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1 Introduction

The utilisation of robots in production lines has become a very important aspect to
increase the productivity, throughput and efficiency of the production. Especially
car manufacturers have been investing big effort in obtaining reliable, precise and
high-throughput robotic production lines. Hand in hand with devoting higher ratio
of the production work to the robots and thus increasing the number of robots par-
ticipating in the production, the amount of energy consumed by the robots increases
as well. Therefore it is of great importance to search for ways how to improve the
energy efficiency of the robot operations. In this chapter the focus is put on robotic
welding lines, which already exist and which have been in production. Because of
this reason there are only limited possibilities in adding additional sensors or in per-
forming changes in the robotic programs and in the programs of the superordinate
controllers. However, such existing lines can still be improved in terms of their en-
ergy consumption. This contribution concentrates on methods how to optimise the
robotic operations and how to get the necessary energy models of the robots that are
needed for the optimisation. All this while keeping in mind the above stated require-
ments to utilise the existing production line infrastructure. Moreover, the underlying
optimisation model together with the energy model of the robots are general enough
to be used also during the design phase of new production lines.

The core of this contribution is a novel mathematical formulation of the energy
optimisation problem for robotic lines. Contrary to the existing works the proposed
solution considers different trajectories of robots, gravity and order of robot oper-
ations from the global point of view of the whole robotic cell. In fact, it may also
be enhanced to a series of cells but it is out of the scope here. Moreover, the pre-
sented mathematical formulation takes into account the robots’ power saving modes
such as staying on brakes or ”falling asleep”, to which robot in a stationary position
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can switch to save even more energy. The optimal solution to the problem is the one
which is both the most energy-efficient and meets the desired production cycle time.

The basic characteristics of the robots with respect to their energy consump-
tion is their so-called energy function, which represents the dependency of the con-
sumed electrical energy on the duration of given robotic operations. Such an en-
ergy function may be obtained using electrical power measurements on the real
robots, by simulations or by analytical computations based on a physical model of
the robots. Moreover the robotic operations must be clearly separated in order to get
their boundaries to be entered into the optimisation model, as well as to be able to
compare the energy function of the individual robots with their real behaviour.

The physical modelling of the robots is based on graphically-oriented computer-
aided concept that exploits CAD software such as NX or Solidworks and simulation
environment Matlab Simulink with SimMechanics and SimPowerSystems libraries.
These software tools are used for the composition of a dynamical simulation model
that represents both mechanical robot structure and robot drives during the robot
motions. Thus the power needed for the robot movements can be obtained and the
energy functions can be calculated.

The robotic operations may also be simulated in another environment, which is
used to design and simulate complete robotic lines such as Process Simulate. Next
to the design of the robot trajectories it is possible to simulate the robot controller
itself if an appropriate Robot Controller Software (RCS) and Realistic Robot Sim-
ulation (RRS) modules are available. Recently, RCS and RRS modules that allow
simulating the energy consumption have been provided by robot manufacturers.

1.1 Contribution

In this work the global optimisation of the robotic lines is devised with respect to
the identified energy aspects which resulted from measurements and simulations.
Compared with the existing works such as [24, 25, 22, 23], the presented solution
is more general by considering the robot power saving modes such as brakes, bus-
power-off or hibernation, and different locations are taken into account where a
robot operation can be performed. Moreover, the presented formulation enables the
robotic line designers to specify path alternatives, i.e. selecting the best order in
accordance with precedence relations. The achieved results have revealed that a
significant energy saving is possible.

An important part of the optimisation model is the energy function of the robot
movements, which allows choosing the optimal speed of the robotic operations and
thus minimising the energy consumption of the robotic cell not only from a local
point of view but also from the point of view of the cell or even series of cells. This
work presents several ways how to obtain the energy function.
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1.2 Related works

The current research on energy optimisation of robotic lines can be categorised into
two groups. The first one is the optimisation of individual robot trajectories with
respect to physical limitations of robots and obstacles to be avoided. The second
one, rarely occurring in the literature, is the optimisation of the robotic line as a
whole using mathematical models. Both the groups are not necessarily disjunctive
and there are a few papers dealing with both of the aspects.

As an example from the first group the following works are worth to be men-
tioned. In the work of Saramago et al. [16] both the time of the robot movement
and mechanical energy consumed by actuators are taken into account. The multi-
objective optimisation problem was solved by using the DOT program (Design Op-
timisation Tools Program) and tested on three and six degrees of freedom manipu-
lator arms.

A real-time planning of energy efficient trajectories for the robot catching small
flying objects was proposed by Lampariello [9]. The authors formulated the non-
linear constrained optimisation problem, nevertheless, to be able to find good trajec-
tories in a real-time the global planner was generalised using the learning methods,
such as nearest neighbour, Support Vector Machines, and Gaussian process regres-
sion. The proposed approach has shown to be efficient on the ball-catching task.

Michna et al. [12] developed an algorithm for the generation of time optimal
trajectories for wheeled robots. The trajectory is interpolated by the cubic Hermite
spline curves and a speed profile is determined by the algorithm. To accelerate the
calculation of collision-free trajectories the authors propose to use neural network.
Nevertheless, the energy consumption is not considered and the approach was only
tested on a hypothetical example.

The following works perceive the robotic lines as a whole to find globally good
solutions. In the work of M. Mashaei and B. Lennartson [11] an energy model of the
Pallet-Constrained Flow Shop problem was formulated to find an optimal switching
control strategy leading to the desired throughput and minimal energy consumption.
Idle states of machines were also taken into account to reduce energy consumption
if the machine is not working. However, the model requires a line with special struc-
ture, i.e. closed-loop pallet system, and therefore it is not generally applicable to the
robotic lines.

