
Efficient Algorithm for Jitter Minimization in
Time-Triggered Periodic Mixed-Criticality Message

Scheduling Problem

Antonin Novak
DCE FEE and CIIRC

Czech Technical University in
Prague

Czech Republic
antonin.novak@cvut.cz

Premysl Sucha
DCE FEE

Czech Technical University in
Prague

Czech Republic
suchap@fel.cvut.cz

Zdenek Hanzalek
DCE FEE and CIIRC

Czech Technical University in
Prague

Czech Republic
hanzalek@fel.cvut.cz

ABSTRACT
The current research in real-time scheduling focuses mostly
on the certification of functionalities with respect to safety
requirements under conservative assumptions or to achieve
efficient resource utilization but with optimistic assump-
tions. With growing system complexity, the safety certifi-
cation is becoming hard, especially in event-triggered en-
vironments. In time-triggered environments, the network
nodes are synchronized by clocks and follow a static sched-
ule hence they are easily certifiable. However, the time-
triggered paradigm has two disadvantages. The first one is
its general non-flexibility (e.g. message retransmission, effi-
cient resource usage) and the second one is the need for an
efficient scheduling algorithm producing the schedule.

In this paper, we propose a solution to both of these is-
sues. To address the first disadvantage, we propose a method
for non-preemptive message retransmission in time-triggered
environments while preserving the efficient use of resources.
Based on the message criticality we allow a certain number
of retransmissions. The observed prolongation of the pro-
cessing time of a highly critical message is compensated by
skipping transmission of less critical messages. Static sched-
ules then contain all alternatives caused by the retransmis-
sions that can occur during a run time execution. Sched-
ules conform with certification requirements imposed on the
highly critical messages while preserving the efficient use of
resources. To address the second disadvantage, we propose
a novel heuristic scheduling algorithm with an unscheduling
step for solving large instances of periodic message schedul-
ing problem. The message periodicity is assumed to be a
power of two and the objective is to minimize the maximal
jitter. The efficiency of the approach is demonstrated on
problem instances with up to 2000 messages.

RTNS ’16, October 19-21, 2016, Brest, France

ACM ISBN .

DOI: http://dx.doi.org/10.1145/2997465.2997481

CCS Concepts
•Theory of computation → Mathematical optimiza-
tion; •Computer systems organization → Real-
time systems; Embedded and cyber-physical systems;
•Computing methodologies→ Planning and scheduling;

Keywords
Mixed-Criticality, Message Scheduling, Offline Scheduling

1. INTRODUCTION
Modern vehicles consist of many ECUs (Electronic Con-

trol Units) that communicate together over communication
buses. ECUs are implementing a broad range of functional-
ities including advanced driver assistants and safety-critical
applications like x-by-wire systems (e.g. drive-by-wire). The
current trend in the automotive industry shows that require-
ments on the throughput and determinism of the communi-
cation channel will grow.

Traditionally, event-triggered communication protocols
such as CAN (Controller Area Network) [5] are commonly
used. Due to the improving capabilities of driver assistance
systems, the amount of data transferred through the net-
work in a vehicle is growing. For example, it is often the
case that modern car contains more than one camera gener-
ating high data traffic. Furthermore, the traffic generated by
ECUs is safety-critical in many cases. An example is a lane-
keeping assistant which is a critical functionality since unde-
sirable delays in communication or lost messages may result
in malfunctions and dangerous failures. Messages generated
by ECUs are typically periodic, and low jitter is required to
guarantee the quality of control.

Traditional protocols like CAN were not designed for a
high data throughput; therefore their usage in modern cars
is not suited for driver assistant systems. CAN FD (Flexi-
ble Data Rate) was designed to support data transfer with
speeds >1 Mbit/s. However, it still cannot handle data-
intensive applications. Moreover, since the response time
analysis in real-life event-triggered communication systems
including gateways and precedence relations (between mes-
sages on different segments) is very complex problem, safety
certification of systems utilizing event-triggered environment
is a tremendously difficult task. In time-triggered communi-
cation protocols, the response time analysis is easy. There,
the network nodes have synchronized clocks and messages



are transmitted at the moments defined by the static sched-
ule. When constructing the schedule, a designer imposes
a set of constraints (such as message release and deadline)
on the communication that are met in every feasible solu-
tion to the scheduling problem. Therefore, the certifica-
tion of the system can be achieved via showing the feasi-
bility of the produced communication schedule. New pro-
tocols were designed to combine both time-triggered and
event-triggered communication. For example, FlexRay bus
is used nowadays in the automotive industry (e.g. Porsche
Panamera, Nissan Infinity Q50). The scheduling of FlexRay
static segment can be solved very efficiently due to Dvorak
et al. [6]. However, FlexRay’s bandwidth is only 10 Mbit/s
which is not sufficient for applications like autonomous driv-
ing. Therefore, Ethernet-based protocols containing time-
triggered paradigm [11] are considered as a successor of
FlexRay, at least in the automotive industry. However,
the support for the time-triggered paradigm in the Ethernet
needs to be contained in the network elements [9].

One of the disadvantages of time-triggered protocols is
their non-flexibility. For example, the static schedule does
not take into consideration the message retransmission.
When a critical message is not delivered due to a distur-
bance or electromagnetic noise, it may be necessary to re-
peat its transmission. If one wants to take it into account,
then the static schedule has to allocate more of the resource
time for these retransmissions. However, message retrans-
missions are not that frequent thus the average resource uti-
lization may be low. Nevertheless, retransmissions in time-
triggered protocols can be resolved in a similar manner like
in event-triggered ones. If a more critical message is retrans-
mitted, then it consumes the resource time of a less critical
message, which is skipped. However, bringing this dynamic
behavior into static time-triggered schedules is a very chal-
lenging problem. The schedule has to assume alternative
schedules based on the observed run time scenario. In this
paper, we introduce this flexibility to the static schedules
while modifying the traditional time-triggered scheduling
approach. However, the general idea is simple – schedule
critical messages apart from each other and interleave them
with less critical ones.

