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Abstract—In the automotive domain, it is of paramount
importance to ensure safety, and recently also security, of the
developed products. In many cases safety and security are
handled separately by independent teams. In this paper we
deal with testing and validation of safety- and security-related
properties of control software in the AUTOSAR architecture
and show that the strict separation of those two activities is
not necessary and that combining them can bring economic
benefits. We demonstrate that by developing software-in-the-loop
and hardware-in-the-loop testbeds and use them for both safety-
and security-related testing activities. We evaluate a prototype
of electric motors control software, that is currently under
development by Infineon Technologies, and perform a number
of tests to verify correct functionality of implemented safety
measures even under the presence of attacks. The motor control
software is integrated with a message authentication protocol on
CAN bus. The results show, that apart from few minor problems,
the implemented safety measures function correctly.

I. INTRODUCTION

The boom of electronic systems in cars brought also the
need to guarantee their safety, i.e. to reduce the probability of
their failure and severity of damage that can be caused by it as
much as possible. This led to development of safety standards
like IEC 61508 and the automotive adaptation ISO 26262 [1].
These safety standards provide guidelines and procedures
for development of safe electronic systems and respective
software. All these procedures involve extensive testing in
many stages of the development process.

Later, the continuing integration of various electronic
systems present in modern cars resulted in the need to access
information from most (if not all) on-board systems in various
subsystems in the car or even at remote locations. This trend
resulted in the whole new area of concern – security. It is no
longer sufficient to prevent system faults and minimize their
impact, but now we need to defend against intentional attacks
or malicious efforts to “upgrade” the control software [2].
Security is, of course, not a completely new field and there
already exist security standards (e.g. ISO 15408 [3]), but they
were developed mainly for traditional IT applications, not for
the automotive domain. Therefore, they lack the necessary
degree of consideration of safety features.

Because safety is already well-known and well-established
in the automotive industry but security is something new and
imported from outside, the safety and security issues are usu-
ally solved separately. Separate teams are usually responsible
for safety and security concerns, and testing of safety and

security measures is usually carried as separate processes. This
leads to increased development costs, prolonged development
time and possibly even to conflicts between implemented
safety and security measures, which may result in decrease
in their efficiency or even thwart their function altogether.

In this work we present a case study showing that such
separation of safety and security is not necessary, at least
in the testing and validation phases. With the help of Mat-
lab/Simulink, we developed a reusable Linux-based testbeds
for software- and hardware-in-the-loop simulations [4] and
show that they can be used to validate both safety- and
security-related requirements. The item to be tested is a
prototype of a complex device driver for the AUTOSAR
architecture named eMotor, currently being developed by
Infineon Technologies. It is a software module for controlling
several types of electric motors and it is supposed to be run
on Infineon’s TriCore TC1798 processor. For the purpose of
security testing we implemented1 a message authenticated
protocol for the Controller Area Network (CAN), proposed
by Volkswagen, called MaCAN [5]. We integrated MaCAN
with the eMotor prototype and used this external interface
to execute attacks on the eMotor software while observing
eMotor behavior.

This paper is structured as follows. In Section II we give
an overview of Infineon’s eMotor driver. Section III describes
software- and hardware-in-the-loop testbeds developed for
this case study. The experiments run on those testbeds are
described and their results are given in Section IV. We
conclude with Section V.

II. EMOTOR DRIVER PROTOTYPE

The eMotor driver is a software module – more specifi-
cally a complex device driver – for the AUTOSAR software
architecture [6], currently being developed by Infineon Tech-
nologies. It is meant to control electric Permanent Magnet
Synchronous Motors (PMSM) and Brushless Direct Current
motors (BLDC). It implements two control algorithms: Field
Oriented Control (FOC) for PMSMs and Block Commutation
(BC) for BLDC motors, providing torque control using PI
controller(s). Motors are controlled by generating a PWM
signal for the inverter. BLDC motors use 1-phase PWM
signal and PMSM use 3-phase PWM signal. In this work,
we consider only PMSM motors and therefore only the FOC
algorithm.

