
Distributed Real Time TDMA Scheduling
Algorithm for Tree Topology WSNs

Aasem Ahmad ∗ Zdeněk Hanzálek. ∗∗

∗DCE, FEE, CTU in Prague Prague, Czech Republic
(e-mail: ahmadaas@fel.cvut.cz).

∗∗ CIIRC, DCE, FEE, CTU in Prague Prague, Czech Republic
(e-mail: hanzalek@fel.cvut.cz).

Abstract: In this paper, we address the problem of developing TDMA scheduling algorithm for
tree topology WSNs. The data transmissions are organized into periodic data flows that may
have opposite directions since they are carrying sensor and actuator values for feedback control.
It is required to determine a periodic and collision-free allocation of the time-slots to the sensor
nodes such that the end-to-end deadline of each data flow, as given in time units, is satisfied. The
objective is to maximize the lifetime of the network by maximizing the time when the nodes are
in the sleep mode. However, the longer the time at which the nodes stay in the sleep mode, the
harder is to meet the timeliness requirements of the data flows. To solve the TDMA scheduling
problem, we have found an elegant approach to express the end-to-end deadline as an integer
number of the length of the schedule period. Moreover, since the distributed algorithms, in
compassion with the centralized algorithms, well-suit the scarce resources of the WSNs, we focus
on the distributed methods that allow each node in the network to come up with its allocated
time-slots in the schedule. The proposed algorithm is based on the graph theory algorithms,
namely the distributed shortest path and the distributed topological ordering. Furthermore, it
falls into the category of the exact algorithms for tree topology with single-collision domain and
in the category of the heuristic algorithms for multiple-collision domains tree topology.

Keywords: Wireless Sensor Networks, ZigBee cluster-tree topology, distributed algorithms,
energy efficiency.

1. INTRODUCTION

With the rapid utilization of wireless sensor networks
(WSNs) in various industrial applications including mon-
itoring and control systems, and with the fact that sen-
sor nodes are usually battery powered, energy-efficient
Medium Access Control (MAC) protocols are becoming
more required. Also, other requirements of industrial ap-
plications such as timeliness, robustness, and on-the-fly
deployment and configurations are essential.

Concerning the above-mentioned pivotal demands, the
MAC protocols based on Time Division Multiple Access
(TDMA) outperform MAC protocols based on Carrier
Sense Multiple Access (CSMA) as revealed by Ergen
and Varaiya (2006). The TDMA strategy slices the time
domain (i.e., the period of the schedule) into equal sized
time-slots and nodes are assigned a proper number of time-
slots relevant to the payload of the data to be transmitted
by the node. Thus, the nodes are in sleep mode until
their allocated time-slots in order to save energy. To
avoid the collision occurrence, when the nodes are not
far enough from each other, it is mandatory to assign
a different set of time-slots to each node. On the other
hand, the time-slots might be shared between the nodes

? Sponsor and financial support acknowledgment goes here. Paper
titles should be written in uppercase and lowercase letters, not all
uppercase.

that are not in the neighborhood (i.e., spatial reuse of
the transmission medium which is not considered in this
paper). Since TDMA scheduling algorithms eliminate the
collision occurrence and seek for minimizing the number of
time-slots assigned to each node, the energy consumption
of the nodes is reduced. Furthermore, with the proper
ordering of the allocated time-slots, the transmission delay
can be significantly reduced as shown by Moriyama and
Zhang (2015); Ahmad et al. (2014).

In this paper, we focus on the problem of determining a
periodic collision-free allocation of the time-slots to the
nodes, which are organized in a tree topology. All nodes
may have sensing and/or actuating capabilities; therefore,
they can be sources and/or sinks of the data transmissions
organized as periodic data flows. Since WSNs for control
and monitoring applications introduce critical constraints
on the design of TDMA schedule to guarantee timely data
delivery (Zheng et al. (2014)), each flow is constrained
by end-to-end deadline and given in time units. Moreover,
to support the control applications where the data goes
in both directions simultaneously (i.e., sensed data and
control data from and to the field devices), we consider
the case when the data flows traverse the tree topology
simultaneously in opposite directions. Since wireless nodes
are usually battery-powered, the energy efficiency of the
TDMA schedule is a problem of paramount importance
in order to maximize the lifetime of the network. Hence,

the objective is to maximize the time when the nodes are
in sleep mode. However, the longer the time at which the
nodes stay in the sleep mode, the harder is to satisfy the
end-to-end deadline requirements especially when the data
flows have opposite directions.

To solve the TDMA scheduling problem, we have found
an elegant approach to express the end-to-end deadline as
an integer number of the length of the schedule period.
Also, since the distributed methods well-suit the scarce
properties of the nodes especially related to memory size,
power consumption, and processor performance (Lenzen
and Wattenhofer (2011)), we focus on the distributed
algorithm to solve the scheduling problem.

The proposed scheduling algorithm falls into the category
of the exact algorithms for WSNs with single-collision
domain tree topology where the spatial reuse of the trans-
mission medium is prohibited to avoid collisions. Since
the feasible TDMA schedule with no consideration of the
spatial reuse of the transmission medium is also a feasible
schedule to the generalized problem (i.e., multiple-collision
domains tree topology), then the proposed algorithm also
falls into the category of the heuristic algorithms for the
generalized problem. The worth of the heuristic in such
case is its fast computation time due to less complexity
and consequently, more energy-efficient. The shortcoming
of the heuristic lies behind the less efficient utilization of
the bandwidth since the time-slots are not shared between
the nodes. Therefore, the possibility of missing the feasible
schedule when the schedule period is so tight.