1.1 Contribution and Outline
In this paper, we propose a solution to the scheduling

of periodic non-preemptive mixed-criticality messages with
different processing times in time-triggered communication
protocols. We introduce a new scheduling model that con-
structs static schedules encapsulating alternative run time
execution scenarios. Feasible schedules ensure robustness
with respect to the processing time prolongation and safety-
critical aspects while improving the utilization of the com-
munication resource. Furthermore, we introduce a novel
constructive heuristic with an unscheduling step efficient at
solving feasibility problems. The aim is to find a low-jitter
periodic schedule for messages that takes into consideration
the message retransmission. The message periodicity is as-
sumed to be given as a power of two. We solve a successive
sequence of feasibility problems in order to minimize the
maximal jitter in the schedule. Furthermore, the proposed
algorithm can be easily extended to include message release
dates, deadlines, and precedence relations.

The rest of the paper is structured as follows. In Section 2
we review scheduling in time-triggered networks, mixed-

criticality scheduling and the work on jitter minimization. In
Section 3 we describe the Non-Preemptive Mixed-Criticality
Match-Up scheduling model which we use to deal with dif-
ferent processing times in time-triggered protocols. In Sec-
tion 4 we define the problem of minimizing jitter of periodic
messages with different processing times. We provide a MIP
(Mixed-Integer Programming) model, and we show the prob-
lem complexity. Finally, Section 5 presents the proposed
algorithm based on iterative scheduling with an unschedul-
ing step for mixed-criticality messages. The ability to solve
large problems is demonstrated with instances containing up
to 2000 messages in Section 6. The conclusions are drawn
in Section 7.

2. RELATED WORK
The exhaustive survey on mixed-criticality in real-time

systems is presented by Burns and Davis [4]. This research is
traditionally concentrated around event-triggered approach
to scheduling. It aims towards the construction of schedul-
ing policies that help mixed-criticality systems to achieve a
certification and that make efficient use of the shared re-
sources.

In the seminal paper [16] Vestal proposed a method that
assumes different WCETs (the worst-case execution time)
obtained for discrete levels of assurance. Apart from this
proposition, the paper presents modified preemptive fixed
priority schedulability analysis algorithms. Although we
adopted his proposition of different processing times for
different levels of assurance, the preemptive model is not
suitable for communication protocols, and it significantly
changes the scheduling problem.

Baruah et al. [2] formulated the basic model of mixed-
criticality systems. They study MC schedulability problem
under special restrictive cases in the event-triggered envi-
ronment. Theis at al. [15] argued that mixed-criticality
shall be pursued in time-triggered systems. Baruah’s and
Fohler’s [1] approach in the time-triggered environment as-
sumed preemptive tasks with up to two criticality levels. It
makes it unsuitable for communication protocols since the
preemption would be costly. In this paper, we follow the
model presented by Hanzalek et al. [17]. The paper for-
mulated the scheduling problem of non-preemptive mixed-
criticality tasks in time-triggered systems with different pro-
cessing times. They constructed static schedules with F-
shaped tasks allowing them to switch between schedules at
different execution levels and match-up back with the basic
schedule. Unfortunately, the paper [17] did not address two
aspects important for real-life applications: periodic sched-
ules and the actual efficient algorithm solving instances with
hundreds of messages.

Schedules with large jitter values are undesired in em-
bedded systems. Output jitter brings difficulties for con-
trol loops, and the computational load is not balanced
across the hyperperiod. Therefore, we minimize jitter in
constructed schedules. Our problem is related to periodic
scheduling with constraints on timing properties of tasks.
The optimization of FlexRay static segment was done by
Lukasiewycz et al. [12], Dvorak et al. [6]. They have trans-
formed periodic scheduling problem in the time-triggered
domain to bin-packing problem in order to find a zero-jitter
schedule. Taewoong et al. [10] reduced output jitter of real-
time tasks under EDF scheduling. Approximation and hard-
ness results for harmonic periods are known due to Eisen-



brand et al. [7].
Therefore, to the best to our knowledge, the retransmis-

sion of non-preemptive mixed-criticality messages in peri-
odic static time-triggered schedules was not addressed be-
fore. We formulate the problem as a periodic scheduling
problem with F-shaped tasks. We express it as a Mixed-
Integer Program. Further, we propose an efficient heuristic
algorithm solving problem instances with thousands of mes-
sages.

3. TIME-TRIGGERED MIXED-
CRITICALITY MATCH-UP
SCHEDULING

The problem of the non-preemptive mixed-criticality
match-up scheduling can be represented by F-shapes [17].
Each F-shaped task represents one message. An F-shaped
task is given by its criticality and a set of alternative pro-
cessing times as follows:

Definition 1. The F-shaped task Ti is a pair (Xi,Pi)
where Xi ∈ {1, . . . ,L} is the task criticality and Pi =

(p
(1)
i , p

(2)
i , . . . , p

(Xi)
i ) ∈ NXi is the vector of processing times

such that p
(1)
i < p

(2)
i < . . . < p

(Xi)
i . We say that p

(`)
i is the

processing time of Ti at criticality level `.