1https://github.com/CTU-IIG/macan



The eMotor requires measurement of electrical current
in the controlled motor and it supports multiple methods
of implementing this. It also supports several sensor types
for determining the position of the motor shaft, including a
sensorless option. The eMotor driver is also equipped with
a prototype implementation of several safety measures that
should detect hazardous states. For example, the generated
PWM signal is also read back in order to validate the function
of the PWM unit. More details can be found in Section II-B.

The eMotor has an interrupt based design, where the actual
control algorithm is executed in a hardware interrupt handler,
which is invoked at the end of the analog-to-digital conversion
(ADC) for current measurement [7]. It is designed to run on
the 32-bit TriCore TC1798 microcontroller [8] developed by
Infineon for automotive safety applications. The eMotor driver
is configured with AUTOSAR configuration management tool
EB tresos Studio from ElectroBit2.

A. Current sensor configurations

The eMotor driver supports following current measure-
ment configurations:

1) Two phase parallel: In this configuration, currents of
two phases (ia and ib) are measured using two ADCs that
measure simultaneously. The current of the third phase ic is
calculated from equation ia + ib + ic = 0.

2) Two phase sequential: In this configuration two phases
are measured using only one ADC. One phase is measured,
then second one and then the first one again, averaging the
result, to estimate the value of the first current at the time of
the second phase measurement. Then the equation ia + ib +
ic = 0 is used to calculate the current through the third phase.

3) Three phase measure: In this configuration all three
phases are measured with two parallel ADCs using the com-
bination of the previous two configurations. One ADC is used
to measure ia, then both ADCs measure ib and ic and finally
ia is measured again and averaged with the first measurement.
The equation ia + ib + ic = 0 can be than used to check for
anomalous behavior.

4) DC link measurement: This configuration is used with
the Block Commutation algorithm.

B. Safety measures

The eMotor driver prototype implements four mechanisms
to detect anomalous, potentially dangerous, situations. They
serve only for detection of anomalous situation, responses to
the errors were not yet implemented in the version available
to us. These features are optional and can be turned off via
compile-time configuration. The four safety measures are:

1) Current validation: This safety measure validates the
plausibility of measured phase currents by checking their sum
to be zero (or close to zero to account for measurement and
numerical inaccuracy). If the sum is greater than a predefined
limit an error is reported. This safety measure only works with
three phase current measurement, because in other modes the
third current is calculated from the other two, so the sum is
always zero.

2http://automotive.elektrobit.com/ecu/eb-tresos-studio

Besides the above check, there is an option to set upper
and lower limits for each phase current, and if the current stays
outside of these bounds for a given period of time a different
error is reported. Note that this check cannot be disabled via
configuration.

2) Position validation: When a sensor is used for position
acquisition the mathematical motor model implemented in
eMotor driver for sensorless mode can be used to detect
anomalous behavior. If enabled, the motor shaft position is
both read by the sensor and estimated by the internal model.
If these two values differ more than a predefined threshold an
error is reported.

3) PWM diagnostics: This safety measure diagnoses the
functionality of the PWM generating hardware and/or con-
necting wiring by feeding the generated PWM signal back
to the CPU and measuring its duty cycle with on-chip timer
modules. If the measured duty cycle differs from the expected
one by more than predefined threshold an error is reported.

4) Memory validation: With this feature enabled a com-
plete copy of eMotor configuration parameters (motor and
controller parameters, safety thresholds, etc.) is stored in the
memory and before every major operation (measurements,
control action calculation, etc.) the working and backup copies
are compared by calculating a checksum with CRC32 algo-
rithm and in case of a mismatch an error is reported. This
enables detecting HW memory faults as well as unauthorized
manipulation of eMotor parameters.

