
Total Setup Time Minimisation in Production

Scheduling with Alternatives

Zdeněk Hanzálek12, Roman Čapek1, and Přemysl Šůcha1

1 FEE, Czech Technical University in Prague

Karlovo náměstí. 13, 121 35 Prague 2, Czech Republic
2 CIIRC, Czech Technical University in Prague,

Jugoslávských partyzánů 1580/3, 160 00 Prague 6, Czech Republic

Abstract. The research presented in this paper is focused on the schedul-

ing problem with alternative process plans where the goal is to minimise

the sum of all the performed setup times in the schedule. The setup

times play an important role in scheduling problems, yet they are, in

most cases, considered only as an additional constraint, not as a part

of the objective function. We propose a model, based on the resource

constrained project scheduling problem with alternative process plans,

release times and deadlines, that includes the setup times in the schedul-

ing criterion. Both the exact mathematical model and the new heuristic

algorithm are proposed to solve the problem. The effectiveness of the

proposed two-phase heuristic algorithm, designed with the intention to

solve the large instances of the problem, is evaluated on a wide set of

instances.

1 Introduction

This article is dedicated to the resource constrained project scheduling prob-

lem with alternative process plans while the total setup time is minimised. Up

to our knowledge, there is no existing solution approach for such a problem

and therefore, a new model and a new heuristic algorithm is proposed for the

considered problem with the intention to solve large instances with up to 1000

activities.

Sequence dependent setup times (also called changeovers) are crucial for the

problems where the resources are very expensive in terms of wasting their time

by unnecessary setups. Setup times represent the time necessary to reconfigure

the resource or to change its functionality. During this time period, no work on

2

the resources can be performed, which can cause the entire process flow to be

inefficient. The problem in minimisation of the total setup time is a part of many

manufacturing processes (we “sell the machinery time”) as well as it is often a

crucial constraint in the optimisation of algorithms for the field-programmable

gate arrays (FPGAs) where the reconfiguration of the available resources is very

time consuming. In other words, the minimisation of the time and the costs

related to setting up the resources is a natural demand that can be applied in

many different optimisation problems. Yet the setup times are almost always

considered only as a problem constraint, not as a part of the criterion. One of

the main goals of this research is to fill the gap in this area, i.e. to propose a

generic approach to deal with the minimisation of the total setup time.

In this article, we consider shared resources and precedence constraints among

activities. The classification of the resource constraint project scheduling prob-

lem (RCPSP) is used for the problem representation. Furthermore, alternative

process plans are considered in the scheduling model to cover the flexibility of

the studied processes. The alternative process plans allow one to define more

possible ways how to finish the process, differing in the required resources, time

constraints or even in the number of activities and precedence relations among

them. As a result, not all of the given activities will be present in the final

schedule. The considered problem can be classified as the resource constrained

project scheduling problem with alternative process plans (RCPSP-APP) where

the goal is to minimise the total setup time (TST), equal to the sum of the

overall performed setup time (TST) in the schedule.

2 Literature review

The resource constrained project scheduling problem (RCPSP), which is used

in this article, is a well-known problem with many applications. According to

[18], RCPSP can be defined as a set of activities with specific requirements

that have to be processed on a particular work centre with limited capacity. [5]

and [7] proposed a formal notation and categorisation for the RCPSP problems

as well as for their extensions. Other reviews of the models and the solution

methods can be found e.g. in [13], [8], [9], [6], [16], [21], [20], [25] and [15]. The

multi-mode resource constrained project scheduling problem (MRCPSP), which

is an extension of RCPSP with more execution modes for each activity, has been

studied in [12], [26], [25], [28] and [29]. Apart from the non-renewable resources,

each MRCPSP problem can be represented as the RCPSP-APP problem: each

3

activity with multiple modes is to be transformed into the appropriate number

of single-mode activities while only one is always selected in the schedule.