2. RELATED WORK

Many researchers tackled the TDMA scheduling problem
with various requirements. R. Severino and Tovar (2014)
presented a dynamic centralized TDMA scheduling algo-
rithm for single-collision domain cluster-tree WSN where
all flows are directed to the root node of the tree. Yu
et al. (2009) presented a distributed TDMA scheduling
algorithm for collision-free data aggregation in large scale
WSNs based on the maximal independent sets. Ergen and
Varaiya (2010) showed that the TDMA scheduling prob-
lem is an NP-hard for multiple-collision domains WSNs.
Moreover, the authors designed distributed graph coloring
algorithms to minimize the total number of the time-slots
assigned to the nodes. However, none of the previously
mentioned papers assumed time-constrained data flows or
data flows in opposite directions.

The work proposed by Hanzálek and Jurč́ık (2010) is the
most related to ours. The authors considered multiple-
collision domains ZigBee cluster-tree topology and data
flows constrained by the precise end-to-end deadline given
in time units. The TDMA scheduling algorithm is cen-
tralized and based on Integer Linear Programming (ILP)
which can solve small size instances. Ahmad et al. (2014)
expressed the precise end-to-end deadline, as considered
by Hanzálek and Jurč́ık (2010), into the maximum number
of periods crossed by each data flow till its delivery. The
authors also proposed an exact centralized algorithm that
is able to solve instantly large size deployments without
the consideration of the spatial reuse of the transmission
medium. The algorithm is based on the shortest path tree
and the topological ordering algorithms. Int this paper, we

Table 1. User-defined data flows parameters.

flow ID source sink sampleSize reqPeriod e2eDeadline sampleACK
q (αfq

) (βfq) [bit] [s] [s]

1 1 9 64 1 2 1
2 6 10 16 2 6 0
3 11 12 16 1 2 1
4 12 1 64 2 4 0

Fig. 1. Tree WSN with four time-constrained data flows.

also adopt the scenario proposed by Ahmad et al. (2014)
with the aim of developing the distributed counterpart of
the centralized algorithm.

The rest of the paper is organized as follows. In Sec. 3, the
scheduling problem is described in details. The overview of
the centralized TDMA scheduling algorithm is highlighted
in Sec. 4. The counterpart distributed TDMA algorithm is
explained in Sec. 5. The experimental results are presented
in Sec. 6. Finally, we draw the conclusion in Sec. 7.

3. SYSTEM MODEL

3.1 Tree Topology

We consider a tree topology with n nodes (Fig. 1). Each
pair of connected nodes use the shared bidirectional wire-
less link for data transmission. Each node has its depth
where the root node, node 1, has depth 0. The logical
topology is expressed by the parent-child relation between
the connected nodes in a similar manner to the ZigBee
cluster-tree topology where each cluster is composed of
the parent node with its child nodes Org. (2006).

3.2 Data flow model

The transmissions are organized into data flows (see Fig. 1
where 4 data flows are illustrated as dashed directed lines).
Each data flow has one source node αfq and one sink node
βfq . The user defined parameters for each flow are shown
in Tab. 1. A source node periodically measures a sensed
value with a given size and required period denoted by
sampleSizefq and reqPeriodfq respectively and reports it to
the sink. The reqPeriodfq defines the minimal interarrival
time between two consecutive measurements such that the
particular interarrival time for flow fq is greater or equal
to the given reqPeriodfq . Also, Each flow is constrained
by end-to-end deadline denoted by e2eDeadline and given
in time units. The e2eDeadline specifies the maximum
allowed elapsing time between the instant when the source
sends the packet to the instant when the sink receives the
packet. The acknowledged transmission can be requested
by setting sampleACKfq = 1.

3.3 Node life cycle

The life cycle of each node, concerning the node period
P , is divided into two parts, the active and inactive parts

Fig. 2. The life cycle of node 4.

(see Fig. 2 where the life cycle of node 4 is illustrated).
The active part is subdivided into time-slots of equal size
and grouped into two portions, namely τ and δ. The time-
slots of the τ portion are utilized by the node to exchange
the data with its child nodes while the time-slots of the
δ portion are utilized by the node to exchange the data
with its parent node. The τ portion is partitioned into a
Contention Access Period (CAP) and optional Contention
Free Period (CFP). During the CAP, a slotted CSMA/CA
protocol is used for the best-effort data delivery while
during the CFP, the node periodically allocates time-slots
to its child nodes that can be exploited for transmitting
real-time traffic. The number of time-slots allocated to a
given child node is relevant to the amount of data to be
exchanged between the parent and that child. The time-
slots used by child node to send data to its parent are
denoted by Tx slots while Rx slots denote the time-slots
for receiving the data from the parent node. During the
inactive portion, the node is in a sleep mode to save energy.
P and τ are defined by two parameters as follows:

P= A · 2PO, τ= A · 2TO (1)

where 0 ≤ TO ≤ PO ≤ 14 and A denotes the minimum
duration of τ when TO = 0. For ZigBee cluster-tree
topology, A = 15.36 ms (assuming a 2.4 GHz frequency
band and 250 kbps of bit rate). We assume that all nodes
have an equal P, but various τ for better bandwidth
utilization. In this paper, we skip the details related to the
τi calculation given by the payload of the flows. Please refer
to Ahmad et al. (2014) for more information. However, the
required parameters for calculating the τi are taken into
consideration while designing the distributed algorithm as
will be explained in Sec. 5.2.