III. DEVELOPED TESTBEDS

This section describes the two testbeds developed for test-
ing of eMotor driver prototype – the software- and hardware-
in-the-loop testbeds. Both testbeds are developed in Mat-
lab/Simulink3, which is a tool for multidomain simulation and
model-based design heavily used in the automotive domain.

The SW-in-the-loop testbed runs completely on a PC,
simulating both the controlled motor and the eMotor software.
It is used for testing the functionality of eMotor software, the
implemented safety functions and for integration testing of
the said functions. This testbed does not contain the MaCAN
(authenticated CAN communication) module.

The HW-in-the-loop testbed utilizes the actual hardware
that the eMotor is intended to run on – the TriCore TC1798
microcontroller. PC-based simulation is used only to simulate
the controlled motor. This testbed contains the MaCAN mod-
ule and is in fact used for integration testing of said module,
as well as for SW/HW interaction and subsystem functionality
testing.

We use R2012b version of Matlab/Simulink for all
Simulink models used in this work [9].

A. Software-in-the-loop testbed

The SW-in-the-loop testbed is a Simulink model depicted
in Figure 1. It contains a dynamic model of the PMSM motor,
a block with the eMotor code and blocks that simulate various
faults. It is designed to work with all current measurements

3http://www.mathworks.com/products/simulink/



Figure 1: Software-in-the-loop testbed (Simulink model)

methods except DC link (we focus on FOC rather than on
BC) and with all position sensors. The sensorless mode is
currently not supported. The eMotor block reads shaft angle
and 3-phase currents from the motor model and outputs a
vector of three PWM duty cycle values, which is converted
to voltage in order to act as an input for the motor model.
There is also a standard Simulink PI controller block, serving
as speed controller. In other words, it controls the eMotor’s
torque input in order to follow reference speed.

1) eMotor block: The eMotor block shown in Figure 1 is
implemented as a C MEX S-function. This means that the
block is implemented in C language rather than composed
from other Simulink blocks. It comprises of slightly modified
Infineon’s eMotor driver code and Simulink interface code.
The modifications reside in using Simulink interfaces rather
than TriCore peripheral modules to read inputs and write
outputs. Moreover, the eMotor code is invoked from S-
function callback functions rather than by hardware interrupts.
This allows us to simulate as much of eMotor behavior as
possible. The sampling frequency (in simulation time) of the
eMotor block was set to 20 kHz – the recommended value for
eMotor control frequency.

2) PMSM motor model: To simulate the PMSM motor,
we used a Simulink model obtained from Matlab Central4.
The model implements differential equations describing a
simplified PMSM in the d-q plane as well as Park’s and
inverse Park’s transformations for voltages and currents [10],
[11].

3) Fault simulation: The testbed naturally supports simu-
lation of sensor and/or control faults. This is accomplished
by variant subsystem blocks inserted between the motor
model and the eMotor block. These subsystems allow for
different behavior based on the value of a control variable.
We introduced several fault locations in the Simulink model
where faults can be simulated. The locations are: current
measurement, position measurement and PWM diagnosis. At
each location we are able to simulate several fault types (e.g.
additive or multiplicative) and for each fault location there is
a vector of start and stop times (e.g. the fault can be active at
times 1–5 and 7–9 s). Additionally, for some fault types, their

4http://www.mathworks.com/matlabcentral/fileexchange/
38804-pmsm-simulation.

magnitude can be altered. Different fault types are described
below.

Faults types common to all fault locations:

1) No fault – no fault is introduced in this setting.
2) Additive error – a constant amount, specified by the

fault magnitude is added to the signal.
3) Multiplicative error – the signal is multiplied by

amount specified by the magnitude.

Fault types specific to current measurement:

4) Short circuit – the current signal is set to zero.

Fault types specific to position measurement:

5) Stuck – the position is held at the value it had at
start of the fault.

6) Slipping – maximum rate at which can the position
change is limited to the fault magnitude.

Fault types specific to PWM diagnosis:

7) Wire break – the generated PWM duty cycle is set
to 0.