Therefore, the formalism of the alternative process plans is a generalisation

of the multi-mode behaviour of activities in the MRCPS problem. It allows us

to model how to complete projects more than one way, while not only the re-

source demands, but also the number of activities, the precedence relations, etc.

can differ among the alternative process plans. [2, 3] defined a structure called

Nested temporal network with alternatives (NTNA) to model alternative pro-

cess plans. [4] formulated a constraint-based representation of the alternative

activities. [11] dealt with the RCPSP extended by the alternative process plans

and the sequence dependent setup times. The authors presented a mixed inte-

ger linear programming (MILP) model for the exact solution of small instances

and a heuristic called iterative resource scheduling with alternatives (IRSA) for

larger ones. [19] proposed three algorithms for the jobshop problem with pro-

cessing alternatives. [22] and [23] focused on RCPSP with alternatives that is

close to the jobshop problem and proposed agent based metaheuristic algorithms

to minimise the makespan. [27] presented an integration model of process plan-

ning and scheduling problems which are carried out simultaneously. The authors

developed a genetic algorithm to minimise the schedule length.

Allahverdi et al. [1] dealt with the setup times in general and published a sur-

vey in which many different problems related to the setup times are summarised.

The authors also reported on solution approaches and proposed a notation for all

of these problems. [31] published a study for a metal casting company concerning

the minimisation of the total setup costs in which the authors demonstrate the

importance of setup times by calculating the savings to the company. [14] dealt

with the general shop problem with the sequence dependent setup times. The

authors proposed a two phase Pareto heuristic to minimise the makespan and

the total setup costs. In the first phase, the makespan is minimised and, in the

second phase, the total setup costs are minimised, while the makespan is not

allowed to get worse. [30] focused on a single machine earliness tardiness prob-

lem with sequence dependent setup times. The objective function is to minimise

the total setup time, earliness and tardiness. [24] proposed a hybrid simulated

annealing algorithm for the single machine problem with sequence dependent

setup times. The objective function is given by the sum of the setup costs, delay

costs and holding costs.

4

3 Paper contribution and outline

The main contribution of this paper is the formulation of novel problem, in-

corporating the alternative process plans and a criterion based on the performed

setup times into the area of the resource constrained project scheduling prob-

lems. The strength of the proposed model, formulated using the mixed integer

linear programming, is in the combination of the well known RCPSP formalism

with the additional flexibility gained by the alternative process plans and the

total setup time minimisation. Such a problem has not been studied before in

this range. There were only a few attempts to deal with the scheduling problems

where the criterion reflects the setup times. The closest problem that can be

found in the literature, when compared to the approach studied in this article,

was published by [14] who focused on the job shop problem with the alternative

machines while the makespan and the total setup time is minimised. Compared

to the problem studied in [14], the model proposed in this paper is developed for

more general problems, namely for non-unary resources, deadlines of activities

and more complex precedence rules including alternative process plans.

The second contribution lies in the newly developed algorithm able to solve

the instances of the RCPSP-APP problem with up to 1000 activities. The effec-

tiveness of the algorithm is evaluated using the datasets published in [10] while

the proposed algorithm outperforms the results presented in [14]. Moreover, the

algorithm presented in this paper is able to solve instances with 1000 activities

within dozens of seconds.

The rest of the paper is organised as follows: Section 4 provides a definition

of the considered problem for which the mathematical model is presented in Sec-

tion 5. A new heuristic algorithm is proposed in Section 6. Section 7 presents the

results of the performance evaluation of the developed algorithm and Section 8

concludes the work.

4 Problem statement

The problem considered in this paper is defined by a set of activities, a set of

resources, a set of constraints and an optimality criterion. Let A = {1 . . . n} be

the set of n activities representing the project to be scheduled. Furthermore, let

AE = A ∪ {0, n + 1} be the extended set of activities, where dummy activities

0 and n + 1 with zero processing time restrict the whole project. Activity 0

represents the start and activity n+1 the end of the project. There are m resource

5

types R = {R1 . . . Rm} where each resource type Rq ∈ R has a discrete capacity

θq ≥ 1, i.e. there are θq resource units available for resource type Rq. Each

activity i ∈ AE has the following parameters: processing time pi ≥ 0, release time

ri ≥ 0, deadline d̃i ≥ 0 and the resource demand r
k
i > 0 for one resource type

Rk ∈ R. In this article, only mono-resource activities are considered, meaning

that each activity demands for only one resource type. Additional constraints of

the problem are defined by the alternative process plans, the non-negative start

to start time-lags and the sequence dependent setup times.

