 17006 (0)
400 23606 (0) 58.46 23661 (354) 23606 (0)
500 28184 (0) 112.01 28184 (340) 28184 (424)

Table 3. Results for test set T3.
SAA GA1 GA2

n Cmax CPU [s] Cmax Cmax

50 2431 (0) 0.73 2431 (4) 2431 (0)
100 4882 (0) 3.15 4882 (0) 4882 (0)
200 10696 (0) 13.76 10729 (0) 10705 (73)
300 16466 (0) 31.51 16446 (185) 16466 (98)
400 22464 (0) 55.08 22464 (19) 22464 (0)
500 27660 (0) 88.47 27660 (0) 27660 (0)

5 Summary

In this paper we have formalized and examined a non-
preemptive mixed-criticality scheduling problem referred
to as1|ri, di,mc = L|βCmax + α

∑

T . Moreover, we
have brought a new motivation, in the context of commu-
nication protocols, to study the non-preemptive schedul-
ing. Two metaheuristic algorithms have been imple-
mented and experimentally evaluated on the test sets as
a way to tackle this problem

Table 4. Results for test set T4.
SAA GA1 GA2

n Cmax CPU [s] Cmax Cmax

100 6450 (0) 3.35 6450 (0) 6450 (0)
200 13024 (0) 13.81 13024 (0) 13024 (17)
300 20544 (0) 33.80 20544 (0) 20544 (207)
400 26434 (0) 59.34 26434 (606) 26434 (423)
500 27881 (0) 93.90 27881 (545) 27881 (263)

Table 5. Results for test set T5.
SAA GA1 GA2

n Cmax CPU [s] Cmax Cmax

100 5585 (0) 3.29 5585 (0) 5585 (0)
200 11617 (0) 13.52 11617 (0) 11617 (56)
300 16652 (0) 33.26 16652 (204) 16652 (168)
400 25357 (0) 60.70 25357 (0) 25357 (119)
500 28140 (0) 94.04 28140 (0) 28140 (455)

References

[1] Sanjoy Baruah, Haohan Li, and Leen Stougie. To-
wards the design of certifiable mixed-criticality sys-
tems. In Proceedings of the Real-Time Technol-
ogy and Applications Symposium (RTAS), Stockholm,
Sweden, April 2010. IEEE Computer Society Press.

[2] Sanjoy Baruah, Haohan Li, and Leen Stougie.
Mixed-criticality scheduling: improved resource-
augmentation results. InProceedings of the ICSA In-
ternational Conference on Computers and their Ap-
plications (CATA), Stockholm, Sweden, April 2010.
IEEE Computer Society Press.

[3] S. K. Baruah and G. Fohler. Certification-cognizant
time-triggered scheduling of mixed-criticality sys-
tems, InProceedings of IEEE Real-time Systems Sym-
posium 2011, December 2011.

[4] Sanjoy Baruah. Mixed-criticality scheduability analy-
sis is highly intractable. Available athttp://www.
cs.unc.edu/ ˜ baruah/Pubs.shtml , 2009.

[5] S.Baruah, V. Bonifaci, G. D’Angelo, H. Li, A.
Marchetti-Spaccamela, N.Megow, and L. Stougie.
Scheduling real-time mixed-criticality jobs.Mathe-
matical Foundations of Computer Science 2010: 35th
International Symposium, volume 6281 ofLNCS, Oc-
tober 2010. Springer.

[6] Sean Luke. Essentials of Metaheuristics. Avail-
able for free at http://cs.gmu.edu/$\
sim$sean/book/metaheuristics/ , 2009.

[7] Vestal, S. Preemptive scheduling of multicriticality
systems with varying degrees of execution time assur-
ance. InProceeding of the Real-Time Systems Sympo-
sium, IEEE CSP, pages 239–243. December 2007.

4