3.4 Cyclic schedule nature

The life cycle of each node, as explained in Sec. 3.3, leads to
the so-called cyclic behavior of the periodic schedule (i.e.,
there is a flow whose delay is longer than P) when there
are flows in opposite directions in a WSN. In such a case,
the delay minimization of the flow fi is in contradiction
with the delay minimization of flow fj when {fi, fj} are
in opposite directions. Let us denote a complete data
communication from the source to the sink by a wave
where the notation fq,l is used for the wave l of flow q.
Consider nodes {1, 4, 8, 12} in Fig. 1 and assume without
loss of generality that τ1 = τ4 = τ8 = τ12 = 4 time-slots.
Then, ordering the τ portions as shown in Fig. 3(a) ensures
that each wave of f3 starts and completes in the same
period (0 crossed period) while each wave of f4 (the part
from node 12 to node 1), requires three periods to reach
the destination (i.e., 2 crossed periods). The reverse order
of the τ portions, as shown in Fig. 3(b), leads to 2 crossed

Fig. 3. (a) and (b): Cyclic nature of the nodes schedule

periods for each wave of f3 and 0 crossed period for the
considered wave of f4. This observation enables one to
express the e2eDeadline in terms of the maximum number
of crossed periods hfq , where e2eDeadline ≥ P as follows:

hfq =

⌊
e2eDeadlinefq

P

⌋
− 1 (2)

Considering P = 1 s, then and the e2eDeadline as given
in Tab. 1, we get: hf1 = 1, hf2 = 2, hf3 = 1 and hf4 = 1.

4. CENTRALIZED TDMA SCHEDULING
ALGORITHM

For the sake of an easy understanding of our distributed
algorithm, we present by example the core idea of the
centralized algorithm. The TDMA scheduling problem is
constrained by: the hfq of each flow fq, Pmax the upper
bound of P and Pmin the lower bound of P. POmax is
given by the shortest reqPeriodfq among all of the flows

as shown in Eq. (3). POmin is rounded up to the nearest
PO such that the resulting period P is large enough to
accommodate the active portion for all the nodes when the
spatial reuse of the transmission medium is not considered
as shown in Eq. (4). Since each node is periodically
activated for a fixed amount of time, then maximizing
the period P , increases the inactive portion within P (i.e.,
the sleeping time of each node). Hence, to maximize the
lifetime of the network, the objective is to maximize P,
given by PO ∈ {POmin, . . . ,POmax}, provided that the hfq
is met for each flow fq. However, Since hfq is inversely
proportional to the P (see Eq. (2)), then the longer the P ,
the harder is to satisfy the hfq of each fq.

POmax =

⌊
log2

(
minq(reqPeriodfq)

A

)⌋
(3)

POmin =

⌈
log2

(∑n
i=1 τi
A

)⌉
(4)

∀ i, j = 1 . . . n : i = parent(j)

0 ≤ Dj −Di ≤ 1 (a)

∀fq is a decreasing flow : i = βfq , j = parent(αfq)

Dj −Di ≤ hfq (b)

∀fq is an increasing flow : i = parent(βfq), j = αfq

Dj −Di ≤ hfq + depth(j)− depth(i) (c)

∀fq is a bidirectional flow : i = parent(βfq), j = parent(αfq)

Dj −Di ≤ hfq + depth(zfq)− depth(i) (d)

∀ j = 1 . . . n

Dj ≥ 0 (e)

Fig. 4. The constraint model.

0 ≤ Dj −Di ≤ 1 topological constraints

D1 −D5 ≤ −1 for flow f1
D2 −D7 ≤ 0 for flow f2
D7 −D8 ≤ −1 for flow f3
D8 −D1 ≤ 1 for flow f4
Dj ≥ 0 ∀j = 1 . . . n

Fig. 5. The constraint model for the example in Fig. 1.

4.1 Modeling the deadline constraints of the data flows

Three types of flows may cross the tree: decreasing, in-
creasing or bidirectional flow. fq is a decreasing flow if for
every two consecutive nodes i and j, crossed by the flow
from its source αfq to its sink βfq , depth(i) > depth(j). fq
is an increasing flow if for every two consecutive nodes i
and j, crossed by the flow from its source αfq to its sink
βfq , depth(i) < depth(j). The flow fq is a bidirectional flow
where a node zfq crossed by fq exists such that the part
from αfq to zfq is decreasing and the part from zfq to βfq
is increasing. For the flows in Fig. 1, f1 is an increasing,
f4 is a decreasing while f2, f3 are bidirectional.