The alternative process plans are defined using the nested temporal network

with alternatives (NTNA) presented by [3]. NTNA is a directed acyclic graph

G = (V,E) where each node i ∈ V corresponds to activity i ∈ AE and each edge

e = (i, j) ∈ E represents one temporal constraint in the form of a non-negative

start to start time-lag si + lij ≤ sj (where lij ∈ R
+
0), i.e a minimal amount of

time between the start times of activities i and j. Furthermore, each node i of

the graph has an input label ini ∈ {0, 1} and an output label outi ∈ {0, 1},

denoting the type of input and output branching, which can be either parallel

or alternative. Based on the NTNA instance, some of the activities, called the

PAR

PAR

ALT

ALT

ALT

ALTALT

ALT

0

1

2

7

3

4 5

6

8

9

10

11

12

14

13

15

out =1
3

out =0
0

l =8

1

out =1
10

in =1
6

in =1
8

in =1
14

in =0
15

out =1

1 7

l =0
0 9

l =2
7 8

p=[0, 3, 2, 1, 3, 2, 1, 7, 2, 3, 2, 3, 2, 3, 2, 0]

r=[0, 0, 0, 6, 6, 6, 6, 5, 0, 0, 2, 5, 5, 5, 0, 0]

d=[5, 9, 9, 9, 15, , 20, 9, 25, 9, 11, 15, 13, 16, 20, 30]15

res=[4, 2, 1, 2, 2, 3, 1, 3, 3, 1, 2, 3, 3, 3, 2, 4]

=[0, 2, 2, 1, 2, 3, 2, 1, 1, 2, 2, 3, 2, 2, 1, 0]

~

R i i

k

R1 2 6 9

2 0 3 1

6 3 0 3

9 1 3 0

R2 1 3 4 10 14

1 0 3 3 4 2

3 2 0 2 4 2

4 3 3 0 2 3

10 4 4 2 0 2

14 3 2 3 2 0

R3 5 7 8 11 12 13

5 0 2 2 0 0 3

7 2 0 0 2 3 3

8 2 0 0 2 3 3

11 0 3 3 0 0 3

12 0 2 2 0 0 3

13 3 3 3 3 3 0

Fig. 1. Nested temporal network with alternatives - example

6

selected activities, will be present in the schedule and the rest, called the rejected

activities, will not be. When there is a parallel branching at the input/output of

the selected activity i (ini = 0/outi = 0), all its direct predecessors/successors

have to be selected. If activity i is rejected, all its direct predecessors/successors

have to be rejected as well. On the contrary, when there is an alternative branch-

ing at the input/output of the selected activity i (ini = 1/outi = 1), exactly one

of its direct predecessors/successors has to be selected. If activity i is rejected,

all its direct predecessors/successors have to be rejected.

Both parallel and alternative branchings can be further nested one in another.

An example of the NTNA instance is shown in Figure 1 where the parallel

branchings are denoted as PAR and the alternative branchings are denoted as

ALT. Several time-lags are used to demonstrate how the temporal constraints

are defined, see e.g. time-lag l17 = 8 that forces activity 7 to start at least 8

time units after the start time of activity 1. All the parameters related to the

activities are also included; res determines the resource type required by each

activity. The setup times are depicted for each resource separately.

The sequence dependent setup times stij ≥ 0 are given for all pairs of

the activities assigned to the same resource type, i.e. for all (i, j) ∈ A2 :
(

∃k : rk
i > 0 ∧ r

k
j > 0

)

. The term setup time (in our case sequence dependent

setup time) stij denotes the minimal time between the completion time of ac-

tivity i and the start time of activity j, if activities i and j are scheduled sub-

sequently on the same resource type and they share at least one resource unit.

The setup time can be different for each pair of the activities and therefore the

actual values are determined based on the sequence of the activities. For more

details, the reader is referred to [6].

The goal of the scheduling process is to select one process plan and to schedule

the corresponding activities to the available resources with respect to both the

temporal and the resource constraints. A process plan is a subset of all activities

such that the constraints for the selection defined for the corresponding NTNA

instance are satisfied. The objective function is the minimisation of the total

setup time (TST), given by the sum of all setup times performed in the schedule.