There are a few similar papers [24, 25, 22, 23] focusing on both the local and
global optimisation of the robotic lines. For example, in the work of Wigström et al.
[24] a physical model of a robot with AC synchronous motors is created and opti-
mal control problem, determining how to control the robot moving along the spec-
ified partial trajectory in an energy efficient way, was solved using Dynamic Pro-
gramming. Nevertheless, the geometry path was fixed and the initial time optimal
trajectory obtained from ABB Robot Studio was required. Afterwards, the locally
optimised trajectories were used as an input for the global solver (Mixed Integer
Non-Linear Programming) to find a solution that is energy efficient and satisfying
demanded production cycle time. Although the model is the first model considering
the global energy aspects, there are a few drawbacks limiting the possible energy
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saving – the robot power saving modes are not taken into account and different po-
sitions of robots during the work are not considered. The same authors provide more
details about the formulation in [23]. As a verification of the energy-aware solution
[25] suggests to use Hybrid Cost Automata .

Riazi et al. in [14] combine the optimisation of individual trajectories with order-
ing the robot operations. The decrease of energy consumption during movements is
achieved by minimising the sum of square roots of accelerations over the trajectory.
Worth mentioning is the fact that no model of the robot is needed because the ac-
celeration vector is obtained by sampling the existing movements and the optimised
trajectories are uploaded back into the robot afterwards.

As part of the movement optimisation in order to reduce the energy consumption
it is necessary to calculate, measure or at least assess the energy consumption of
the robot under different circumstances. Several methods exist that are based on
mathematical analysis, i.e. on modelling the kinematics and dynamics of the robots
such as in [3], [17] or [18] where a specific expression of the energy consumption
equation in dependence on a given robot trajectory is presented. Papers such as
[4], [5], or [21] focus on processing and analysing real data obtained from physical
measurements.

The way how measurements can be done differs if the robot is in a laboratory
environment or if the measurements must be done in a production environment on a
robot that is usually part of a robotic cell. In such a case pattern matching or machine
learning techniques are used to process the data and identify the robot operations.
In [6] region-based segmentation stemming from frequency analysis of the original
signal is used. [10] relates to a state estimation and a corresponding energy audit
of injection moulding machines and the focus is given to identifying the production
state of the machine using a two-level neuron network to classify the states. Paper
[20] focuses on pattern recognition of 1-D signal in industrial batch dryer with a
goal to slice the measured data of pressure into time windows of the periodic batch
processing intervals using supervised learning of a Takagi-Sugeno fuzzy model.
Ron et al. in [15] use 1-D pattern matching with correlation and feature extraction
techniques.

1.3 Outline of the chapter

The following sections provide the details about the individual parts of the en-
ergy optimisation problem. Specifically, Section 2 defines the problem formally and
shows examples of a simple robotic line, schedule of operations and corresponding
energy function for a robot movement.

Section 3 deals with different ways how to obtain data for modelling the energy
function such as measurements of the power consumption on a robot in a labora-
tory, creation of a kinematic and dynamic model of a robot and its electrical drives
to get an equation for the energy consumption, and how to simulate the robotic
movements to get the energy function from simulation. A special attention is put to
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the identification of the robotic operations at a production line, which completes the
whole picture in such a way that it is possible to evaluate the obtained energy func-
tions of the robot movements with respect to their real energy consumption during
production operations.

Section 4 shows how to use the energy functions to optimise the energy con-
sumption. The mathematical model in terms of Integer Linear Programming is de-
fined there and a way is proposed how to compute a lower bound using Langrangian
relaxation. Section 5 describes the results of the optimisation, which has been per-
formed on generated problem instances as well as on an industrial use case from
Škoda Auto car manufacturer. Section 6 summarises the results and concludes the
chapter.

2 Problem statement

The following aspects of energy saving at robots are crucial: (a) selection of sta-
tionary positions represented by different robot configurations, which take into ac-
count the robot energy consumption, (b) power saving modes, whose utilisation may
result in significant energy demand decrease1, (c) trajectory selection and alterna-
tives again with respect to their energy consumption, and (d) speed of the movement,
which is dual to the duration of the movement. A detailed analysis supporting this
statement is provided in Section 3.1.

Energy aspects are illustrated by a simple robotic line depicted in Fig. 1. In this
example the first robot takes the weldment, performs a welding operation, and puts
it on the bench where the second robot takes it, carries out a welding operation, and

Fig. 1 Example of the line with two robots.

1 The more energy-saving mode is the longer time is required to have the robot back in a ready-to-
operate mode.
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finally puts the weldment on the conveyor belt. In each subspace, denoted as a cal-
ligraphy letter without subscript, there are possible points (i.e. gun coordinates), in
which the robot can conduct a task, e.g. welding, assembling, taking the workpiece,
putting it on the bench, or handing it over to another robot. Between subspaces the
robot can move in a direction indicated by the arrow that corresponds to the set of
point-to-point movements. From the set no more than one movement is selected and

Fig. 2 Relation between the duration of the movement and energy consumption.

the duration of motion and required energy is determined according to the energy
function obtained either from the measurement or from the energy model of the
robot. In Fig. 2 the measured movements corresponding to points were interpolated
with function

f si
E (di) = a−1d−1

i +a0 +a1di (1)

where di is the duration of the movement, f si
E (di) consumed energy, and finally

a−1,a0,a1 are coefficients calculated by e.g. the Gauss-Newton algorithm. The sub-
script letter E means energy and superscript letter s represents the fact that the
function is parametrized by the trajectory the robot moves along. The function was
empirically proposed using the following ideas and supported by the measurement
results from Section 3.1. As the duration tends towards 0+ the power consumption
increases to ∞, i.e. due to the first term a−1di

−1. On the other hand, if the duration is
very lengthy, only the gravity part can be considered and the consumption increases
linearly, which is represented by the third term a1di. Finally, term a0 is a constant
offset of the function. The function is convex provided that coefficient a−1 ≥ 0. It is
also possible to use higher degrees of the approximation polynomial if it fits better
the robot behaviour but it is subject to further evaluation in the particular case.