8) Min – the PWM duty cycle cannot drop below fault
magnitude.

9) Max – the PWM duty cycle cannot rise above fault
magnitude.

B. Hardware-in-the-loop testbed

In a hardware-in-the-loop simulation, the tested software
runs in real time on real hardware. In our case the eMotor
driver runs on Infineon’s development board called TriBoard5.

Our HW-in-the-loop testbed is depicted in Figure 2. The
TriBoard is connected to a PC via a PCI-based Humusoft
MF624 I/O card6. PMSM motor model and fault simulation
are run on the PC and the I/O card is used to connect the
simulated motor with the board.

For real-time simulation, we use Simulink-provided exter-
nal simulation mode. In this mode C code is generated from

5Infineon Order Nr. KIT TC1798 SK
6http://www.humusoft.cz/produkty/datacq/mf624/
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Figure 2: Block diagram of the hardware-in-the-loop testbed

the Simulink model, the code is compiled and run in real-time
on the host system. Simulink provides only the user interface,
i.e. it is possible to tweak model parameters at run time or to
see graphs of various signals.

Since the eMotor driver runs with 20 kHz sampling fre-
quency, it is necessary for the simulation environment to run
also at this frequency. To meet this stringent timing require-
ments without buying an expensive hardware, we developed a
custom code generation target [12] for Embedded Coder tool-
box that generates code optimized for Linux with “preempt rt
patches”7. This setup allows us to run the simulation without
a deadline miss at 20 kHz on an ordinary PC computer.

The computer with a CAN interface card was added
later, in order to test the influence of CAN communication
and message authentication on the eMotor’s safety and time
properties. This computer was used only in tests covered in
Section IV-B4.

Some components of the testbed are described in more
detail below.

1) Humusoft MF624 I/O card: The MF624 is a PCI
expansion card designed for interconnection of a PC and real
world signals. It features 8 channel 14 bit A/D converter,
8 channel 14 bit D/A converter, 8 bit digital input port, 8
bit digital output port, 4 quadrature encoder inputs and 5
timers/counters as well as fully 32 bit architecture [13]. Only
D/A converter, digital input and timers are used in our HW-in-
the-loop testbed. For that we developed Simulink blocks that
access this card under Linux via the user-space I/O (UIO)
driver8.

2) Simulink model: The Simulink model used for HW-
in-the-loop simulation contains the model of the motor de-
scribed in Section III-A2, MF624 blocks mentioned above,
unit conversion blocks, simulation of the resolver sensor and
fault simulation blocks. The fault simulation was modified to
allow fault control from the TriBoard by means of a logical
signal that is controlled by eMotor software and read by
MF624’s digital input. A predefined fault is active whenever
this signal is active. This allows precise time measurement
of fault detection response times, because the precise time of
fault initiation can be saved alongside the time measurements.
Faults used here have the same types as those used in SW-
in-the-loop testbed (see Section III-A) with the exception

7https://rt.wiki.kernel.org/
8http://lxr.free-electrons.com/source/drivers/uio/uio mf624.c

of PWM fault which is not implemented, because it would
require additional hardware.

3) TriCore application: The eMotor demo application
supplied by Infineon was taken as a basis for the testing
program. This demo application uses the eMotor driver and
extends it with a PI speed controller and a simple command
line interface accessed over virtual serial port. The user
interface allows for switching the motor control on and off,
setting the reference speed, reading from position sensors
and calibrating them. We extended the application to allow
for direct PWM control, safety measures diagnostics (see
Section II-B), measurement of eMotor execution time, fault
control and transfer of measured values to a PC.

4) CAN bus & message authentication: The eMotor driver
was enhanced with Infineon’s AUTOSAR compatible CAN
driver [14] for the purposes of testing the effects of CAN
communication and possible attacks over CAN on the eMotor
software.