Each F-shape represents an approximation of the distri-
bution function describing the uncertainty about its actual
processing time. If we consider the processing time of a task
Ti as a random variable Ti, then we can relate the vector of
its processing times Pi to the approximation of its distribu-
tion function of the processing time. For each criticality level
` ∈ {1, . . . ,Xi}, we define the associated processing time at

` as p
(`)
i = F−1

i (c`), where F−1
i is the quantile function of Ti

and c` is a parameter given by the application requirement
for level `. For example, if we identify criticality levels with
IEC 61508 SIL (Safety Integrity Levels) standard [3], then
the task criticality Xi is given by the SIL of the functional-
ity carried out by the message content and c` is defined as
1−probability of failure defined by SIL `.

For each task (message) Ti, the vector Pi then serves as
a finite-sized approximation of its CDF (cumulative distri-
bution function) of the processing time. The approximation
simplifies the scheduling problem and allows us to solve it
more efficiently than with the consideration of full CDF. We
display the finite-sized vector of increasing processing times
in the Gantt chart vertically into layers as the single task
(see Figure 1).

Notice, that the F-shapes do not only assume the existence
of a probability distribution on the processing time of a task.
The basic case of the message retransmission without addi-
tional overhead can also be represented. In this case, the
F-shapes would have a constant prolongation at each level,
and their height would be determined by the number of al-
lowed retransmissions. Therefore, if messages have defined
the inner structure that cannot be changed, then process-
ing time prolongation corresponds to the complete message
retransmission.

An example of the schedule with F-shaped messages is
depicted in Figure 1. There, T2 and T3 have criticality 1 and
no retransmission is allowed, tasks T1 and T5 have criticality
2 and can be retransmitted once. T4 has criticality 3 and
thus total three transmissions are allowed.

cr
it

ic
a
li
ty

le
ve

l
cr

it
ic

a
li
ty

le
ve

l

T1T1

T2T2 T3T3

T4T4

T5T5

00 55 99 timetime

etet

Figure 1: A static schedule with F-shaped tasks with one
particular execution scenario et.

A solution of the scheduling problem is given by the sched-
ule that switches to the higher criticality level when a prolon-
gation of a message occurs. After its successful completion,
it matches up with the original schedule.

By the schedule for a set of F-shaped messages IMC =
{T1, . . . , Tn} we refer to an assignment (s1, . . . , sn) ∈ Nn. If
no timing requirements on start times of messages are im-
posed, then the schedule is feasible if and only if messages are
not overlapping on any criticality level. Therefore, if Ti pre-

cedes Tj in a feasible schedule, then sj ≥ si + p
(min{Xi,Xj})
i ,

where min{Xi,Xj} is the maximum common criticality level
of Ti and Tj . The inequality ensures that messages are
not overlapping on any criticality level and, therefore, only
higher critical messages are covering less critical ones. The
notion of covering influences the run time schedule evalua-
tion governed by the execution policy.

3.1 Execution Policy
A feasible schedule with F-shaped messages describes al-

ternative schedules for any actual realization of the process-
ing time of messages. Observed prolongations of more criti-
cal messages are compensated by skipping execution of less
critical messages. This behavior can be described in terms
of the execution level of the schedule that defines the per-
formed schedule alternative.

Assuming discrete time, let et ∈ {0, . . . ,L} be the execu-
tion level of the schedule (s1, s2, . . . , sn) during the run time
execution at time t. Let H ∈ N be the length of the hyperpe-
riod (scheduling horizon). The execution policy defines the
execution level of the schedule based on processing time pro-
longations observed during a run time execution according
to rules described in Algorithm 1.

Algorithm 1 Execution Policy

1: e0 ← 0
2: for t← 0 to H do
3: if ∃Ti : t = si and et = 0 then
4: et ← 1
5: execute Ti
6: end if
7: if ∃Ti that is being executed at t then

8: et+1 ←


et if t+ 1 < si + p

(et)
i

et + 1 if t+ 1 ≥ si + p
(et)
i and

Ti is not completed

0 otherwise
9: else

10: et+1 ← 0
11: end if
12: end for



The execution starts at t = 0 at zero level. Message Ti
is executed at time t = si if and only if esi = 0 (i.e. the
resource is available). By the assumption, if the message is

executed at si, then it is completed no later than si + p
(Xi)
i

(i.e. the Xi level represents its WCET). The execution level
et of the schedule is raised, if the executed message Ti is not

completed at si + p
(et)
i . After upon a message is completed

at one of its levels, the execution level is decreased to 0
and stays there until the start time of the next message.
Therefore, if the execution level et is raised above 1 during
the execution of Ti (i.e. Ti is prolonged), then messages that

are covered by Ti at the level et, i.e. ∀j ∈ IMC : si + p
(1)
i ≤

sj < si + p
(et)
i , are not executed.

An example of a schedule with F-shaped messages is il-
lustrated in Figure 1. There are five F-shaped messages
forming a static schedule. The realized run time execution
scenario for this schedule is depicted by the black line. While
following the schedule, the actual processing time of T1 was
9 instead of 5 due to a disturbance. The execution policy
states that messages, covered by the prolonged message, are
skipped, i.e. T2 and T3. After a message is transmitted,
the execution matches up with the schedule at the lowest
criticality. Therefore, in this example, after T1 finishes, T4

is up next. In another possible run time execution scenario,
where the processing time of T1 would be 5, T2 would follow.

4. PROBLEM STATEMENT
We solve the periodic message problem in time-triggered

communications. The aim is to find a static periodic sched-
ule for a given set of communication messages that are of
mixed-criticality. Let the length of the basic period be
a parameter τ ∈ N. For each message Ti, its periodicity
Ri = 2ni , ni ∈ N0 is given. If the message has periodicity
Ri, then it has to be scheduled once in each τRi time units,
i.e. its period is equal to τRi.