The alternatives are illustrated in Fig. 3. There are two possible paths that the
robot can take and one of them is probably more energy efficient. However, both
paths have a bit different timing (synchronisation between robots) and order of op-
erations.
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Fig. 3 Illustration of alternatives.

Fig. 4 Graph representation of the robotic line.

To demonstrate how the problem can be represented by a graph and how the
final schedule looks like the robotic line from Fig. 1 was used for the example in
Fig. 4, which shows the structure of the robotic line in terms of operations and
movements. The red dashed arrows are synchronisation edges L , i.e. time lags, that
ensure the correct handover of the weldment to the second robot using a turntable.
The black ones guarantee that operations and movements are performed in a desired
order (orders in case of alternatives). All edges are weighted by length L(ei, j) and

Fig. 5 An example of a schedule.
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height H(ei, j) where the length corresponds to the duration or time offset, and the
height binds the previous or future cycles with the current one. For more information
about time lags please refer to [7]. Finally, the selected robot positions, power saving
modes (i.e. brakes – BR, motors – MOT, and bus-power-off – BPO), and movements
are indicated in the graph nodes. One of the possible schedules is depicted in Fig. 5
where CT is the production cycle time.

As it can be seen the problem is similar to cyclic scheduling, however, there are
a few differences. At fist, there is a synchronisation between robots, and as a conse-
quence rotated schedules are not equally good as it is in cyclic scheduling. Secondly,
durations are not fixed (energy functions) as it is the case of cyclic scheduling. If
only one robot is taken into account, the problem is equivalent to the Travelling
Salesman Problem with the exception of non-constant edge weights.

3 Energy function of the robot movements

There are several ways how the energy function of the robots can be obtained. The
following subsections propose three ways, i.e. measurement at a real robot, physi-
cal modelling of the robot kinematics and dynamics, and simulation based also on
a software model of the robot controller. Subsection 3.4 deals with a way how to
identify the individual robotic operations automatically from the power measure-
ment data obtained at a production cell with multiple robots. This procedure allows
evaluating the energy model of the robot against the robot behaviour in the cell.

3.1 Power measurements

Detailed measurements were performed at industrial robot KUKA KR 5 arc for dif-
ferent speeds of movements, trajectories and robot positions to find out the energy-
saving potential. Such a measurement cannot be done in a production cell typically.
However, it is presented here to support the hypothesis about using the energy func-
tion. A brief description of the robot, which has been used, can be found in Table 1.

In the experiment the static consumption and dynamic consumption were mea-
sured. The static consumption is perceived as an amount of energy consumed by a
robot in a stationary position. A non-moving robot can also get to a power saving
mode (brakes, bus-power-off, hibernate) to save even more energy. The dynamic
consumption corresponds to energy consumed during the robot movement.

The measured profile of active power is shown in Fig. 6. The left part of the graph
(up to 80 seconds) can be used to evaluate the static consumption for the robot being
held on brakes or motors. The rest of the graph is designated for the measurement
of the dynamic consumption. For each speed, denoted as ’T2: X%’ where X is a
relative speed of the robot, the sequence of movements (peaks in the graph) p1 —
p2 — p1↘ p3↗ p1 is executed. ’pi — p j’ is a movement between points pi and
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Table 1 Basic parameters of KUKA KR 5 arc (KUKA Industrial Robots [8]).

working range 1412 mm

maximal load 5 kg

weight 127 kg

idle power: held on brakes cca 180 W

idle power: held on motors cca 350 W

idle power: bus-power-off cca 134 W

Table 2 Analysis of the measured data.

interval t1 t2 ∆ t [s] input power [W] energy consumption [J]
Idle - brakes 25.0 30.0 5.0 180.3 901.3
Idle - motors 57.6 58.2 0.6 347.9 208.7
T2: 30 % (p1—p2) 192.7 194.8 2.1 649.5 1364.0
T2: 30 % (p2—p1) 197.7 199.8 2.1 641.4 1346.9
T2: 30 % (p1↘ p3) 202.5 205.0 2.5 583.8 1459.6
T2: 30 % (p3↗ p1) 208.0 210.8 2.8 755.8 2116.2
T2: 50 % (p1—p2) 252.2 253.8 1.6 858.9 1374.2
T2: 50 % (p2—p1) 256.5 258.0 1.5 874.0 1310.9
T2: 50 % (p1↘ p3) 260.7 262.3 1.6 860.0 1376.0
T2: 50 % (p3↗ p1) 265.2 267.2 2.0 1015.7 2031.3
T2: 70 % (p1—p2) 328.2 329.4 1.2 1204.1 1444.9
T2: 70 % (p2—p1) 332.0 333.4 1.4 1001.1 1401.5
T2: 70 % (p1↘ p3) 336.0 337.4 1.4 1102.9 1544.0
T2: 70 % (p3↗ p1) 340.3 341.8 1.5 1420.6 2130.8
T2: 90 % (p1—p2) 385.0 386.3 1.3 1198.1 1557.5
T2: 90 % (p2—p1) 388.8 390.0 1.2 1233.9 1480.7
T2: 90 % (p1↘ p3) 392.5 393.8 1.3 1220.1 1586.1
T2: 90 % (p3↗ p1) 396.5 398.0 1.5 1492.7 2239.0
T2: 100 % (p1—p2) 433.3 434.5 1.2 1270.7 1524.8
T2: 100 % (p2—p1) 437.0 438.2 1.2 1182.6 1419.2
T2: 100 % (p1↘ p3) 440.7 441.9 1.2 1411.2 1693.5
T2: 100 % (p3↗ p1) 444.5 446.0 1.5 1494.5 2241.7

p j which are at the same height, ’pi ↘ p j’ is a descending movement, and finally
’pi↗ p j’ is ascending one. Before each sequence the robot is moved from the home
position, i.e. an initial position of the robot determined by the robotic cell designer,
to p1 and after the sequence from p1 to the home position.