To represent a schedule, the following variables are used: si ∈ R
+
0 , vi ∈ {0, 1}

and zivk ∈ {0, 1}. Variable si denotes the start time of activity i ∈ AE , vi

determines whether activity i is selected (vi = 1) or rejected (vi = 0). Finally,

if zivk = 1 then activity i is scheduled on resource unit v of resource type

k; zivk = 0 otherwise. For the purpose of the objective function evaluation,

7

variable fij ∈ {0, 1} is defined as follows: If activities i and j are scheduled

subsequently on the same resource type and they share at least one unit of its

resource capacity, then fij = 1; fij = 0 otherwise. The objective function is then

formulated as TST =
∑

∀i∈A

∑

∀j∈A

fij · stij .

The setup time from activity i to activity j is always considered only once in

the objective function, regardless the actual number of the resource units which

are shared by both activities. Lets assume that activity i requires three units

of a certain resource type and activity j also requires three units of the same

resource types. Furthermore, lets assume that activity i is assigned to resource

units {1, 2, 4} and activity j is assigned to resource units {2, 3, 4}. Although the

activities share two resource units, the setup time from i to j will be added to

the value of the objective function only once.

Our problem can be classified as PS|nestedAlt, lmin
ij , STSD, rj , d̃j |TST using

the extended notation of [7] or as m1|nestedAlt,min, STSD, rj , d̃j |TST using

the extended notation proposed by [17]. Both notations are extended by terms

nestedAlt to denote the alternative process plans (see [11]), STSD to denote

the sequence dependent setup times and TST to define the total setup time

as the objective function according to [1]. The term PS stands for the project

scheduling, m1 for m renewable resources, lmin
ij and min for the minimal start

to start time-lags, rj for the release times and finally d̃j for the deadlines.

5 Mathematical formulation

The mathematical formulation using the mixed integer linear programming

(MILP) for the problem defined in the previous section is formulated below. For

a higher efficiency of the model, variable zivk is substituted by variable ziu, i.e.

only one index u is used to reference the assigned resource units of a certain

resource type. The mutual conversion between (v, k) and u is given as follows:

u =
k−1
∑

q=1
θq + v and k = argmin

k

{

k
∑

q=1
θq ≥ u

}

; v = u−
k−1
∑

q=1
θq.

In addition to variables si, vi, fij and zivk (ziu) defined in the previous

section, auxiliary binary variables gijk, xijk and yijk are used. Variable gijk de-

termines whether activities i and j are selected and assigned to the same resource

unit k such that i is a direct predecessor of j on such resource unit. Similarly,

variable xijk determines whether activities i and j are selected and assigned

to the same resource unit k such that i is an arbitrary (direct or propagated)

8

predecessor of j on such resource unit. Finally, variable yijk determines whether

both activities i and j are assigned to resource unit k.

There are three types of constraints in the model - constraints for the selec-

tion of activities, temporal constraints and resource constraints. The goal is to

minimise the sum of all the performed setup times in the schedule, i.e. the total

setup time.

First, the constraints for the selection of the activities are stated. Equations

(1) and (2) define the rules for the selection of activities in alternative branch-

ings, Equation (3) defines the rule for the selection of the activities in parallel

branchings and Equation (4) forces the schedule to have at least one selected

activity (empty schedule has no relevant significance).

Second, the temporal constraints are given in three formulas. The start time

of each activity is constrained by the release time and the deadline - (5) and (6).

Both constraints are applied for the selected activities only. The non-negative

start to start time-lags are defined in Formula (7).

The rest of the formulas then serve to define the resource constraints, includ-

ing the determination of the performed setup times in the schedule. Formulas

(8) and (9) prevent more activities (from overlapping) on one resource unit in

one moment. Equation (10) ensures that the number of the assigned resource

units is equal to the resource demand for each activity. Equations (11) and (12)

are used to assign dummy activities 0 and n + 1 to each resource unit of each

resource type, which then ease the definition of the constraints related to the

setup times. Formulas (13) and (14) constrain the value of variable yijk - if both

activities are scheduled on the same resource unit, then yijk is equal to 1; 0

otherwise. Formula (15) determines the value of variable xijk - if both activities

i and j are assigned to the same resource unit k, they must be scheduled se-

quentially. Equation (16) forces each activity to have only one direct successor

on each assigned resource unit. Similarly, Equation (17) forces each activity to

have only one direct predecessor on each resource unit. Formula (18) prevents

the cycles in values of variable gijk for each resource unit. Finally, Formula (19)

determines whether a particular setup time has to be taken into consideration in

the objective function, i.e. whether activities i and j are scheduled subsequently

on the same resource unit.