This assumption is not limiting in practice since the data
from our automotive industrial partner shows that messages
between ECUs have periodicity given by a power of two [6].
Also in Vestal’s paper [16] a processor workload data from
avionics system have periodicity given as a power of two as
well.

The length of the hyperperiod is defined as H = τ ·maxRi.
It is considered as the feasibility interval, since if a message
would be scheduled outside the hyperperiod, then the sched-
ule cannot be repeated, hence it would not be periodic. A
message Ti has multiple occurrences in the hyperperiod if
Ri 6= maxk Rk. We say that the jitter between a pair of
two consecutive occurrences r and r + 1 of the message Ti
is the absolute value of the difference of start times relative
to message period

Ji,r = |si,r + τRi − si,r+1| (JIT)

where si,r is the start time of r-th occurrence of message
Ti. Similarly, the jitter is also calculated between the first
and the last occurrence of each message. For messages with
Ri = maxk Rk the jitter is not defined.

The solution to the problem is a feasible periodic sched-
ule of mixed-critical messages that minimizes the maximal
jitter, i.e. min maxi,r Ji,r. We call this problem of minimiz-
ing jitter in periodic mixed-criticality match-up scheduling
as JPMC.

In Figure 2 we can see a solution to the problem. There

T2T2

T2T2

T1T1

T3T3

T4T4

p
er

io
d

1
p
er

io
d

1
p
er

io
d

2
p
er

io
d

2

J2,1J2,1

⌧⌧0.5⌧0.5⌧

2⌧2⌧1.7⌧1.7⌧1.2⌧1.2⌧

Figure 2: An example of a schedule with messages where
only the non-zero jitter schedule is feasible.

we have four messages, where all of them have periodicity 2
except the message T2 with R2 = 1. In this schedule, there is
a positive jitter J2,1 = 0.3τ between the first and the second
occurrence of T2. It can also be seen that no other feasible
schedule can achieve lower jitter.

4.1 MIP Formulation
The JPMC Problem can be formulated as a Mixed-Integer

Linear Program using the relative-order model. For better
clarity, let us define for any m ∈ N0, the expression

[
m
]
,

which denotes the index set {1, . . . ,m} and it an empty set
when m < 1. The IMC denotes the set of all messages.
For each message Ti ∈ IMC , we view its occurrences given
by its periodicity Ri as individual messages. For such an
occurrence r we seek its start time si,r. The start time is
bounded by the time window given by the message occur-
rence’s period. Furthermore, for any pair of occurrences r
and r, we define the variable xi,j,r,r that takes value 1 if
the occurrence r of the message Ti is scheduled before the
occurrence r of the message Tj . For such a pair of occur-
rences, the maximal common criticality level is determined,
and equations (9) and (10) then ensure that messages will
not overlap. This is achieved with so-called big-M constant
that can be used for turning constraints on and off depend-
ing on the value of a variable. Since xi,j,r,r determinates the
relative order of occurrences r and r we require exactly one
of (9) and (10) constraints to be satisfied for each pair of
occurrences.

The time window for each message occurrence is given by
constraints (2) and (3). Notice, that in the equation (3)
we require that the message occurrence is scheduled within
its period including its highest criticality level Xi (i.e. its
WCET). The maximum jitter Jmax is determined by (4)–
(8), where the jitter between occurrences in successive pe-
riods is constrained by (4)–(5). This is the linear way of
expressing the equation (JIT). The jitter between different
hyperperiods is given by (6)–(7).

min Jmax (1)

subject to

(r − 1)τRi ≤ si,r ∀i ∈ IMC , ∀r ∈
[
H
τRi

]
(2)

si,r + p
(Xi)
i ≤ rτRi ∀i ∈ IMC , ∀r ∈

[
H
τRi

]
(3)



Ji,r ≥ si,r + τRi − si,r+1 ∀i ∈ IMC , ∀r ∈
[
H
τRi
− 1
]

(4)

Ji,r ≥ −si,r − τRi + si,r+1 ∀i ∈ IMC , ∀r ∈
[
H
τRi
− 1
]

(5)

Ji, H
τRi

≥ si,1 − si, H
τRi

+H − τRi

∀i ∈ IMC : τRi < H (6)

Ji, H
τRi

≥ −si,1 + si, H
τRi

−H + τRi

∀i ∈ IMC : τRi < H (7)

Jmax ≥ Ji,r ∀i ∈ IMC , ∀r ∈
[
H
τRi

]
(8)

si,r ≥ sj,r + p
(min{Xi,Xj})
j −Mxi,j,r,r

∀i, j ∈ IMC : i > j ,∀r ∈
[
H
τRi

]
, ∀r ∈

[
H
τRj

]
(9)

sj,r ≥ si,r + p
(min{Xi,Xj})
i −M(1− xi,j,r,r)

∀i, j ∈ IMC : i > j ,∀r ∈
[
H
τRi

]
, ∀r ∈

[
H
τRj

]
(10)

where

si,r ≥ 0, Ji,r ≥ 0 ∀i ∈ IMC , ∀r ∈
[
H
τRi

]
(11)

Jmax ≥ 0 (12)

xi,j,r,r ∈ {0, 1} ∀i, j ∈ IMC : i > j ,

∀r ∈
[
H
τRi

]
, ∀r ∈

[
H
τRj

]
(13)

Two things about the MIP model shall be noted. First
of all, for practical purposes we can fix some of the xi,j,r,r
variables if for occurrences r, r and tasks Ti, Tj the following
holds

〈(r − 1)τRi, rτRi〉 ∩ 〈(r − 1)τRj , rτRj〉 = ∅

i.e. they are scheduled in disjunctive time windows. For
those, the relative order is given by the definition of in-
dividual occurrences; hence we can reduce the number of
variables in the model. Moreover, the model allows to in-
corporate more difficult constraints such as release dates,
deadlines, and precedences with only minor modifications.
Since the start times of message occurrences are expressed
as si,r variables, imposing constraints on them is straight-
forward. However, the disadvantage of this model is the
usage of big-M constant inside constraints since it degrades
linear relaxation strength, which typically negatively affects
the solver performance.