The measured data (see Fig. 6) were analysed and the results are presented in
Table 2. From the static consumption point of view it can be deduced that it is pos-
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Fig. 6 Energy profile of the robot power consumption.

sible to save about 45 % energy if the robot is braked instead of being held in the
position by motors. The difference could be even bigger if the robot was loaded or a
less energy efficient configuration (i.e. a position of the robot) was selected. Another
experiment, not mentioned before, was related to the measurement of how the robot
configuration influences the power consumption. It was found out that the robot ver-
tically stretched out required 344 W compared to 366 W for the robot horizontally
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stretched out. A relatively small difference was caused by using a small industrial
robot without load. Along with the experiment, it was measured that the robot con-
sumes 134 W and 30 W in the bus-power-off and hibernate modes, respectively.

To evaluate the effect of different movement speeds on the energy consumption
the average input power and total consumption were calculated (last two columns
in Table 2). From the results it is no surprise that the energy consumption was con-
firmed to be higher for p1 ↘ p3 movement than for p3 ↗ p1 one. With respect to
the speed of the robot it was shown that there is no need to consider too slow move-
ments as the gravity part constitutes huge loss of energy. In a similar way, too fast
movements increase the consumption dramatically while the duration of the move-
ment decreases only little. For instance, there is a fall of about 6.3 % in energy for
the p1—p2—p1 movement if the relative speed is set to 70 % instead of 90 %.

3.2 Physical model of the robot

A complete modelling approach has been presented in [13], which deals with a de-
scription of the fully graphically-oriented computer-aided modelling and its mathe-
matical analysis that is used for the determination of the robot energy consumption.
The computer-aided modelling follows from a pure geometrical 3D model of the
robot that is split by CAD software such as NX or Solidworks into particular robot
components. They are supplemented with appropriate physical parameters like vol-
umes, masses and moments of inertia. Such a component model, which represents
physically a mechanical robot structure, can be converted into a simulation model
operated in the Matlab/Simulink environment as shown in Fig. 7. The blocks in the
figure have the following meaning. (A) is a World frame block, which represents
the global reference frame; (B) is a Mechanism configuration block of general pa-
rameters used in the simulation; (D) is a Rigid transform block representing a trans-
formation matrix that allows a following mechanical robot element to move with
respect to the basic frame; (E) is a Link block, which represents the rigid body with
its Denavit-Hartenberg frame and appropriate information about the body mass, mo-
ment of inertia related to its center of gravity; (F) is the Revolute joint block with
one DOF, where the information about its angle, angular velocity, angular accelera-
tion and actuating torque are obtained from a built-in joint sensor; and (G) is the next
Link connected to the next revolute robot joint. The meaning of the other blocks is
straightforward. The mechanical model from Fig. 7 is completed by blocks repre-
senting the robot drives, which allows getting equation (3) of torque equilibrium.

On the basis of the mathematical analysis (see [13]), equation (2) gives the input
power for a single electrical motor with stator resistance RSi and current iqi for axis
i in q-coordinate of the d−q system.

P =
3
2

n

∑
i=1

RSi i
2
qi
+

n

∑
i=1

ωmi(τi +Biωmi + Ji
d
dt

ωmi) (2)
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Fig. 7 Block diagram of robot structure in Simulink.

This equation is based on the equilibrium between electromagnetic torque and me-
chanical torque for the individual components, i.e. for the axes of the robot, as ex-
pressed in equation (3)

τei = τi +Bi ωmi + Ji
d
dt

ωmi (3)

where Ji is the inertia and Bi is the friction of the motor and the load; ωmi is me-
chanical rotor speed related to electrical speed as ωmi = ωei/p considering p for a
number of pole pairs; τi is a one load torque component of the torque vector τ from
the dynamic model as expressed in equation (4); and τei is electromagnetic torque.

B(ϑ) ϑ̈ +C(ϑ , ϑ̇) ϑ̇ +g(ϑ) = τ (4)

where B(ϑ) is an inertia matrix, C(ϑ , ϑ̇) is a coefficient matrix of Coriolis and cen-
trifugal force effects, g(ϑ) is a vector of gravitational effects, ϑ = [ϑ1 ϑ2 · · · ϑn ]

T

is a vector of joint angles and τ = [τ1 τ2 · · · τn ]
T is a vector of torques acting on

appropriate joints as shown e.g. in [19].
By integrating the total input power over the interval corresponding to the con-

sidered motion trajectory the robot energy consumption is obtained in equation (5),
where Γ is the duration of the robotic movement and the other variables come from
equations (2) – (4).

E =
∫

Γ

0

[
3
2

n

∑
i=1

Ri2qi
+

n

∑
i=1

ωmi (τi +Bi ωmi + Ji
d
dt

ωmi)

]
dt (5)
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By evaluating the energy consumption for different durations of the motion it is
possible to construct the energy function for the considered trajectory.

3.3 Simulated energy function

In some situations it is not possible to perform all necessary experiments and mea-
surements with real equipment because of some physical or organizational limita-
tions. As an example, a robotic cell being part of a regular production may be named.
Thus, it may not be possible to change the robotic paths to perform any additional
movements, which are not part of productive robotic operations, to identify a set of
parameters relating to the dependency of the power consumption on a specific robot
trajectory, to the robots’ dynamic parameters etc.