9

min
∑

∀i∈A

∑

∀j∈A

fij · stij

subject to:

vi =
∑

∀j:(i,j)∈E

vj ∀i ∈ AE : outi = 1 (1)

vi =
∑

∀j:(j,i)∈E

vj ∀i ∈ AE : ini = 1 (2)

vi = vj ∀ (i, j) ∈ E : outi = 0 ∧ inj = 0 (3)
∑

i∈AE

vi ≥ 1 (4)

si ≥ ri − (1− vi) · UB ∀i ∈ AE (5)

si + pi ≤ d̃i + (1− vi) · UB ∀i ∈ AE (6)

si + lij ≤ sj + UB · (2− vi − vj) ∀ (i, j) ∈ E (7)
sj + pj + stji ≤ si + UB · (xiju + 1− yiju) + UB · (2 − vi − vj)

∀(i, j) ∈ A2 : i 6= j; ∀u ∈ {1 . . .K} (8)

si + pi + stij ≤ sj + UB · (2− xiju − yiju) + UB · (2− vi − vj)

∀(i, j) ∈ A2 : i 6= j; ∀u ∈ {1 . . .K} (9)

C+θq
∑

u=C+1

ziu = r
q
i · vi ∀i ∈ A; ∀q ∈ {1 . . .m};C =

q−1
∑

j=1

θj (10)

z0u = 1 ∀u ∈ {1 . . .K} (11)

zn+1u = 1 ∀u ∈ {1 . . .K} (12)

yiju ≥ ziu + zju − 1∀(i, j) ∈ A2
E : i 6= j; ∀u ∈ {1 . . .K} (13)

yiju ≤ ziu ∀(i, j) ∈ A2
E : i 6= j; ∀u ∈ {1 . . .K} (14)

xiju ≤ yiju ∀(i, j) ∈ A2
E : i 6= j; ∀u ∈ {1 . . .K} (15)

n+1
∑

j=1

giju = ziu ∀i ∈ A; ∀u ∈ {1 . . .K} (16)

n
∑

i=0

giju = zju ∀j ∈ A; ∀u ∈ {1 . . .K} (17)

giju ≤ xiju ∀(i, j) ∈ A2
E ; ∀u ∈ {1 . . .K} (18)

fij · UB ≥
∑

∀u∈{1...K}

giju ∀(i, j) ∈ A2
E (19)

where:

si ∈ R
+
0 ; vi, fij , ziu, giju, xiju, yiju ∈ {0, 1}; (20)

K =

m
∑

q=1

θq;UB >
∑

∀i∈AE

max

(

pi + max
∀j∈AE

stij , max
∀j∈AE

lij

)

10

6 Heuristic algorithm

This section is dedicated to the description of the heuristic algorithm designed

to solve the large instances of the problem defined in Section 4. The goal is to

find a schedule determined by the selection of activities (variable vi), their start

times (variable si) and their assignment to resources (variable zivk) such that all

the constraints are satisfied and the total setup time (TST) value is minimised.

The basic scheme of the proposed heuristic algorithm, called STOAL (Setup

Time Optimization ALgorithm), consists of two phases - the initial phase to find

any feasible solution and the local search for the improvement of the objective

value. The initial phase is inspired by the IRSA algorithm published in [11] and

the local search, based on a time separation technique, is inspired by the work

of [14]. If a feasible solution is not found (due to the presence of deadlines)

in the initial phase, the local search is not started at all and the algorithm is

terminated. Detailed description of the STOAL algorithm is available from the

authors upon request.

7 Performance evaluation

Two sources of instances have been used for the performance evaluation of the

algorithm proposed in Section 6, designed to solve the problems with alternative

process plans. First, the STOAL algorithm is evaluated on randomly generated

instances and compared with the IRSA algorithm proposed by [11]. Second, the

standard benchmarks of [10] are used and the results of the STOAL algorithm are

compared with the results reported in [14]. Furthermore, various settings of the

STOAL algorithm are discussed and tested on large instances of the problem (up

to 1000 activities). The STOAL algorithm was implemented in the C# language

and the experiments were performed on a PC with an Intel Core 2 Quad CPU

at 2.83GHz with 8GB of RAM.