The scheduling of F-shaped messages brings additional
complexity to the problem. It can be showed that given an
input instance of JPMC, deciding, whether just messages
with periodicity Ri = 1 can be scheduled inside one period
is NP-hard in the strong sense [17] since it represents a
hard partitioning problem. Therefore, the exact solution of
JPMC Problem is intractable for practical problem sizes. In
the following pages, we propose an efficient heuristic algo-
rithm to solve the problem.

5. ITERATIVE SCHEDULING ALGO-
RITHM FOR JITTER MINIMIZATION

We propose the Iterative Scheduling Algorithm that solves
JPMC Problem efficiently. The presented algorithm is a
constructive heuristic with an unscheduling step. It is based
on the algorithm efficient at solving Resource Constrained
Project Scheduling Problem [8] and a heuristic for a schedul-
ing problem with mixed-criticality tasks with time lags [13].

A constructive algorithm starts from an empty solution
and gradually constructs parts of it towards to the com-
plete solution, usually based on some kind of priority rule.
Their advantage is the speed. However, they often achieve
worse solution quality since they get easily trapped in local
optima which they cannot escape. Moreover, constructive
algorithms are only rarely suitable for problems where pro-
ducing a feasible solution is computationally hard [14].

On the other hand, local search algorithms like Simulated
Annealing or Genetic Algorithms start with any feasible so-
lution and successively apply a neighborhood operators to
escape from a local optimum and to explore a space of fea-
sible solutions. Local search algorithms are generally able
to find solutions with reasonable quality, but their running
time is longer. However, the basic problem, i.e., obtaining
an initial feasible solution, remains. Our algorithm combines
advantages of both approaches. It constructs the schedule
following a priority rule until it can. If the priority rule
cannot be applied further, i.e. some constraint(s) would be
violated, then an unscheduling operator is applied. The un-
scheduling operator removes a conflicting part of the partial
solution. Then, it continues to follow the priority rule again
and repeats the process until the feasibility of the complete
solution is achieved. The mix of the constructive approach
and an unscheduling operator makes the algorithm fast and
efficient at solving hard feasibility problems. The algorithm
is used iteratively to solve a sequence of feasibility problems
obtained by the binary search on the value Jmax.

5.1 Temporal Graph
We use a directed graph to represent messages and con-

straints between them efficiently. As we will show, it al-
lows us to perform quick update manipulations and lets us
express even more general constraints. Let us define the
temporal graph Gtemp = (V,E). Each vertex represents a
message occurrence in the schedule

V = {Ti,r | ∀i ∈ IMC , ∀r ∈
[
H
τRi

]
} ∪ {T0}

together with a dummy vertex T0. For each message occur-
rence, a feasible assignment of the start time in the sched-
ule is described by temporal constraints represented by the
edges of Gtemp. An edge (k, l) ∈ E is directed and valued
with lkl ∈ Z. Each edge represents a temporal constraint

sk + lkl ≤ sl
where sk, sl are start times of occurrences k ∈ V and l ∈ V
in the schedule. In JPMC Problem we have two kinds of
temporal constraints:

• message occurrences are scheduled in their respective
periods

• the maximal allowed jitter Ji,r for each consecutive
occurrence pair of the message (see Algorithm 2, where
the maximal jitter is narrowed by the binary search)

The dummy vertex T0 with R0 = maxRi is used to ex-
press the first kind of constraints. T0 is always scheduled at
s0 = 0. The pair of edges going in both directions from/to
T0 express the feasible start window for each message occur-
rence, i.e. the constraints (2) and (3) from MIP model in
Section 4.1.

The other kind of constraints limits the maximal jitter
in the schedule. Therefore, the jitter for every consecutive



pair of message occurrences is constrained. Once again, with
two directed edges we limit the jitter Ji,r expressed as an
absolute value like in the equation (JIT). We replace abso-
lute value according to (4) and (5). Then, in a feasibility

problem, where maximal jitter is set to Ĵmax, the temporal
constraints are given as

si,r + τRi − Ĵmax ≤ si,r+1

si,r+1 − τRi − Ĵmax ≤ si,r

The value Ĵmax is iteratively updated by the binary search in
order to find the lowest possible jitter. Figure 3 shows a tem-
poral graph for the problem instance from Figure 2. In this
example, the maximal jitter Ĵmax was set to 0. Therefore,
the pair of edges between T2,1 and T2,2 forces these occur-
rences to be scheduled exactly one period τ = 100 apart.
The value of the edge (T1,1, T0) determinates the latest pos-
sible start time for the first (and the only) occurrence of T1

message. Since it has periodicity R1 = 2 and its processing

time at the highest criticality level is p
(3)
1 = τ , the temporal

constraint is valued with −(2τ − p
(3)
1 ) = −(200 − 100) =

−100.

T0T0

T1,1T1,1 T2,1T2,1 T2,2T2,2 T3,1T3,1 T4,1T4,1

100100

�150�150
00

�100�100

00

�170�170

�100�100

00

�50�50

00

100100

�100�100

Figure 3: The temporal graph corresponding to the instance
in Figure 2 assuming zero-jitter with period length τ = 100.

Finally, let us denote dkl as the longest path between k and
l in Gtemp. Notice, that since we have described constraints
by a temporal graph, our algorithm can also solve problems
where the messages are subject to release dates, deadlines
or precedence constraints. These additional constraints can
be easily incorporated by introducing appropriate edges to
the Gtemp.