Therefore a simulation environment can be used such as Tecnomatix Process
Simulate. This environment contains robot controllers implemented according to
the Robot Controller Simulation (RCS) specification, which means that the robot
controllers perform Realistic Robot Simulation (RRS). One of the features of the
recent Process Simulate version is the possibility to simulate power consumption
of the robot movements. By summation of the total energy used by a robot for
one particular movement performed repeatedly with different speed settings energy
function f s

E(x) can be constructed – see equation (1).

3.4 Robotic operations

As mentioned above, knowing the robotic operations and the consumption of the en-
ergy for each of them helps evaluate the energy function for particular robot move-
ments. Moreover, it is also used to group robotic operations together to form the
activities that are used in the mathematical model to describe the behaviour of the
robots (see section 4). According to this model, it is necessary to differentiate op-
erations, which represent movement trajectories, and operations representing work
such as welding, holding a part in a specific position, etc. A set of subsequent e.g.
welding operations that are executed in a given order and are next to each other, is
typically represented as a single activity because it is not expected that changing the
trajectories between the welding points would mean any significant savings. Fig. 8
shows a sequence of operations of one robot in the welding cell. The blue horizontal
bars represent the operations, which may be grouped into activities that are later for
the optimisation represented as single dynamic or static activities (see section 4).
The yellow horizontal bar is the length of one production cycle, i.e. the time after
which the robot repeats its set of operations for the next part. Interval TR shows the
time remaining between the last operation and the beginning of the next produc-
tion cycle. Thus, operation o1 forms activity 1, which is dynamic, and represents
a movement of the robot to its first position. Operations o2 – o6 represent a set of
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Fig. 8 Operations of one robot in the cell

welding operations and short movements between the neighbouring welding spots
and forms static activity 2. Subsequent operations o7 – o9 correspond to gripping the
part and moving it to another position (such as a turn table) and all together form
activity 3. This is to demonstrate that also several movements, i.e. movement oper-
ations, can be formed into a single activity, which in case of activity 3 is dynamic.
Such a sequence of operations is specified for each robot in the cell.

In the following text, which relates to [15], the problem of identifying individ-
ual robotic operations from the actual power needed by the robots to execute the
movements is described.

The basic idea is to label sections of the data of power measurements, which
correspond to particular operations of each robot in the cell. This may be done by
observing the robots working in the cell and placing marks in the data. After that
patterns are marked in the labelled data as model patterns, i.e. one pattern as a rep-
resentative of one robotic operation, that will be searched for in the whole set of the
power consumption data.

The procedure of identifying the operations consists of (a) data filtering to sup-
press the noise and errors stemming from misplaced samples, (b) evaluating the
similarity of all segments of the power consumption data, and finally (c) taking the
measure of similarity as a threshold to search for local maxima, which correspond
to the location of the model patterns in the data.

Data filtering: To get rid of the error (noise, misplaced samples) a median filter
is used. Its filtering window length has been chosen to filter out random signal er-
rors with a big amplitude difference such as unsynchronised neighbouring samples,
where two neighbours are swapped. The filter still conserves high peaks that are
used as classification feature during the detection phase.

Similarity of segments: To assess the similarity of two same-length vectors of
one-dimensional data signals the analysis in frequency or in time domain may be
done. According to the measurements, which had been performed at the robots in
a production cell, the frequency analysis has proven not to be suitable because the
signals are very similar in their spectra. There may be two instances of the same
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operation but from different time points during the day, whereas one time point
is at the end of the working shift and the other is at the beginning of the next one,
whose correlation is 83%. This value is too low contrary to the fact that both spectra
correspond to the same operation. Moreover the frequency spectra of two different
operations may be correlated up to 85%. Based on this observation the frequency
analysis is not suitable.

The get the similarity measure in the time domain Pearson’s correlation coeffi-
cient is computed for its simplicity and suitability for this intended case. It is defined
as follows.

ρx,y =
cov(x,y)

σxσy
(6)

cov(x,y) =
1
N

N

∑
i=1

(xi−µx)(yi−µy) (7)

σx =

√
(x−µx)T (x−µx)

N
(8)

Coefficients σy and σy are the standard deviations of values of vectors x and y,
respectively. The cov(x,y) is the cross-covariance of the vectors x and y. The µx
and µy are the mean values of x,y, respectively, and N is the length of the model
pattern vector. However, the mean values µx,µy are not known exactly and thus their
approximations by computing the mean values of x̄, ȳ from the measured data are
used.

Measure of similarity: After having established the measure of a good match
of two segments for the power consumption data it must be considered, which seg-
ments to compare. A straightforward procedure is to compare every possible vector,
i.e. a window in the data, which has the same length as the model pattern vector.
Such a strategy guarantees a good precision of localization in time but is computa-
tionally demanding. Nevertheless, the procedure lies in picking a vector of length
K of samples from the power consumption data where K is the same as the length
of the model pattern vector. Then the Pearson’s correlation coefficient is computed
and stored in a vector of results r, whose length can be expressed as

dim(r) = dim(d)−K +1 (9)

where d is vector of energy consumption data. The bigger K is the less correlations
are needed to be computed but the more multiplications must be performed to com-
pute each of them. Roughly 3K multiplications need to be done for each window on
the power consumption data vector.