7.1 Comparison with IRSA algorithm on random instances

Random instances of the problem defined in Section 4 are generated to com-

pare the STOAL algorithm with the existing IRSA algorithm, designed for the

minimisation of the schedule length for the RCPSP with alternative process plans

and positive and negative time-lags. As reported in [11], the IRSA algorithm was

originally implemented in the Matlab environment, but for the purpose of this

11

article, we have re-implemented the algorithm in the C# language to get a fair

comparison. Since IRSA does not consider resources with non-unary capacities,

all the instances contain only unary resources and all activities have resource

demand equal to 1. There are three different sets of generated instances: loose,

medium and tight which differ in the specification of release times and deadlines.

Each set further contains 100 instances for each of 20, 50, 100 and 200 activities

per instance.

The instances were generated with the following settings: the parameters

for each activity i were randomly selected from the intervals pi ∈ 〈2, 10〉, ri ∈

〈0, k1 · n〉, d̃i ∈ 〈k1 ·
n
2 , k2 · n〉 where n is the number of activities in a particular

instance and k1 and k2 are constants depending on the type of the instance

(loose/medium/tight); namely k1 = 5 and k2 = 15 for the loose instances,

k1 = 7 and k2 = 13 for the medium instances and k1 = 10 and k2 = 10 for

the tight instances. For each instance, the release times and deadlines are sorted

in non-decreasing order and assigned to the activities based on the precedence

relations from activity 0 towards activity n + 1. Each activity has the resource

demand equal to one, i.e. rq
i = 1, for one resource type q. The number of resource

types m is randomly chosen from interval 〈1, 2〉 for 20 and 50 activities per

instance and from interval 〈1, 5〉 for 100 and 200 activities per instance. The

setup times stij are generated in the interval 〈5, 10〉 and the non-negative start

to start time-lags lij in the interval 〈0, 20〉. The structural properties of the

generated NTNA instances are as follows: If node i starts the parallel branching,

the number of successive nodes lies in interval 〈5, 10〉. Similarly, if node i starts

the alternative branching, the number of direct successors lies in interval 〈2, 4〉.

Table 1 shows the comparison of the results obtained by the IRSA algorithm

and by the STOAL algorithm. Column feas determines the percentage ratio of

feasible solutions found by each algorithm. Column TST contains an arithmetic

average value of the objective function for instances that were successfully solved

by both algorithms. Column time determines the average computational time

(in milliseconds) to solve a single instance regardless of whether a solution was

found or not. Finally, column TST impr states the improvement of the STOAL

algorithm over the IRSA algorithm in terms of the TST value.

The number of feasible solutions found is almost the same for both tested

algorithms, but the STOAL algorithm outperforms the IRSA algorithm in both

the TST value and the solution time. The fact that the success rate in finding

feasible solutions is equal proves that the STOAL algorithm is very effective for

12

IRSA STOAL
n type feas [%] TST time [ms] feas [%] TST time [ms] TST impr [%]

20 loose 100 102 5 100 76 3 25.50
50 loose 100 254 36 100 215 12 15.35
100 loose 100 494 112 100 427 77 13.56
200 loose 94 942 322 100 824 141 12.53
20 medium 62 77 4 69 76 2 1.01
50 medium 58 226 29 60 221 14 2.10
100 medium 69 386 98 64 371 57 3.92
200 medium 72 707 293 68 662 112 6.37
20 tight 44 65 4 41 63 2 1.03
50 tight 31 183 25 32 183 15 0.00
100 tight 26 302 86 33 295 48 2.30
200 tight 37 597 266 42 592 119 0.92

Table 1. Comparison with IRSA algorithm using new random instances

the considered temporal constraints, since the IRSA algorithm was developed

with the main aim to find any feasible solution. The most significant difference

in terms of the objective value can be observed for the loose instances where

the flexibility of the activities is higher and, therefore, the optimisation can be

performed in a wider scope.

7.2 Comparison with algorithm of Focacci [14]

For a further evaluation of the STOAL algorithm, the instances of the gen-

eral job shop problem proposed by [10] are used. As a reference, the results for

such instances reported in [14] are considered. The problem studied in [10] is a

sub-problem of the problem defined in Section 4 since there are no release times

or deadlines, no alternative process plans and the resources are considered to be

unary. The objective function reported in [14] is twofold, first the makespan in

minimised and then the total setup time is being minimised without a deterio-

ration of the makespan value.