5.2 Iterative Scheduling Algorithm
The main idea of the algorithm is to schedule messages

into the free time windows. If there are no free windows,
then a part of the schedule is canceled, and the message is
inserted into the newly created free window. See the de-
scription of its main loop in Algorithm 2. The binary search
on Jmax value is realized by lines 6–14. Obviously, a lower
bound on Jmax is 0, and an upper bound is a half of schedul-
ing hyperperiod, i.e. H/2. The interval 〈lb, ub〉 is consecu-
tively narrowed.

A single feasibility problem parameterized by Ĵmax =
d lb+ub

2
e obtained by the binary search is solved by the proce-

dure findSchedule. It accepts a list of priorities to guide the
search and a budget to limit time spent in this procedure.
The budget is an integer that states the maximum number
of constructive and unscheduling steps combined for solv-
ing each feasibility problem. It is proportional to the total
number of messages including all occurrences. The larger
values improve the capability of solving more difficult fea-
sibility problems but increase the algorithm’s running time.

The list of priorities specifies the order in which messages
are scheduled in the constructive step. In our experiments,
we have used the strategy that gives more priority to the
messages with smaller values of periodicity Ri.

Algorithm 2 Iterative Scheduling Algorithm

1: lb← 0
2: ub← H/2
3: prioritityi ← 1/Ri ∀i ∈ V
4: budget← budgetRatio · |V |
5: Ĵmax ← lb
6: while lb ≤ ub do
7: S ← findSchedule(Ĵmax, priority, budget)
8: if S is feasible then
9: ub← Jmax(S)− 1

10: else
11: lb← Ĵmax + 1
12: end if
13: Ĵmax ← d lb+ub2

e
14: end while

1: function findSchedule(Ĵmax, priority, budget)
2: scheduled← ∅
3: si ← −∞ ∀i ∈ V
4: update Gtemp with a new Ĵmax bound
5: while budget > 0 and |scheduled| < |V | do
6: i← arg maxj∈V : j 6∈scheduled {priorityj}
7: ESi ← maxj∈V : j∈scheduled {sj + dji}
8: LSi ← minj∈V : j∈scheduled {sj − dij}
9: si ← findTimeSlot(i, ESi, LSi)

10: if si was found then
11: scheduleMessage(i, si, scheduled)
12: else
13: scheduleMessageViolently(i, si, scheduled)
14: end if
15: budget← budget− 1
16: end while
17: return (s1, . . . , sn)

Function findSchedule attempts to find a feasible solu-
tion for the given maximum jitter value Ĵmax. First, tem-
poral constraints bounding the maximal jitter in Gtemp are

updated with respect to Ĵmax value. Then it attempts to
build the schedule by following the priority rule. For each
yet unscheduled message occurrence i, its earliest ESi and
latest LSi start times are determined by lines 7–8. The pro-
cedure findTimeSlot attempts to find the start time si in
the interval 〈ESi, LSi〉 in such a way, that it is not over-
lapping with any other scheduled message on any criticality
level. If such a feasible assignment exists, then the message
is scheduled at si. If not, then the message i is inserted
violently by scheduleMessageViolently into the schedule at
position si ← sprevi +1, where sprevi is the start time assigned
in the previous attempt. If the message i is scheduled for
the first time, then it is scheduled at its earliest start time,
i.e. si ← ESi. Furthermore, scheduled messages conflicting
with the new assignment si are unscheduled and removed
from the scheduled set.

The process is repeated until all messages are scheduled
or the budget is depleted. If the returned schedule in Algo-
rithm 2 at line 7 is feasible, then the upper bound is updated.
If not, then the lower bound on Jmax is increased.



Table 1: Computational results for instances with Rmax = 8

budgetRatio = 2 budgetRatio = 20 budgetRatio = 200

n Jmax Javg t [s] Jmax Javg t [s] Jmax Javg t [s]
100 0.000 (7) 0.000 0.01 0.044 (5) 14.208 0.06 0.045 (5) 14.208 0.35
200 0.017 (5) 12.778 0.02 0.053 (2) 36.450 0.16 0.053 (2) 36.450 1.04
500 0.041 (8) 99.798 0.17 0.139 (0) 161.194 1.38 0.139 (0) 161.194 9.79
700 0.000 (8) 0.000 0.30 0.060 (5) 153.761 4.96 0.070 (4) 179.630 41.23
900 0.014 (6) 43.084 0.39 0.051 (3) 132.366 4.66 0.051 (3) 132.366 37.74

1000 0.000 (6) 0.000 0.48 0.089 (0) 208.224 3.68 0.089 (0) 208.224 27.11
1200 0.000 (4) 0.000 0.48 0.071 (0) 225.125 1.90 0.071 (0) 225.125 15.90
1400 0.000 (6) 0.000 1.00 0.059 (3) 219.416 11.52 0.059 (3) 219.416 103.62
1600 0.000 (5) 0.000 1.13 0.076 (1) 270.117 8.37 0.076 (1) 270.117 65.04
1800 0.000 (5) 0.000 1.37 0.067 (0) 383.653 10.27 0.067 (0) 383.653 75.87
2000 0.000 (5) 0.000 1.76 0.051 (1) 370.402 13.17 0.051 (1) 370.402 128.32