To reduce the length of the model pattern and thus to lower the computational
cost to compute the correlation vector, distinctive features can be extracted from
the power consumption data and the correlation can be computed on them. Local
maxima have been chosen as these features because they can be detected during one
iteration over the power consumption data and they provide good measure to match
the patterns. Undesirable peaks are avoided by applying a threshold to choose only
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dominant peaks, which contain enough information for classification. In case more
peaks occur in the defined neighbourhood only the biggest one is picked and in case
of same-valued peaks the first one is prioritised. Fig. 9 shows the model pattern and
peaks chosen according to the rules above. However, there are also peaks under the
dashed threshold line that may get above the threshold during the peak extraction
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Fig. 9 Peaks extracted from the model pattern

process because of the drifts in offset during the working shifts. This fact would
cause that some patterns physically generated by the same type of operation would
have more dominant peaks than others. Such a situation is solved as follows.

The model pattern vector and the vector, in which the matching is done, must
have the same length to be able to be compared. In fact, by the extraction of the fea-
ture vector a new down-sampled data vector with adaptive sampling time is created.
Basically three distinctive situations may occur if different peaks, i.e. not all peaks
are correctly recognised, are extracted. There may be (1) a perfect match, (2) there
is one peak missing, and (3) there is one additional peak in the power consumption
data. To avoid decreasing the correlation coefficient because of the described situa-
tion the corresponding timestamps must be paired and the peaks relating to unpaired
timestamps must be dropped. Thus, because of the fact that the duration of the model
pattern is known and the patterns that are searched for should not deviate much from
it, a window being at least as long as the model pattern is chosen. Then each sam-
ple of model pattern vector is assigned a sample from the data vector based on the
shortest Euclidean distance of timestamps. This procedure equalises the sizes of the
compared vectors. Finally the correlation of the vectors of the aligned timestamps
is evaluated and only such vectors that are correlated enough, are passed further
for value correlation. Thanks to this procedure the correlation not only of the order
of samples, but also of their position is considered. Moreover, situations when the
robot operations are interrupted abruptly are also coped well with. The reason for
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Fig. 10 Identified operations’ boundaries

interruptions, which are in fact unplanned pauses in the production, may mean a
failure in the equipment, interruption of the material flow, etc. Fig. 10 shows an ex-
ample how the boundaries (i.e. the red vertical lines) of the operations of one robot
are identified.

4 Optimisation

The following terms are used in the formulation of the optimisation problem as an
Integer Linear Programming problem. The first one is the set of static activities VS

where static activity i ∈ VS corresponds to a robot operation (i.e. subspace) such
as e.g. welding or assembling. The set of dynamic activities VD corresponds with
all the movements where dynamic activity i ∈ VD consists of all possible point-to-
point movements between two subspaces, i.e. black arrows in Fig. 1 in section 2.
Both the static and dynamic activities are multi-mode activities; it means that there
are different states that an activity can attain. Mode t ∈ Ti of dynamic activity i
selects one of the point-to-point movements between related subspaces. In case of
static activity i it is the selected position p ∈ Pi (6 coordinates – x, y, z, rx, ry, rz)
and power saving mode m ∈Mi of the robot. It is obvious that the set of activities
V =VS ∪VD . Activities associated with robot r ∈ R will be denoted by set Vr.

Static activities VS can be further divided into three sets — VIN,VOP,VOUT. In set
VIN there are input activities, i.e. activities related to taking a workpiece. In a similar
way set VOUT consists of output activities related to passing a workpiece to another
robot or machine. And finally, the rest of robot operations, i.e. VS \ {VIN∪VOUT},
are activities such as welding, assembling, disassembling, cutting, etc.

In activity set V there are mandatory and optional activities. Mandatory activi-
ties VM have to be carried out in all cases, whereas optional activities VO are not
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necessary to be performed. The optional activities were introduced by considering
alternatives where different paths can be taken, and as a result there may exist dy-
namic activities (i.e. VO ⊆ VD ) conditionally executed. Robot operations VS , how-
ever, have to be performed every time, and therefore VS ⊆ VM . It is evident that
V =VM ∪VO .

4.1 Integer Linear Programming Model

The objective is to minimise the overall energy consumption of activities. Note that
not all activities in VO have to be performed. In that case their Wi and di are set to
zero due to the criterion.

Table 3 Model variables

Wi required energy by activity i
si start time of activity i
di duration of activity i
xp

i true if robot position p ∈ Pi for static activity i is selected, otherwise false
zm

i true if robot power saving mode m ∈Mi is selected in static activity i, otherwise false
yt

i true if movement t ∈ Ti of dynamic activity i is selected, otherwise false
h∗i, j,r,wi, j decide the order of activities

Equations (10) and (11) bind activity duration di with its power consumption
Wi. Both the equations can be enabled or disabled depending on selected activity
modes where W is an upper bound on energy. Equation (10) is proposed for static
activities2, whose power demand am

i,p depends on robot configuration p and power
saving mode m. In case of dynamic activities, i.e. equation (11), the energy function
was approximated by a set of linear functions with coefficients at

i,k and bt
i,k where

k∈K is the k-th segment of the energy function for movement t. The energy function
has to be convex to ensure validity of the model.

minimise ∑
∀i∈V

Wi

s.t. am
i,pdi−W

(
2− zm

i − xp
i

)
≤Wi (10)

∀i ∈VS ,∀p ∈ Pi,∀m ∈Mi

at
i,kdi +bt

i,k−W
(
1− yt

i
)
≤Wi (11)

∀i ∈VD ,∀t ∈ Ti,∀k ∈ K

2 Each activity can be performed by only one assigned robot.
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Equations (12) and (13) state that each static activity i ∈VS has the position and
robot power saving mode assigned. In a similar way, equation (14) ensures that one
of the movements is selected for each mandatory activity.