Additionally, the message authentication protocol for CAN
(MaCAN [5]) was implemented utilizing TriCore’s Secure
Hardware Extension (SHE) and integrated with the eMotor.
MaCAN’s time server and key server run on another Linux
PC with the CAN interface card [15], together with simple
application allowing secure motor control by means of an
authenticated signal conveying the reference speed.

IV. EXPERIMENTS

In this section we mention some of the conducted ex-
periments whose results worth mentioning. All conducted
experiments are described in our technical report [16]. While
the software-in-the-loop testbed was used only for validation
of safety properties, the hardware-in-the-loop testbed was used
to evaluate several security-related scenarios.

A. Software-in-the-loop experiments

The SW-in-the-loop testbed can be used only for validation
of properties that are not related to either hardware or real-
time execution. SW-in-the-loop simulation is best used for
verifying logical correctness of the executed software. In the
test cases described in this section we simulated various faults
and observed which errors are detected.

We automated the execution of test cases with a Matlab
script that loads the list of test cases (see below), executes
them and saves simulation results. For each test case type,
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Figure 3: Test case results when no fault is simulated.

fault locations, types, start times, stop times and magnitude
can be set. Also reference speed for the PI controller and
motor load can be specified independently for each test case,
but for simplicity we used the same values for all test cases.
As can be seen in Figure 3, reference speed starts at 0 and
increases linearly to 3000 rpm between time 0.2 and 4 s. The
motor load starts at 0.1 Nm, then it linearly increases to 5 Nm
in time from 1 to 4 s and then linearly decreases back to
0.1 Nm from 8 to 10 s. All simulations described below had
duration of 10 s.

In the figures below, we can see the results of simulations.
The bottom part of each figure shows the status of when the
faults were simulated and when various errors were detected.
Thin line means that no fault was simulated or no error was
detected while thick line means the opposite. Colors denote
different errors (see the legend in the figures).

1) No fault test case: In this test there are no faults sim-
ulated in order to test the normal operation and susceptibility
to detection of false errors.

In Figure 3 we can see a false position validation er-
ror occurring near the end of the simulation. This error
is signalled when there is inconsistency between simulated
motor and eMotor’s internal motor model. This inconsistency
only appears when the motor torque decreases and it causes
the measured and calculated position to slowly diverge. The
false error occurs when the two positions differ more than a
predefined threshold.

Because we cannot run tests with real motor, we are unable
to determine which model is correct or even whether we
configured the eMotor properly. This being said, we think that
the current version of the eMotor prototype documentation is
not clear enough with regards to the eMotor’s motor model
parameters (particularly definitions of used terms and vague
description of filter parameters). It will be necessary to specify
what are the valid operating conditions for the motor load
and how to set the parameters of the eMotor’s internal motor
model.

2) Position sensor fault: In this case the position sensor
becomes stuck at time 4 s, outputting the last value read before
that event. Then it reverts back to the normal operation at 8 s.

Results in Figure 4 show, that the position sensor fault
was successfully detected. The detection delay was 6.5 ms.
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Figure 4: Position fault simulated
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Figure 5: PWM fault simulated

It is worth mentioning that a current error was also reported
(with delay of 3.5 ms) this is caused by the motor currents
exceeding the range of the simulated ADC.

3) PWM wire break: In this test case the PWM signal
wires for all phases break at 4 s, outputting duty cycle of 0,
which results in maximum voltage applied to all phases, and
then they revert back to normal operation at 8 s.

Results can be seen in Figure 5. In this figure we replaced
the load profile, which was the same as in previous cases, with
phase A PWM signal generated by the eMotor (i.e this signal
is fed to the motor only when the fault is not simulated). The
other two phase signals had similar shape so we left them out
of the picture for the sake of readability. The PWM fault was
successfully detected and the detection delay was one eMotor
algorithm cycle (50 µs). This is the minimal possible delay,
because the PWM diagnostic is implemented as a two step
process alternating reading and validation in each algorithm
cycle. At the beginning of the fault there are current and
position errors reported, these are caused by the reaction of
the motor to the loss of control and maximal voltage applied
to all phases. After a short delay the motor stabilizes and
those errors disappear. Because there eMotor driver does not
react to safety errors yet, the implemented the controller is not
stopped and as soon as the fault is over the signals affected
by controller wind-up are fed to the motor and this results in
erratic behavior and reported current and position errors that
can be seen in the figure.