Table 2: Computational results for instances with Rmax = 16

budgetRatio = 2 budgetRatio = 20 budgetRatio = 200

n Jmax Javg t [s] Jmax Javg t [s] Jmax Javg t [s]
100 0.000 (6) 0.000 0.01 0.021 (5) 8.778 0.03 0.021 (5) 8.778 0.06
200 0.000 (10) 0.000 0.03 0.106 (5) 56.999 0.23 0.109 (5) 60.170 0.75
500 0.000 (4) 0.000 0.06 0.029 (2) 47.346 0.72 0.029 (2) 47.346 4.75
700 0.000 (8) 0.000 0.23 0.104 (4) 168.436 2.60 0.104 (4) 168.436 16.05
900 0.000 (6) 0.000 0.32 0.113 (0) 240.851 2.36 0.113 (0) 240.851 13.97

1000 0.000 (5) 0.000 0.31 0.033 (3) 92.599 4.07 0.033 (3) 92.599 28.14
1200 0.000 (6) 0.000 0.58 0.055 (3) 150.932 6.71 0.055 (3) 150.932 44.73
1400 0.000 (5) 0.000 0.64 0.101 (0) 339.956 4.84 0.093 (0) 319.244 30.35
1600 0.000 (7) 0.000 1.20 0.053 (5) 198.025 17.62 0.053 (5) 198.025 136.20
1800 0.000 (5) 0.000 1.18 0.097 (0) 405.662 9.63 0.097 (0) 405.662 57.54
2000 0.000 (7) 0.000 1.98 0.093 (2) 408.145 12.95 0.093 (2) 408.145 96.06

Table 3: Computational results for instances with Rmax = 32

budgetRatio = 2 budgetRatio = 20 budgetRatio = 200

n Jmax Javg t [s] Jmax Javg t [s] Jmax Javg t [s]
100 0.038 (5) 9.203 0.00 0.016 (4) 4.971 0.01 0.016 (4) 4.971 0.02
200 0.032 (7) 18.374 0.01 0.031 (5) 19.442 0.04 0.031 (5) 19.442 0.12
500 0.000 (7) 0.000 0.04 0.040 (2) 56.239 0.21 0.040 (2) 56.239 0.34
700 0.000 (3) 0.000 0.04 0.009 (1) 19.157 0.51 0.009 (1) 19.157 0.54
900 0.000 (8) 0.000 0.13 0.066 (3) 126.969 1.31 0.066 (3) 126.969 2.22

1000 0.011 (2) 37.324 0.06 0.023 (0) 59.830 0.34 0.023 (0) 59.830 0.53
1200 0.027 (9) 63.475 0.26 0.045 (6) 143.388 3.54 0.045 (6) 143.388 9.89
1400 0.000 (9) 0.000 0.34 0.078 (5) 211.616 5.01 0.078 (5) 211.616 12.86
1600 0.023 (5) 79.745 0.32 0.037 (3) 142.691 3.47 0.037 (3) 142.691 9.58
1800 0.000 (4) 0.000 0.33 0.009 (3) 18.461 4.73 0.009 (3) 18.461 21.18
2000 0.026 (8) 176.555 0.76 0.108 (3) 435.951 6.83 0.108 (3) 435.951 25.84

6. EXPERIMENTAL RESULTS
We have tested our algorithm on a set of randomly gener-

ated message data. Since we assume that messages have
periodicity given by a power of two, we have generated
three sets with maximum periodicity Rmax ∈ {8, 16, 32}.
For each Rmax we have a set of instances with n messages,
n ∈ {100, 200, . . . , 2000}. For each n, we have a set of 20
instances.

Since messages are of mixed-criticality, we need to gen-
erate a set of different processing times for each one. For
each message, the criticality is distributed according to the
Xi ∼ Poisson(2) distribution with λ = 2. Then, for each crit-
icality level ` ∈ {1, . . . ,Xi} the processing time prolongation
relative to the previous level is sampled from the uniform dis-

tribution U(`, `+ 6). This choice of parameters results in a
set of F-shaped messages representing a challenging packing
problem.

We have three data sets with a different number of peri-
ods. For the dataset with Rmax = 8, the message periodicity
Ri ∼ 2Poisson(2) is distributed according to the 2 to a power
drawn from the Poisson distribution with λ = 2. For each
n (i.e. the number of messages) the period length τ is dis-
tributed according to U(n/0.29, n/0.36). For Rmax = 16, the

periodicity is distributed according Ri ∼ 2Poisson(4) and the
period length τ ∼ U(n/0.74, n/0.9). For Rmax = 32, Ri is

distributed according Ri ∼ 2Poisson(8) and the period length
τ ∼ U(n/2.8, n/3.4). Values of Ri above Rmax were rounded
down to Rmax. We observed that these values make gener-



ated instances tight. The choice of means of Ri for different
instance sets represents a broad range of instances with dif-
ferent properties. The generated set of instances contains
both feasible and infeasible instances.

The results are summarized in Tables 1–3. In each table,
there are three columns each corresponding to the run of
the algorithm with different budgetRatio value. For each n,
the Jmax column denotes the mean of the relative maximal
jitter for solved instances, i.e. the ratio between the maxi-
mal jitter and hyperperiod length. The value in parenthesis
denotes the number of instances that were not solved by the
algorithm. The Javg denotes mean of the absolute jitter av-
eraged over all messages for solved instances. The column t
denotes the mean of the algorithm’s running time measured
in seconds. The algorithm is implemented in C# program-
ming language and running times are obtained with Intel
Core i5 5300U@2.3GHz processor and 8 GB RAM using a
single core.

In the first column in Tables 1–3 we can see that the al-
gorithm with budgetRatio = 2 was mostly able to solve only
instances, where the zero-jitter schedule is feasible (i.e. eas-
ier ones). With budgetRatio = 20 the algorithm solved a
much larger number of instances, including more the chal-
lenging ones. In the third column, the algorithm with even
more budget was able to solve one more instance, but overall
with significantly higher time.