As shown in Fig. 3, for every tow consecutive nodes i and
j crossed by flow fq, the precedence decision between τi
and τj is the key factor for satisfying hfq . Let the triple
(i,→, j) denote that τi is followed by τj in the schedule
while the triple (i,←, j) denote that τj is followed by τi
in the schedule such that i = parent(j). Then for a given
flow fq and the set of precedence decisions between every
two consecutive nodes on the path of fq, the number of
crossed periods of fq is given by the number of precedence
decisions (i.e., arcs in the triples) that are directed in
opposite direction to the flow direction. However, if the
first hop of fq is a child-parent hop, e.g. f4, the precedence
decision between the nodes αfq and parent(αfq) is not
contributing to the resulting number of crossed periods
of fq. Also, if the final hop of fq is a parent-child hop, e.g.
f1, the precedence decision between the nodes parent(βfq)
and βfq is also not contributing to the resulting number
of crossed periods of fq.

The above-mentioned observation is the essence of the
proposed constraint model as shown in Fig. 4 where Dj

is an integer decision variable associated with each node
j and represents the number of the precedence decisions
with a forward direction (→) on the unique path from
node 1 to node j. The constraint (4a) is the topological
constraint which ensures that for each two nodes i and
j such that i = parent(j), the value of Dj is equal to
or greater than the value of Di by one. The constraint
(4b) bounds the number of precedence decisions (→) from

Fig. 6. The inequality
graph Q for the con-
straint model shown
in Fig. 5.

Fig. 7. PONA graph af-
ter applying Bellman-
Ford on the Q graph
shown in Fig. 6.

j = parent(αfq) to node i = βfq to be, at most, hfq
when fq is a decreasing flow. The constraint (4c) bounds
the number of the precedence decisions with a backward
direction (←) from node j = αfq to node i = parent(βfq)
to be, at most, hfq when fq is an increasing flow. The
constraint (4d) is is for the bidirectional flow which can
be derived from the combination of the increasing and
decreasing flow constraints. The constraint (4e) ensures
non negative value of Di. For the example in Fig. 1 and
based on the values of hfq that are calculated in Sec. 3.4,
the resulting inequality constraints are illustrated in Fig. 5.

4.2 Inequality graph Q and PONA garph

The constraints in Fig. 4 have the form of Dj−Di ≤ const
and can be sketched as an inequality graph Q(V,E).
Where V represents the nodes while for each constraint,
an edge is added from node i to node j and weighted by
const. The inequality graph, for the constraints in Fig. 5,
is depicted in Fig. 6. The set of solid edges represents the
topological constraints while the set of dashed ones rep-
resents the data flows constraints. The constraint model
can be solved in polynomial time such that Dj is the
length of the shortest path from node 1 to node j in the
inequality graph Q shown in Fig. 6. Since some edges in
Fig. 6 may have negative weights, a negative cycle may
exist and consequently, the constraint model is infeasible.
Therefore, the nonexistence of a negative cycle is a neces-
sary condition for the feasibility of the scheduling problem.
Using the Bellman-Ford shortest path algorithm, we get
D = (0, 0, 0, 1, 1, 1, 0, 1, 2, 1, 1, 2) and the resulting chosen
precedence decisions are depicted by Partial Order of Node
Activation (PONA) graph as shown in Fig. 7. E(PONA)
represents the precedence decisions between each node and
its child nodes. Obviously, the PONA graph is a Directed
Acyclic Graph (DAC). Hence, one topological ordering, at
least, exists for V (PONA) and consequently for τi portion
for each node i ∈ V (PONA). The following order of the
nodes (2, 5, 9, 6, 7, 10, 11, 3, 1, 8, 12, 4) represents a feasible
schedule where τ2 are forwarded by τ5 and so on.

5. DISTRIBUTED TDMA SCHEDULING
ALGORITHM

The distributed TDMA scheduling algorithm consists of
multiple stages. During each stage, the CSMA/CA method
is utilized by the nodes for data communications. We
assume that the network topology has been set up and
that each node i maintains the following input parameters:

(1) id: a unique identifier assigned to the node; id = i.
(2) depth(i): the depth of the node i in the tree.

(3) child(i): the set of child nodes of node i.
(4) parent(i): the parent node of the node i.
(5) ts: the duration of the fixed-size time-slot within τi.
(6) Ncsma: the number of the time-slots within the CAP

portion of τi.

Likewise in ZigBee, the depth(i), child(i), and parent(i)
parameters can be determined in distributed manner dur-
ing the tree construction phase. During the stages of the
algorithm, each node i collaborates with its parent and
child nodes to determine the following parameters:

(1) n: the total number of nodes in the tree.
(2) P : the length of the schedule period.
(3) subT(i): the set of nodes in the subtree rooted by

node i, as given in Fig. 1, e.g. subT(3) = {7, 10, 11}.
(4) sti: the current state of the node i. A node can be

either in not-ready, pre-ready, or ready state.
(5) F li (resp. F ei): the set of nodes that are the heads

(resp. tails) of the dashed edges in Fig. 6 that rep-
resent the flows constraints and linked with node i.
(e.g. F l1 = {8} and F e1 = {5}).

(6) cji: the cost assigned to each edge entering node i in
the inequality graph and maintained by node i such
that cji = 0 if j ∈ child(i), cji = 1 if j = parent(i)
and cji = cfq if j ∈ F ei where cfq represents the cost
of flow fq and calculated based on the type of the flow
as shown in Fig. 4.