∑
∀p∈Pi

xp
i = 1 ∀i ∈VS (12)

∑
∀m∈Mi

zm
i = 1 ∀i ∈VS (13)

∑
∀t∈Ti

yt
i = 1 ∀i ∈VD ∩VM (14)

(15)

Flow preservation constraints (16) and (17) mean that if the robot moves to posi-
tion p it also has to move away from p. In other words, if a movement to position p
is selected then a movement from p is selected as well. Inward and outward move-
ments are found by enumerating predecessors and successors respectively.

∑
∀ j∈pred(i)

∑
∀t∈Tj(pfrom,p)

yt
j = xp

i ∀i ∈VS ,∀p ∈ Pi (16)

∑
∀ j∈suc(i)

∑
∀t∈Tj(p,pto)

yt
j = xp

i ∀i ∈VS ,∀p ∈ Pi (17)

Equations from (18) to (23) are related to activity ordering. Equation (18) sets
time relations for mandatory activities (VM ⊆ VD ). Alternatives are taken into ac-
count in equations (19), (20), and (21) where wi, j is a decision variable determining
whether dynamic3activity i∈VO with movements to static activity j will be selected
or not. Binary variables h∗i, j,r decide which activity i ∈VD is closing (i.e. is the last
one) the production cycle for each robot (see equations (22) and (23)) as it was found
out that rotated schedules have to be taken into consideration due to time lags.

s j− si = di−CTh∗i, j,r (18)

∀r ∈ R,∀i ∈Vr ∩VM ,∀ j ∈ suc(i)

∑
∀t∈Ti

yt
i = wi,suc(i) ∀i ∈VO ∩VD (19)

s j− si +(1−wi, j)CT≥ di−CTh∗i, j,r (20)

∀r ∈ R,∀i ∈VO ∩Vr ∩VD ,∀ j ∈ suc(i)
s j− si− (1−wi, j)CT≤ di−CTh∗i, j,r (21)

∀r ∈ R,∀i ∈VO ∩Vr ∩VD ,∀ j ∈ suc(i)

∑
∀i, j

h∗i, j,r = 1 ∀r ∈ R (22)

h∗i, j,r = 0 ∀r ∈ R,∀i ∈V,∀ j /∈VIN (23)
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The duration of the activity is bound in equations (24) and (25). Minimal time
of staying in a static activity dm is determined by the selected robot power saving
mode. Maximal duration di can be limited by a robot operation, e.g. immersion of a
workpiece in paint to get a protective coating. The duration of dynamic activity i is
influenced by selected trajectory t lasting from dt

i to dt
i .

dmzm
i ≤ di ≤ di ∀i ∈VS ,∀m ∈Mi (24)

dt
iy

t
i ≤ di ≤ d

t
i +CT

(
1− yt

i
)

∀i ∈VD ,∀t ∈ Ti (25)

Finally, the last two equations (26) and (27) ensure the correct synchronisation
between robots. Equation (26) guarantees time constraints, e.g. the workpiece is
taken away after it has been put on the bench, whereas equation (26) warrants proper
handovers in terms of robot configurations. For each position p of activity i ∈VOUT
one of compatible positions p′ ∈ CP(i, p) of activity j ∈ VIN can be selected. Both
the equations can be perceived as the global ones because they link robots to each
other.

s j− si ≥ li, j−CThi, j ∀(li, j,hi, j) ∈L (26)

xp
i ≤ ∑

∀p′∈CP(i,p)
xp′

j ∀i, j ⊆VOUT×VIN (27)

Wi,si,di ∈ R+
0 xp

i ,z
m
i ,y

t
i,h
∗
i, j,r,wi, j ∈ {0,1}

4.2 Lagrangian Relaxation

As the first attempt to get a good lower bound it was decided to use Lagrangian
relaxation (for details see e.g. [1]) that is based on relaxing difficult constraints and
moving them to the criterion where they are multiplied by Lagrange multipliers. The
global constraints seem to be the best candidates for the relaxation, i.e. (26) and (27),
as without them the problem decomposes to subproblems where each subproblem
corresponds to one robot. Applying the relaxation the following lower bound is
obtained.

3 The dynamic activity has exactly one successor and one predecessor.
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maximise
λe≥0
α≥0

minimise
Wi,si,di∈R+

0

xp
i ,z

m
i ,y

t
i ,h
∗
i, j,r ,wi, j∈B

∑
∀i∈V

Wi + ∑
∀e∈E

λe (li, j−CThi, j + si− s j)

+ ∑
∀i,p

αi,p

(
xp

i − ∑
∀p′∈CP(i,p)

xp′
j

)

subject to (10) to (25)

Primal and dual Lagrangian problems are iteratively solved to get the lower
bound. The primal problem minimises the value of the modified criterion with the
fixed multipliers for the original problem without relaxed constraints. The aim of
the dual problem is to set the multipliers to such values that optimal criterion value
of the primal problem is maximised. The dual problem is usually solved by using
the subgradient method, however, other methods such as the Bundle method are
also possible (see [2]). The maximal criterion value of the primal problem is a valid
lower bound for the original problem.

5 Experimental Results

To verify the validity of the proposed optimisation model 17 problem instances were
generated, each of them corresponds to a robotic cell with 5 co-operating robots
where each robot has up to 3 power saving modes (motors, brakes, bus power off).
From 1 to 4 robot configurations are considered for each static activity and in aver-
age there are approximately 150 activities per instance. The production cycle time
is got by multiplying a lower bound by a factor from 1.05 to 1.40.

The energy optimisation problem was formulated as an Integer Linear Program-
ming problem and solved by using IBM Ilog Cplex 12.6. Gentoo Linux server
equipped with 2 x Intel Xeon E5-2620 v2 @ 2.10 GHz processors and 64 GB mem-
ory was used for benchmarks.