Out of 660 instances, 12.5% were not solved by the al-
gorithm with budgetRatio = 200. We attempted to solve
every of these instances by the MIP model introduced in
Section 4.1. We invested computational effort of more than
10 CPU hours for solving each instance with Gurobi MIP
solver. In just four cases, a feasible solution was found. For
the rest, no feasible solution was found within the time limit.
Therefore, these instances are likely to be infeasible.

The results show that setting budgetRatio to 20 offers a
good balance between the algorithm’s running time and the
solution quality (the number of solved instances).

7. CONCLUSION
In this paper, we proposed a method for the message re-

transmission in time-triggered systems. We construct static
schedules where each message has a given number of allowed
retransmissions based on its criticality. The prolongation of
the processing time observed during the run time is com-
pensated by skipping less critical messages. Static schedules
encapsulate all alternative execution scenarios, and there-
fore, the response time analysis can be carried out trivially
since for each alternative we have a static schedule. We
model the problem with messages with different processing
times by F-shaped tasks.

Further, we introduced a novel heuristic algorithm that
minimizes the maximal jitter in the periodic message
scheduling problem with messages having different possible
processing times. The proposed algorithm is an iterative-
based algorithm with an unscheduling step efficient at solv-
ing hard feasibility problems. We showed its capability to
solve instances with up to the 2000 messages in a matter of
seconds. Furthermore, since we expressed the problem con-
straints via the temporal graph, the algorithm is easily ex-
tendable to solve an even more complex problem, including
message release dates, deadlines, and precedences. More-
over, we proposed a mathematical program for solving the
JPMC Problem to the optimality. It can be used for solv-

ing smaller instances, and we use it also for tuning and the
verification of the proposed heuristic algorithm.

8. ACKNOWLEDGMENTS
This work was supported by the US Department of the

Navy Grant N62909-15-1-N094 SALTT issued by Office
Naval Research Global. The United States Government
has a royalty-free license throughout the world in all copy-
rightable material contained herein. Furthermore, this work
was supported by the Grant Agency of the Czech Technical
University in Prague, grant No. SGS16/233/OHK3/3T/13.

9. REFERENCES
[1] Sanjoy Baruah and Gerhard Fohler.

Certification-cognizant time-triggered scheduling of
mixed-criticality systems. In Real-Time Systems
Symposium (RTSS), 2011 IEEE 32nd, pages 3–12.
IEEE, 2011.

[2] Sanjoy Baruah, Haohan Li, and Leen Stougie.
Towards the design of certifiable mixed-criticality
systems. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2010 16th IEEE,
pages 13–22. IEEE, 2010.

[3] Ron Bell. Introduction to IEC 61508. In Proceedings of
the 10th Australian workshop on Safety critical
systems and software-Volume 55, pages 3–12.
Australian Computer Society, Inc., 2006.

[4] Alan Burns and Rob Davis. Mixed criticality
systems-a review. Department of Computer Science,
University of York, Tech. Rep, 2013.

[5] Marco Di Natale. Scheduling the CAN bus with
earliest deadline techniques. In Real-Time Systems
Symposium, 2000. Proceedings. The 21st IEEE, pages
259–268. IEEE, 2000.

[6] J. Dvorak and Z. Hanzalek. Using two independent
channels with gateway for FlexRay static segment
scheduling. IEEE Transactions on Industrial
Informatics, article in press, 2016.

[7] Friedrich Eisenbrand, Nicolai Hähnle, Martin
Niemeier, Martin Skutella, José Verschae, and
Andreas Wiese. Scheduling periodic tasks in a hard
real-time environment. In International Colloquium on
Automata, Languages, and Programming, pages
299–311. Springer, 2010.

[8] Zdeněk Hanzálek and Přemysl Š̊ucha. Time symmetry
of resource constrained project scheduling with
general temporal constraints and take-give resources.
Annals of Operations Research, pages 1–29, 2016.

[9] Kaisrlik J. and Sojka M. Time-triggered switch for
mixed-criticality applications. Technical report, CTU
in Prague, DCE, 2016.

[10] Taewoong Kim, Heonshik Shin, and Naehyuck Chang.
Deadline assignment to reduce output jitter of
real-time tasks. In 16th IFAC Workshop on
Distributed Computer Control Systems, pages 67–72.
Citeseer, 2000.

[11] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and
Klaus Steinhammer. The time-triggered Ethernet
(TTE) design. In Object-Oriented Real-Time
Distributed Computing, 2005. ISORC 2005. Eighth
IEEE International Symposium on, pages 22–33.
IEEE, 2005.



[12] Martin Lukasiewycz, Michael Glaß, Jürgen Teich, and
Paul Milbredt. FlexRay schedule optimization of the
static segment. In Proceedings of the 7th IEEE/ACM
international conference on Hardware/software
codesign and system synthesis, pages 363–372. ACM,
2009.

[13] Cincibus P. Algorithms for mixed-criticality
scheduling with positive and negative time lags.
Master’s thesis, CTU in Prague, 2015.

[14] El-Ghazali Talbi. Metaheuristics: from design to
implementation, volume 74. John Wiley & Sons, 2009.

[15] Jens Theis, Gerhard Fohler, and Sanjoy Baruah.
Schedule table generation for time-triggered mixed
criticality systems. Proc. WMC, RTSS, pages 79–84,
2013.

[16] Steve Vestal. Preemptive scheduling of
multi-criticality systems with varying degrees of
execution time assurance. In Real-Time Systems
Symposium, 2007. RTSS 2007. 28th IEEE
International, pages 239–243. IEEE, 2007.

[17] Hanzalek Z., Tunys T., and Sucha P. An analysis of
the non-preemptive mixed-criticality match-up
scheduling problem. Journal of Scheduling, doi:
10.1007/s10951-016-0468-y, 2016.