(7) Di: the length of the shortest path from node 1 to
node i in Fig. 6.

(8) τi: the length of the active portion.
(9) NTxj , ITxj (resp. NRxj , IRxj): the number and in-

dices of Tx (resp. Rx) time-slots assigned by node i
to each j ∈ child(i).

(10) si: the index of the first slot within the τ portion that
is allocated to the node in the schedule.

5.1 Distributed calculation of n and POmax

Two phases encompass this stage of the algorithm. The
first phase is triggered as the bottom-up pattern (i.e.,
from leaf nodes of the tree to the root node). Each node
i sends to node j = parent(i) one packet denoted by
RPER-N(i, j, |subT(i)|,PO i

max). The |subT(i)| parameter
indicates the number of nodes that belong to subT(i).

PO i
max is given by Eq. (5) such that PO

i=αfq

reqPeriodfq
is

calculated by Eq. (3) considering only the flows with
αfq = i. If a node is not a source of any flow, then

PO
i=αfq

reqPeriodfq
= 14. When the root node, node 1, receives

RPER-N from each node j ∈ child(1), it also applies
Eq. (5) and the second phase of this stage is commenced.
In contrast to the first phase, the second phase is triggered
as the up-bottom pattern. Each node i sends to each node
j ∈ child(i) one packet denoted by PER-N(i, j, n,POmax)
such that n = |subT(1)| + 1 is the total number of nodes
in the given tree topology and POmax = PO 1

max.

PO
i
max = min{ min

k∈child(i)
PO

k
max, PO

i=αfq

reqPeriodfq
} (5)

Fig. 8. Node state diagram for the first stage.

5.2 Distributed construction of the inequality graph

At this stage, each node i computes F li and F ei in addition
to cji for each node j ∈ child(i) ∪ parent(i) ∪ F ei . Initially,
as given by transitions (1) and (2) in the node’s state
diagram shown in Fig. 8, sti = not-ready if node i is a
source or a sink of a flow, otherwise sti = pre-ready. When
node i sends and receives all required FLOW-INFO and
ACK packets, as will be explained later in this section,
sti is updated from not-ready to pre-ready as depicted by
transition (3). Transition (4) implies updating sti from
pre-ready to ready when stk = ready ∀ k ∈ subT(i). This
stage lasts until st1 is set to ready.

Each source node αfq sends a FLOW-INFO packet to
the sink node βfq . The FLOW-INFO packet includes the
following fields, which are set by node αfq following the
observations in Sec. 4.1 and the constraint model in Fig. 4:

(1) src id: it is set to the id of the source node αfq .
(2) dest id: it is set to the id of the sink node βfq .
(3) parent id: it is set to parent(αfq). However, this field

is set to −1 in case the first hop of the FLOW-INFO
is a parent-child hop.

(4) sample size: it is set to sampleSizefq . It is required for
the calculation of τj for each node j crossed by fq.

(5) sample ACK: it is set to sampleACKfq . It is required
for the calculation of τj for each node j crossed by fq

(6) deadline: it is set to hfq as calculated by Eq. (2).
However, this field is set to −1 if the first hop of
FLOW-INFO is a parent-child hop. Hence, this filed
is used for the cfq calculation by the node parent(αfq)
when the first hop of the FLOW-INFO is a child-
parent hop.

The calculation of the F li takes place at the last hop of the
FLOW-INFO, such that i = βfq if the last hop is a child-
parent hope and i = parent(βfq) otherwise. The node i
checks the parent id field of the FLOW-INFO packet. If it
is set to −1, then it adds the node j = αfq to F li , otherwise

it adds the node j = parent(αfq) to F li .

When the sink node βfq receives the FLOW-INFO packet,
it sends an acknowledgment packet (ACK) to the source
node αfq that consists of the following fields:

(1) src id: the id of the ACK sender βfq .
(2) dest id: the id of the ACK receiver αfq .
(3) parent id: it is set to parent(βfq). However, this filed

is set to −1 in case the first hop of the ACK is a
parent-child hop.

(4) flow type: it is equal to 1 for the increasing flow,−1 for
the decreasing flow and 0 for the bidirectional flow.
Since the flow fq has an opposite direction to the

direction of the ACK packet, then if the first hop of
the ACK packet is a child-parent hop, the flow type is
initialized to 1; otherwise to −1. This field is altered
from −1 to 0 by the node zfq if the ACK reverses its
direction from decreasing to increasing.

(5) depth parent: it is set to depth(parent(βfq)) and
used for cfq calculation when flow type = 1 or
flow type = 0 (see constraints (4c) and (4d)).

(6) depth zf : it is initialized to −1. Node zfq sets this field
to depth(zfq) for bidirectional flow fq. It is used for
cfq calculation when flow type = 0 (see Eq. (4d)).

The calculation of the F ej takes place at the last hop of the
ACK packet such that j = αfq if the last hop is a child-
parent hope and j = parent(αfq) otherwise. The node j
checks the parent id field of the ACK packet. If it is set
to −1, then it adds the node i = βfq to F ej , otherwise it
adds the node i = parent(βfq) to F ej . Moreover, node j
calculates and maintains the cfq using the corresponding
constraint in Fig. 4.