B. Hardware-in-the-loop experiments

The main goal of these experiments is to measure the
execution time of the eMotor controller and see how it is
influenced by the implemented safety and security functions
as well as by possible faults and attacks. Note that bounded
execution time is an important safety requirement for the
eMotor software.

The execution time of the main controller loop (the one
called by periodic ADC interrupt) is measured using on-
board system timer (STM) and with each measurement the
information which errors were reported during that cycle is
stored. Also the fault initiation time and the time when an error
was first reported are measured, allowing exact measurement
of the fault detection delay.

The STM runs at 100 MHz thus having 10 ns resolution.
The timer itself is 56 bit wide but only the lowest 32 bits are
read and stored, because the overflow (which in the lowest
32 bits occurs every 42.9 s) can be easily handled during data
post-processing. The start and end times of each loop and 4
error flags are stored in on-board RAM.

By using 1 MiB of available SRAM (unused by the orig-
inal eMotor software) we can store 87 381 measurements,
which at the 20 kHz control frequency results in slightly
under 4.5 s of run time. After the end of the experiment, the
measured data are transferred to the PC via virtual serial port
provided by the TriBoard.

The tests consisted of starting the idle motor with constant
1 Nm load to 1000 rpm and holding it there for the entire
measurement. In all experiments, the reference speed was set
to 1000 rpm. Unless said otherwise all measurements were
initiated after the motor speed stabilized.

1) No safety measure enabled: In this section, we describe
the experiments when no safety measure was configured in
the eMotor driver, i.e. the safety measures are not compiled
into the eMotor binary. Therefore, we measure the properties
of the control algorithm itself. In these experiments, error
information was not saved, because it is impossible for eMotor
to report any errors in this configuration, resulting in increased
number of measurements.

a) No fault simulated: In this case no fault was simu-
lated. With this test, we want to investigate the properties of
normal operating conditions.

The results can be seen in Figure 6. Figure 6a shows distri-
bution of execution time over experiment time and figure 6b
shows a histogram of those execution times. Most eMotor
invocations have execution time between 10.2 and 10.7 µs.
Although it may not be clear from the figure it is exactly
every 20th invocation that is cca 1 µs longer than the rest.
This is most likely caused by the speed PI controller that runs
at 1 kHz and causes cache trashing.

b) Position fault simulated: In this case the “stuck”
position fault (see Section III-A3) was simulated from 0.9 s
onward to check the effects of a fault on the timing properties
of the eMotor driver.

Results can be seen in Figure 7. These results differ from
all others, because there is a visible change in execution time
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Figure 6: No safety measure, no fault
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(less jitter) from the moment the fault was initiated. Although
this change does not violate the bounded execution time
requirement, it is interesting to see how different values of
mathematical operation operands result in different execution
time. Moreover after short time (cca 0.7 s) all PWM channels
were set to maximal duty cycle resulting in stopped motor.

2) Single safety measure enabled: In this section, we
perform experiments with only one safety measure enabled
(compiled in) and without faults. This allows us to see the
overhead caused by the respective safety measure.
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Safety measure Execution time [ µs]
Current validation 0.1
Position validation 1.7
PWM diagnosis 0.5
Memory validation 3
All four enabled together 5

Table I: Execution time cost of individual safety measures
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Figure 9: All safety measures, no fault

For example, Figure 8 shows the case where only the
position validation was enabled and no fault was simulated.
It can be seen that the position validation prolongs the
execution of the control algorithm roughly by 1.5–2 µs and
adds more jitter. Execution time of individual safety measures
is summarized in Table I.