Focacci Table 2 shows the comparison of the STOAL algorithm with the one

published by [14]. Compared with the algorithm described by [14], the STOAL

algorithm improved the value of the total setup time by more than 16% in

average. The price for the better value of the TST is the higher value of the

makespan, by almost 19% in average. Such a trade-off between the makespan

and the total setup time shows the good efficiency of the STOAL algorithm

proposed in terms of the total setup time criterion.

13

The big trade-off between TST and makespan is probably incurred by the

alternative process plans. The two criteria should be more linked in the classical

problems without alternatives. The makespan criterion probably makes more

sense, since it includes the setup time as well. On the other hand the sole TST

criterion may be useful when the setup is costly (e.g. including the waste of the

material).

Focacci STOAL
Set TST Cmax TST Cmax TST impr [%] Cdet

max [%]

t2-ps12 1 530 1 445 1 010 1 920 33.99 32.87
t2-ps13 1 430 1 658 1 330 1 872 7.00 18.93
t2-pss12 1 220 1 362 950 1 599 22.13 17.4
t2-pss13 1 140 1 522 1 140 1 610 0 5.78
average 1 330 1 497 1 110 1 825 16.54 18.74
Table 2. Comparison with [14] using instances of [10]

8 Conclusion

This paper fills the gap in the literature, where only very few pieces of work

have been dedicated to scheduling problems with setup times as a part of the

criterion. The setup times are usually considered only as a constraint. The pro-

posed innovative model combines the RCPSP problem with the alternative pro-

cess plans and the criterion to minimise the total setup time in the schedule.

Furthermore, the model includes the release time and deadline for each activity

and the non-negative start to start time-lags for precedence constrained activ-

ities. For such a model, of the studied problem, the mathematical formulation,

using the mixed integer linear programming (MILP), is proposed.

The two-phase heuristic algorithm is then developed to solve the large in-

stances of the considered problem. The goal of the algorithm first phase is to

find any feasible solution and the second phase, based on the time separation of

the schedule, is dedicated to improve the existing schedule in terms of the total

setup time. The STOAL algorithm is compared with two reference algorithms.

The experiments show a very good performance of the STOAL algorithm in both

the quality of the solutions and the running time.

In the future research, we want to concentrate on situations where tasks are

owned by agents representing, e.g. departments of a company. In this case, the

14

resources are shared by the agents, and the problem becomes a multiobjective

optimization problem. This extension requires a realistic definition of a fair use

of resources with respect to the objective of the individual agents.

Acknowledgments

This work was supported by the Grant Agency of the Czech Republic under

the Project FOREST GACR P103-16-23509S.

References

1. Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y.: A survey of scheduling problems

with setup times or costs. European Journal of Operational Research 187(3), 985–

1032 (2008)
2. Barták, R., Čepek, O.: Temporal networks with alternatives: Complexity and

model. In: Proceedings of the Twentieth International Florida Artificial Intelli-

gence Research Society Conference (FLAIRS), Florida, USA. pp. 641–646. AAAI

Press (2007)
3. Barták, R., Čepek, O.: Nested temporal networks with alternatives: recognition and

tractability. In: Proceedings of the 2008 ACM Symposium on Applied Computing

(SAC), Ceara, Brazil. pp. 156–157. ACM (2008)
4. Beck, J.C., Fox, M.S.: Constraint-directed techniques for scheduling alternative

activities. Artificial Intelligence 121(1), 211–250 (2000)
5. Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling Com-

puter and Manufacturing Processes. Springer-Verlag New York, Inc. (1996)
6. Brucker, P.: Scheduling Algorithms. Springer-Verlag New York, Inc. (2007)
7. Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E.: Resource-constrained

project scheduling: Notation, classification, models, and methods. European Jour-

nal of Operational Research 112(1), 3–41 (1999)
8. Brucker, P., Knust, S.: Complexity results for single-machine problems with posi-

tive finish-start time-lags. Computing 63(4), 219–316 (1998)
9. Brucker, P., Kunst, S.: Complex Scheduling. Springer-Verlag New York, Inc. (2006)