5.3 Calculation of Di

The Distance Vector (DV) is one approach for the dis-
tributed calculation of the shortest path tree in a given
graph (Bonaventure (2011)). However, the DV has the
following limitations concerning the specification of the
shortest path tree problem in the inequality graph shown
in Fig. 6 : (i) it is an asynchronous algorithm, and since our
proposed distributed TDMA scheduling algorithm consists
of multiple stages, then the synchronization between stages
is required. (ii) it considers only communication between
neighboring nodes. Since edges, that connect nodes which
are not in neighboring relation, exist in Fig. 6, e.g. the
edge (8,7), then considering those edges is crucial for the
correctness of the algorithm. (iii) the existence of the
negative cycles is not detected.

To cope with DV limitations, we propose a modified
version of the DV as shown in the pseudo code in Alg. 1.
Each node initializes PO to POmax and the algorithm
iterates till a feasible solution is found or PO becomes
less than 0. The feasible variable denotes whether this
stage terminates with a feasible solution or a negative
cycle has been detected. Each node i initializes Di to
depth(i). Then, the algorithm, for given PO, iterates for
at most n + 1 iterations (n − 1 iterations, at most, for
calculating Di, one iteration for detecting the existence of
negative cycles and one additional iteration to inform the
nodes whether a feasible solution has been found). At each
iteration, the initialize() function sets sti as shown in the
state diagram in Fig. 9 (transitions (1) and (2)). Since this
stage is entirely not overlapping with the previous stage,
then identical node states labels have been used.

Di calculation utilizes mainly two types of packets. The
Single Hop Distance Value (SHDV) and the Multiple
Hops Distance Value (MHDV). Both packets have the
same format that includes the id of the sender src id,
the id of the receiver dest id and the estimated short-
est distance Di=src id. To accomplish the synchronization
purposes, sending the SHDV packets, at each iteration
r ≤ n, is firstly commenced by node 1. Notice that node
1 skips the statement at line 7 since parent(1) = ∅.
As depicited at lines 9 and 10, whenever a node i re-

Fig. 9. Node state diagram during the second stage.

Algorithm 1: Di calculation

1 PO← POmax

2 while PO ≥ 0 do

3 feasible← true, Di ← depthi, r ← 1

4 while r ≤ n+ 1 do

5 quit← false, sti ← initialize()

6 if r ≤ n then

7 pck ← receive packet form my parent node

8 if pck is SHDV then

9 send SHDV to my parent and my child nodes

10 receive SHDV from my child nodes

11 else if pck is STOP then

12 send STOP to my child nodes

13 quit← true, r ← n+ 1

14 else

15 pck ← receive STOP from my parent node

16 send STOP to my child nodes

17 quit← true

18 if F l
i 6= ∅ and ¬quit then

19 send MHDV to each node j ∈ F l
i

20 while ¬quit do

21 Route the packet in case receiving MHDV packet

22 sti ← update my state()

23 if sti is ready then

24 send READY packet to my parent node

25 if i is the root node in the tree then

26 if none of the nodes has updated its Di

then

27 r ← n /* feasible remains true */

28 else if negative cycle is detected then

29 feasible← false, r ← n

30 quit← true

31 r ← r + 1

32 if feasible then

33 break

34 else

35 PO← PO− 1

36 if PO ≥ 0 and F e
i 6= ∅ then

37 update the value of cfq for each each edge (j, i) such

that j ∈ F e
i

ceives SHDV packet from node j = parent(i), it applies
Di = min{Dj + cji, Di}. Then, node i sends SHDV to
node j = parent(i) and to each node k ∈ child(i). When
node i receives SHDV from every node k ∈ child(i), it
applies Di = min{Dk + cki, Di}.
Furthermore, Each node i sends MHDV packet to each
node j ∈ F li (line 19). The MHDV packet traverses the
tree topology node by node until reaching node j (e.g.
in Fig. 6, when node 1 sends MHDV to node 5, the
route will be 1 → 2 → 5 such that node 2 forwards the
packet to node 5 without updating its D2 value). When
the node j (e.g. node 5) receives the MHDV, it applies
Dj = min{Di + cij , Dj} ∀ i ∈ F ej .

Lines 20 to 30 determines when the node becomes ready.
The node, that sends and receives all required SHDV
and MHDV packets, updates its state to pre-ready. The
pre-ready node becomes ready when it receives READY
packets from all its child nodes. The update my state()
function updates the state of the node as depicted in Fig. 9
(transitions (3), and (4)). Hence, each iteration, at each
node, lasts until the node informs its parent about its
ready state. Due to the Bottom-up pattern of sending the
READY packets, node 1 is the last node that becomes
ready at each iteration.

If an iteration terminates with no further changes of
Di=1...n, the Di calculation can be terminated, as sub-
sequent iterations will not make any more changes. The
termination in such case avoids sending and receiving
the redundant SHDV and MHDV packets. Hence, the
READY packet, sent by a node i to its parent j at rth

iteration, also indicates whether Dk has been updated
∀k ∈ {i} ∪ subT (i). Hence, when node 1 becomes ready
at rth iteration, it is fully aware whether to terminate the
Di calculation. If termination is the case, it sends STOP
packet that traverses the network from the root node to
the leaf nodes to terminate the Di calculation and to start
the subsequent stage of the TDMA scheduling algorithm.