3) All safety measures enabled: Experiments in this sec-
tion run with all safety measures enabled, as in a production
system. The purpose is to see how they operate together and
how do various faults influence the execution time.

First, we enabled all four safety measures and no fault
was simulated. Results can be seen in Figure 9a. All safety
measures combined prolong the execution of the control
algorithm roughly by 5 µs and slightly prolong every other
cycle due to the nature of PWM diagnostic.

Figure 9b shows a more detailed view of the same data
and reveals a repeating pattern in execution time. Period of
this pattern is roughly 65.7 ms. We have no explanation for
why is the pattern there.

We also simulated a position fault while all four safety
measures were enabled. The measured position was stuck on
one value roughly at 0.9 s. As can be seen from results in
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Figure 10: All safety measures enabled, position fault simu-
lated

Figure 10, the position fault was correctly reported and the
current error was reported simultaneously, which has the same
cause as in the SW-in-the-loop test (see Section IV-A2).

4) CAN bus flooding: While all the previous experiments
were merely safety-related, this section covers even security-
related experiments. The main goal here is to determine
how the additional security measures interfere with normal
operation and whether they can or cannot cause a violation of
a safety requirement such as bounded execution time.

In all experiments in this section the CAN bus was flooded
by a continuous stream of messages with random ID, random
length (0 – 8 bytes) and random data sent with the highest
possible baud rate (1 Mbps) to simulate an attacker trying
either to guess the key used for message authentication or to
simply cause CAN bus denial-of-service. We are interested
only in the effects this has on the eMotor and especially
whether the extra load of the cryptographic hardware (SHE)
affects eMotor’s execution time. The effectiveness of the
authentication scheme used in MaCAN is not of interest in
this work.

First, we verified that reception of CAN messages (without
authentication) based on polling the hardware rather than be-
ing notified by interrupts (typical in safety related application)
does not produce a visible effects in execution time. Then,
the polling method was also used in subsequent test, with
message authentication which caused increased load of the
SHE hardware.

In the test with message authentication enabled, the refer-
ence speed was sent over MaCAN as an authenticated signal.
All safety measures were enabled and CAN bus was flooded
with continuous stream of messages just like in the previous
case. No artificial faults were simulated.

As can be seen from results in Figure 11 the increased
load generated by checking of authenticity of those random
messages has minor effect on the execution time and no safety
measure reports a false error.

V. CONCLUSION

In this paper we presented the testbeds developed for
combined validation of safety and security requirements of
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Figure 11: All safety measures enabled, no fault simulated,
MaCAN control, CAN flood

an automotive application. The validation was performed
by means of testing the developed item in software- and
hardware-in-the-loop simulations. The tested item was a pro-
totype of an AUTOSAR module for controlling electrical
motors called eMotor, which was integrated with the message
authentication protocol for the CAN bus. The hw-in-the-loop
testbed was based on Linux operating system, which allowed
us to achieve the needed real-time response of 50 µs and it
simplified the setup of CAN bus network.

We discovered several minor shortcomings in the imple-
mented prototypes of safety measures (or in their documen-
tation) and reported them to Infineon.

We also integrated the eMotor software with an implemen-
tation of message authenticated protocol on CAN bus called
MaCAN. Our implementation of MaCAN uses the Secure
Hardware Extension (SHE) of the TriCore TC1798 CPU to
accelerate cryptographic operations needed for its function.
We conducted several experiments with this protocol to see
the effect of envisioned attacks over CAN networks on the
eMotor functionality. Our results show that such attacks have
no significant influence on the eMotor functionality and that
safety requirements such as bounded eMotor execution time
are not violated.

Based on the experience from this case study, we argue
that there is a big benefit in joining safety and security ac-
tivities in the testing and validation phase of the development
process. Development of the software- and hardware-in-the-
loop testbeds consumes a lot of resources and since the same
testbed can be used for validation of both safety- and security-
related requirements, there is little benefit in having two
independent teams developing the same test bed.

A full technical report containing data from all conducted
experiments is available on-line [16].
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