10. Brucker, P., Thiele, O.: A branch & bound method for the general-shop problem

with sequence dependent setup-times. Operations Research Spectrum 18(3), 145–

161 (1996)
11. Čapek, R., Šůcha, P., Hanzálek, Z.: Production scheduling with alternative process

plans. European Journal of Operational Research 217(2), 300–311 (2012)
12. De Reyck, B., Herroelen, W.: The multi-mode resource-constrained project

scheduling problem with generalized precedence relations. European Journal of

Operational Research 119(2), 538–556 (1999)

15

13. Demeulemeester, E., Herroelen, W.: A branch-and-bound procedure for the multi-

ple resource-constrained project scheduling problem. Management Science 38(12),

1803–1818 (1992)

14. Focacci, F., Laborie, P., Nuijten, W.: Solving scheduling problems with setup times

and alternative resources. In: Artificial Intelligence Planning Systems 2000 Pro-

ceedings (AIPS). pp. 1–10. AIPS (2000)

15. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-

constrained project scheduling problem. European Journal of Operational Research

207(1), 1–14 (2010)

16. Herroelen, W., De Reyck, B., Demeulemeester, E.: Resource-constrained project

scheduling: A survey of recent developments. Computers & Operations Research

25(4), 279–302 (1998)

17. Herroelen, W., De Reyck, B., Demeulemeester, E.: A classification scheme for

project scheduling. In: Weglarz, J. (ed.) Handbook of Recent Advances in Project

Scheduling, pp. 1–26. Kluwer Academic Publishers, Dordrecht (1999)

18. Kadrou, Y., Najid, N.M.: A new heuristic to solve rcpsp with multiple execution

modes and multi-skilled labor. In: Proceedings of the IMACS Multiconference on

Computational Engineering in Systems Applications (CESA). pp. 1–8. IEEE (2006)

19. Kis, T.: Job-shop scheduling with processing alternatives. European Journal of

Operational Research 151(2), 307–322 (2003)

20. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-

constrained project scheduling: An update. European Journal of Operational Re-

search 174(1), 23–37 (2006)

21. Kolisch, R., Padman, R.: An integrated survey of deterministic project scheduling.

Omega The International Journal of Management Science 29(3), 249–272 (2001)

22. Leung, C.W., Wong, T.N., Maka, K.L., Fung, R.Y.K.: Integrated process planning

and scheduling by an agent-based ant colony optimization. Computers & Industrial

Engineering 59(1), 166–180 (2010)

23. Li, X., Zhang, C., Gao, L., Li, W., Shao, X.: An agent-based approach for integrated

process planning and scheduling. Expert Systems with Applications 37(2), 1256–

1264 (2010)

24. Mirabi, M.: A hybrid simulated annealing for the single-machine capacitated lot-

sizing and scheduling problem with sequence-dependent setup times and costs and

dynamic release of jobs. The International Journal of Advanced Manufacturing

Technology 54(9-12), 795–808 (2010)

25. Neumann, K., Schwindt, C., Zimmermann, J.: Project scheduling with time win-

dows and scarce resources. Springer-Verlag Berlin Heidelberg (2003)

26. Salewski, F., Schirmer, A., Drexl, A.: Project scheduling under resource and mode

identity constraints: Model, complexity, methods and application. European Jour-

nal of Operational Research 102(1), 88–110 (1997)

16

27. Shao, X., Li, X., Gao, L., Zhang, C.: Integration of process planning and scheduling

- a modified genetic algorithm-based approach. Computers & Operations Research

36(6), 2082–2096 (2009)

28. Van Peteghem, V., Vanhoucke, M.: An experimental investigation of metaheuristics

for the multi-mode resource-constrained project scheduling problem on new dataset

instances. Tech. rep., Faculty of Economics and Business Adminstration (Ghent

University) (2011)

29. Van Peteghem, V., Vanhoucke, M.: Using resource scarceness characteristics to

solve the multi-mode resource-constrained project scheduling problem. Journal of

Heuristics 17(6), 705–728 (2011)

30. Wang, L., Wang, M.: A hybrid algorithm for earliness-tardiness scheduling problem

with sequence dependent setup time. In: Proceedings of the 36th Conference on

Decision & Control. pp. 1219–1223. IEEE (1997)

31. Yuan, X.M., Khoo, H.H., Spedding, T.A., Bainbridge, I., Taplin, D.M.R.: Minimiz-

ing total setup cost for a metal casting company. Winter Simulation Conference 2,

1189–1194 (2004)