If a node i updates its Di at the nth iteration or Di

becomes negative at any iteration r ≤ n, node i informs its
parent node through the READY packet. Consequently,
when the root receives the READY packets, it sends
STOP packet to all nodes indicating to stop the scheduling
algorithm for the given length of the period. Then each
node i decreases the value of PO by 1 and updated the
value of the cfq in case F ei 6= ∅ and the algorithm iterates
again for the new given length of the period.

5.4 Nodes schedule and Rx, Tx allocations

Distributed topological ordering: Two phases encompass
this part. During the first phase, each node i calculates
the sum of τj of all nodes j ∈ subT (i) in addition to τi.
This sum is denoted by Ti (see Eq. (6)). To accomplish
this task, each node i receives Start Topological Ordering
(STO) from its child nodes, calculates its Ti value and
sends STO(i, j, Ti) packet to node j = parent(i). This
phase lasts until node 1 receives STO packets from its
child nodes as illustrated in Fig. 10. The dashed directed
edges represent the direction of the transmissions while
the numbers in the squares represent the value of Ti. The
τ duration for each node is depicted next to the node and
the Ncsma = 2 time-slots. Notice that in case T1 > P , then
there is no schedule fits into the period, and the TDMA
scheduling algorithm terminates with no feasible schedule.

Ti =
∑

j∈child(i)

Tj + τi (6)

The second phase is triggered in the opposite direction
to first phase (i.e., from node 1 to the leaf nodes) and
illustrated in Fig. 11. Each parent node partitions its child
nodes into two sets, namely the pred set and the succ set.
The pred set includes the child nodes which are predeces-
sors to the parent node while the succ set includes the child
nodes which are successors to the parent node. The parti-
tioning procedure is accomplished depending on the value
of Di and Dj where j ∈ child(i) (i.e., j ∈ pred(i) if Di =

Fig. 10. Distributed topological ordering (first phase).

Dj ; otherwise j ∈ succ(i)). Nodes in both sets are sorted in
ascending order based on the id. The parent node then cal-
culates its start slot in the schedule denoted by si as shown
in Eq. (7). Also, it calculates the release slot denoted by rj
for each j ∈ child(i) as shown in Eq. (8a), (8b) and (8c).
Then, the parent node i sends the End Topological Or-
dering ETO(si, rj , ITxj , NTxj , IRxj , NRxj) packet to each
child node j ∈ child(i).

Each child node j utilizes the received ETO packet to
synchronize its assigned Tx, Rx with its parent (i.e.,
the child node sends the data to its parent during the
time-slots interval given by

[
si + ITxj

, si + ITxj
+NTxj

]
and receives data from its parent node during the time-
slots interval given by

[
si + IRxj

, si + IRxj
+NRxj

]
. This

phase lasts until each node receives the ETO packet and
calculates its start time in the schedule.

si =
∑

j∈pred(i)

Tj + ri (7)

rj =

0 if j = root (8a)

ri +

∑
k∈pred(i)

k<j

Tk if Di = Dj : j ∈ child(i) (8b)

si + τi +

∑
k∈succ(i)

k<j

Tk if Di = Dj − 1 : j ∈ child(i) (8c)

Fig. 11. Distributed topological ordering (second phase).

6. EXPERIMENTAL RESULTS

The distributed algorithm was implemented in Java such
that each node is represented as a thread. Testing the
algorithm was performed on a PC with an Intel Core i7
3520M Dual-core (2.9 GH) CPU and 8 GB RAM.

Each problem instance consists of a tree topology with a
given set of nodes as shown in the first column in Tab. 2.

The maximum number of child nodes of every node is
shown in the second column. For each tree topology, we
generate a various number of data flows denoted by #flows
where each flow has one source and one sink. The deadline
of each flow is given in the number of crossed periods
and shown in deadline column. The sampleSize = 64 bits
and sampleACK = 0. For each tree topology and each
combination of #flows and given deadline, we generate a
set of 30 instances. Due to different kinds of disturbances,
the transmission over the channel might be lost in real
case WSNs. Thus, and for the sake of simplicity, we assume
that the channel error rate is fixed to 30%. Hence, the node
drops the received packet with the probability of 0.3 (Jurk
and Hanzlek (2010)).

The average number of packets transmitted by the nodes,
for the given 30 instances, is shown in avg(#pck) column.
Furthermore, Due to the tree topology of the network, and
the utilization of the 3 types of multiple hops packets,
namely FLOW-INFO, ACK and MHDV, then the lower
the depth value of the node, the more packets are for-
warded by the node. Thus, we also show the average num-
ber of the maximum numbers of the transmitted packets
by the nodes per each instance as shown in avgmax(#pck)
column. The results consider only the feasible instances
and no aggregation of the packets is considered. The
results indicate that increasing the number of flows in
given tree topology increases the number of transmitted
packets. However, having less time-constrained data flows
by increasing the value of the flow’s deadline, decreases the
number of iterations required by the Di calculation stage
which leads to a smaller number of transmitted packets.