As the first experiment the influence of Cplex time limit on quality of solutions
was investigated as shown in Table 4. It was found out that if the solver is given
2 hours instead of 100 seconds the quality of solutions improves about 3.3 % in
average. An average gap, which is a relative distance between the best found upper
bound (the best solution) and the lower bound, was 27.5 % for the two-hour limit.
The size of the model was roughly about 10000 constraints and 1000 variables.

Table 4 Statistics of the energy consumption for feasible instances.

time limit 100 s time limit 7200 s
minUB 28038.8 J 27656.2 J
avgUB 33796.7 J 32681.6 J
maxUB 43043.0 J 40849.9 J
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The Lagrangian relaxation was tested on 4 selected instances as it had been
shown that other feasible problems are too computationally expensive. Nonethe-
less, it took a few hours to find a high quality lower bounds by using the subgradient
method and ILP solver since solving even one robot to optimality usually takes more
than a minute even though all 12 CPU cores are utilised. The subgradient algorithm
stops if more than 200 consecutive deteriorations were reached. Results reveal that
the Lagrangian relaxation provides much tighter lower bounds than Cplex solver
since average gap was 3.5 % in comparison with 16.7 % gap proved by Cplex.

An industrial use case has also been used as an instance for the optimisation
problem. This use case represents a robotic cell with six robots and other pieces
of equipment such as turn tables, conveyors, gluing machine and welding guns. A

Fig. 11 Structure of the welding cell

general structure of the welding cell is depicted in Fig. 11. The behaviour of the cell
can be described shortly as follows. The basic part together with two smaller parts
are put onto the turn table by the operator. This turn table cannot be seen in Fig. 11
as it is hidden below its bottom. The turn table turns and the first robot (which is
visible only partially in the figure) performs the welding to mount the small parts
to the basic one. After this welding is finished the robot, which besides of the servo
gun possesses also a gripper, takes the part and moves it to the following static ta-
ble. Here, the next robot places another parts onto the basic one and performs the
welding afterwards. Then, the part is taken by the next robot from the table and is
moved to the next table. In the meanwhile, the next robot prepares another part and
has a glue put on it by the gluing machine. This part is placed onto the basic part,
which has been moved already, and the welding is performed. Subsequently, the part
is taken by the next robot and brought to the static welding gun that performs the
next welding operations. Finally, the last robot takes the part, performs additional
welding operations at the last static welding gun and puts the resulting part onto the
outgoing conveyor, which conveys the part out of the cell. The timing of the opera-
tions was retrieved from the robot programs and each trajectory’s energy function fE
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has been interpolated from the points, obtained from simulations in Tecnomatix Pro-
cess Simulate. Welding, glueing, and assembling operations have not been changed
by the optimisation to ensure repeatability of the production process. Only the robot
speeds and power saving modes (at home position) were addressed in the optimiza-
tion since the minimal intervention is desirable for existing robotic cells. The results
show that the original energy consumption 430 kJ (maximal speeds, without power
saving modes) can be decreased to 320 kJ (reduced speeds, power saving modes),
which makes up roughly 25 % of energy saving.

6 Conclusion and future work

In this work a general mathematical model was proposed to optimise the energy
consumption of robotic lines that allows taking into account robot power saving
modes and different locations of operations. The optimisation problem was formu-
lated as an Integer Linear Programming problem and solved using Cplex solver. The
achieved results confirm the correctness of the model and show that a significant re-
duction of the energy consumption can be achieved. In addition to the mathematical
model the Lagrangian relaxation was used to devise a very tight lower bound.

Each of the presented methods to calculate the energy function has its pros and
cons and their usage depends on specific conditions for a given robotic cell to
be optimised. The measurement of the energy consumption of the robots moving
on different trajectories with various speeds is usually not possible at an existing
robotic cell, which participates in the production. Mathematical modelling depends
on having the right 3D models not only of the robots but also of the parts that the
robots carry. Realistic Robotic Simulation depends on the precision of the simu-
lation model whereas an exact or even an approximate value is usually not known.
Thus in a typical situation a combination of more approaches must be used to obtain
the energy function of all the robots.

The outcomes of the industrial use-case optimisation show a significant potential
to reduce energy consumption of existing robotic cells and even more can be ex-
pected for planned robotic cells as the full potential of the optimisation algorithm
can be exploited.

The future work will thus concentrate mainly on making the mathematical model
of the robots more precise and on decreasing the uncertainties in the models by pro-
viding further information e.g. from measurements. The robot models will probably
always contain uncertainties because of the lack of publicly available information.
Therefore measurements must be performed to supplement the missing information
and to complete the mathematical models. Last but not least more stress is going to
be put on evaluating the optimisation results with industrial use cases to prove their
viability.
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Glossary

CT production Cycle Time
L time lags
L(ei, j) see li, j
H(ei, j) see hi, j

E(di) energy function linking the consumption with time of movement
di duration of activity i
si start time of activity i
Wi energy consumed by activity i
pred(i) predecessors of activity i
suc(i) successors of activity i
VS set of static activities, i.e. robot operations
VD set of dynamic activities, i.e. robot movements
VM set of activities that have to be executed
VO set of activities (⊆VD ) that can optionally be executed
Pi set of possible robot configurations for activity i ∈VS

Mi set of the robot power saving modes that can be used in activity i ∈VS

Ti set of possible movements of activity i ∈VD

xp
i

binary variable set to true iff the robot configuration p was selected for
activity i ∈VS

zm
i

binary variable set to true iff the robot power saving mode m was se-
lected for activity i ∈VS

yt
i binary variable set to true iff movement t was selected for activity i∈VD

li, j the length of the edge in cyclic scheduling
hi, j the height of the edge in cyclic scheduling
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