The energy consumption metrics of the nodes are shown
in columns avg(E) and avgmax(E) and given in millijoule
[mJ]. E is calculated by the formula: E = U · I · t where
U is the voltage, I is the current drawn and t is the
execution time (i.e., transmitting and receiving times).
The particular voltage is 3 volts and the current drawn
were given as follows: the current drawn in receive mode =
18.2 mA, transmit mode = 19.2 mA at 0 dBm (Hanzálek
and Jurč́ık (2010)). Hence, we consider only the energy
consumption due to transmitting and receiving the pack-
ets. We assume a 2.4 GHz frequency band and 250 kbps
of bit rate. The results prove the energy efficiency of our
proposed distributed algorithm. Even though the number
of transmitted packets might be high, Nevertheless, the
packets are of a small size and consequently the energy
consumption is low.

7. CONCLUSION

In this paper, we tackled a challenging scheduling prob-
lem which is highly appealing in control applications. We
considered a tree topology with time-constrained data
flows that traverse the network simultaneously in opposite
directions. Since the distributed algorithms in the field
of the design of WSNs scheduling algorithms well-suit
the scarce resources of the sensor nodes, we developed
a distributedTDMA scheduling algorithm that falls into
the category of the exact algorithms for single-collision
domains WSNs and in the category of heuristic algo-
rithms for multiple-collision domains. We proved by the
experimental results the energy efficiency of our proposed
approach.

Table 2. The number of packets metrics and
the energy consumption of the nodes.

Problem Instance Number of Messages Energy Consumption

#nodes #child #flows deadline avg(#pck) avgmax(#pck) avg(E) avgmax(E)

[#P] [mJ] [mJ]

20 3
4 1 21 53 0.7 8.5

2 16 41 0.4 5.1

6 1 23 63 1.1 12.4
2 17 43 0.2 2.1

40 3
8 2 24 76 0.5 11.1

3 18 85 0.3 4.2

12 2 32 114 0.7 12.5
3 23 80 0.5 6.2

60 4
15 3 23 102 0.4 10

5 17 78 0.3 4.5

20 3 23 120 0.4 6.7
5 18 92 0.3 3.4

100 5
25 3 33 189 0.7 10.4

5 17 102 0.3 3.2

35 3 30 207 0.6 11.3
5 20 134 0.4 4.5

150 5
40 3 22 198 0.4 11.4

5 15 134 0.3 4.7

60 4 23 252 0.6 10.5
6 21 215 0.4 7.5

200 6
70 4 22 265 0.5 11.5

6 22 265 0.42 8.8

90 4 24 315 0.56 13.62
6 22 295 0.53 10.52

For our future work, the spatial reuse of the transmission
medium will be considered to overcome the algorithm
shortcoming, mainly related to the bandwidth utilization,
when the multiple-collision domain tree topology is con-
sidered.

REFERENCES

Ahmad, A., Hanzalek, Z., and Hanen, C. (2014). A polynomial
scheduling algorithm for IEEE 802.15.4/ ZigBee cluster tree WSN
with one collision domain and period crossing constraint. In
Emerging Technology and Factory Automation (ETFA), 2014
IEEE, 1–8.

Bonaventure, O. (2011). Computer Networking : Principles, Proto-
cols and Practice. The Saylor Foundation.

Ergen, S.C. and Varaiya, P. (2006). PEDAMACS: power efficient and
delay aware medium access protocol for sensor networks. IEEE
Transactions on Mobile Computing, 5(7), 920–930.

Ergen, S.C. and Varaiya, P. (2010). TDMA scheduling algorithms
for wireless sensor networks. Wirel. Netw., 16(4), 985–997.

Hanzálek, Z. and Jurč́ık, P. (2010). Energy efficient scheduling for
cluster-tree Wireless Sensor Networks with time-bounded data
flows: Application to IEEE 802.15.4/ZigBee. IEEE Transaction
on Industrial Informatics, 6(3).

Jurk, P. and Hanzlek, Z. (2010). Simulation study of energy efficient
scheduling for IEEE 802.15.4/zigbee cluster-tree wireless sensor
networks with time-bounded data flows. In Emerging Technologies
and Factory Automation (ETFA), 2010 IEEE Conference on.

Lenzen, C. and Wattenhofer, R. (2011). Distributed algorithms for
sensor networks. Philosophical Transactions of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences,
370(1958), 11–26.

Moriyama, K. and Zhang, Y. (2015). An efficient distributed TDMA
MAC protocol for large-scale and high-data-rate wireless sensor
networks. In Advanced Information Networking and Applications
(AINA), 2015 IEEE 29th International Conference on, 84–91.

Org., Z.S. (2006). ZigBee specification, std. 053 474r13.
R. Severino, N.P. and Tovar, E. (2014). Dynamic cluster scheduling

for cluster-tree wsns. SpringerPlus Commun. Netw, 1–17.
Yu, B., Li, J., and Li, Y. (2009). Distributed data aggregation

scheduling in wireless sensor networks. In INFOCOM 2009, IEEE,
2159–2167.

Zheng, T., Gidlund, M., and kerberg, J. (2014). Medium access
protocol design for time-critical applications in wireless sensor
networks. In Factory Communication Systems (WFCS), 2014
10th IEEE Workshop on, 1–7.

