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Abstract. This study addresses optimization of production processes
where machines have high energy consumption. One efficient way to re-
duce the energy expenses in production is to turn a machine off when
it is not being used or switch it into an energy-saving mode. If the
production has several machines and production demand that varies
in time, the energy saving can be substantial; the cost reduction can
be achieved by an appropriate production schedule that could control
the switching between the energy modes with respect to the required
production volume. Therefore, inspired by real production processes of
glass tempering and steel hardening, this paper addresses the schedul-
ing of jobs with release times and deadlines on parallel machines. The
objective is to find a schedule of the jobs and a switching between
the power modes of the machines so that the total energy consump-
tion is minimized. Moreover, to further generalize the scheduling prob-
lem to other production processes, we assume that the processing time
of the jobs is mode-dependent, i.e., the processing time of a job de-
pends on the mode in which a machine is operating. The study provides
an efficient Branch-and-Price algorithm and compares two approaches
(based on Integer Linear Programming and Constraint Programming)
for solving the subproblem. The final authenticated version is available
at https://doi.org/10.1007/978-3-319-93031-2_6.
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1 Introduction

This research is inspired by two existing energy-demanding production processes.
The first one is a glass tempering in ERTL Glas company and the second one
is steel hardening in ŠKODA AUTO company. In both processes, the mate-
rial is heated in one of the identical furnaces to a high temperature (hundreds
of ◦C) which consumes a substantial amount of energy. Typically, the furnaces
are turned on at the beginning of a scheduling horizon and then continuously
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operate until its end when they are turned off. If the production demand varies
within the scheduling horizon, the furnaces remain in an energy-demanding mode
even if nothing is being produced and, therefore, wasting the energy.

As identified in [1], a significant energy cost savings could be achieved in man-
ufacturing facilities by switching machines to a power-saving mode when nothing
is being produced. Likewise, our preliminary feasibility study for ŠKODA AUTO
has shown that about 6 % of the production line consumption can be saved using
the power-saving modes. However, in the above-mentioned processes, switching
to and from the power-saving mode is not immediate since the furnaces in the
power-saving mode operate in a lower temperature and re-heating them back
to the operational temperature can take dozens of minutes. Thus, the switching
has to be planned carefully. Moreover, in some production processes a machine
operating in a power-saving mode can still process a material, albeit slower. To
take into consideration such processes, we will assume that the processing time
is mode-dependent, i.e., the processing time depends on the mode in which a
machine is operating.

The problem of scheduling jobs on machines having different energy modes
has been already studied in the literature to some extent. The existing works
either study a single machine problem [1,2,3], do not take the transition costs and
times into account [4] or propose a time-indexed Integer Linear Programming
formulation [5,6] which can optimally solve only small instances. The scheduling
with mode-dependent processing times of the jobs is similar to a dynamic voltage
scaling [7] in embedded systems, where the processing times of the jobs depend on
the operating frequencies of the processors. Since the schedules in the embedded
systems are usually event-triggered and the transition times between different
operating frequencies is in the order of microseconds, the research results cannot
be directly applied to the production processes.

The contribution of this work-in-progress paper is both a formulation and
algorithm for solving a general multi-machine scheduling problem with energy
modes, where the objective is to minimize the total energy consumption. For
this problem, we propose an efficient Branch-and-Price algorithm with a clever
representation of the columns to break the symmetries arising due to the iden-
tical parallel machines. The algorithm also restricts the structure of transitions
between the modes to respect the technological requirements. For the experimen-
tal comparison, the subproblem in the Branch-and-Price algorithm is formulated
as both Integer Linear Programming (ILP) and Constraint Programming (CP)
problems.

2 Problem Statement

LetM = {1, . . . ,m} be a set of identical, parallel machines. In every time instant,
every machine i ∈ M is operating in some mode ω ∈ Ω. While a machine
is operating in mode ω ∈ Ω, it demands a constant power Pω ∈ R≥0. The
mode of a machine can be switched from one mode to another, however, this
transition may take some time during which the machine is not operational,



and it incurs a cost in the form of consumed energy. Therefore, for every pair of
modes ω, ω′ ∈ Ω we define transition time ttransω,ω′ ∈ Z≥0∪{∞} and transition cost

ctransω,ω′ ∈ R≥0∪{∞}. If ttransω,ω′ = ctransω,ω′ =∞ for some pair of modes ω, ω′ ∈ Ω, then
a machine cannot be directly switched from ω to ω′. If a machine is operating
in some mode ω ∈ Ω for a total time of t, then the operating cost is computed
as Pω · t.

Let J = {1, . . . , n} be a set of jobs. The jobs have to be processed on some
machine within scheduling horizon H ∈ Z>0, each machine can process at most
one job at a time, and the jobs cannot be preempted. A processing time of job
j ∈ J depends on the mode ω ∈ Ω in which the assigned machine is operating
during processing of the job and is denoted as pj,ω ∈ R≥0 ∪ {∞}. If pj,ω = ∞,
then job j ∈ J cannot be processed while the assigned machine is operating in
mode ω ∈ Ω. A job cannot be processed on a machine during the transition
from one mode to another and once a machine starts processing a job, it cannot
change its mode until the job completes. Moreover, each job j ∈ J has release
time rj ∈ Z≥0 and deadline dj ∈ Z≥0. The release time and deadline of a job
define the time window within which it must be processed.

Due to technological restrictions, such as machine wear, the number of tran-
sitions to mode ω ∈ Ω on each machine can be at most Kω ∈ Z>0 within the
scheduling horizon.

A solution is a tuple (s,µ,π1, . . . ,πm, t
mode
1 , . . . , tmode

m ), where s ∈ Zn≥0 is a
vector of jobs start times, µ ∈Mn is a vector of jobs assignment to the machines,
πi ∈

⋃
l∈Z>0

Ωl is a profile of machine i ∈ M and tmode
i ∈

⋃
l∈Z>0

Z l≥0 are the
operating times of machine i ∈ M . Profile πi is a finite sequence of modes
which are followed by machine i ∈ M in the solution. The profiles represent
the transition from one mode to another; they do not inform about the time
spent operating in a particular mode of a profile. Operating times tmode

i are a
finite sequence of non-negative integers such that tmode

i,k is the operating time of
machine i ∈M in mode πi,k. It holds that (i) the length of a profile is the same
as the length of the corresponding operating times, i.e., |πi| = |tmode

i |, ∀i ∈ M
(operator | · | represents the length of a sequence) and (ii) the sum of the total
transition times plus the total operating times of a profile equals to the length of

the horizon, i.e.,
∑|πi|−1
k=1 ttransπi,k,πi,k+1

+
∑|πi|
k=1 t

mode
i,k = H ,∀i ∈ M . Moreover, the

solutions must respect that the number of transitions to every mode is limited,
i.e., |{k ∈ {1, . . . , |πi|} | πi,k = ω}| ≤ Kω ,∀ω ∈ Ω, i ∈M .

The goal of this scheduling problem is to find a solution which minimizes
the consumed energy, i.e., the sum of the total transition cost plus the total
operating cost

∑
i∈M

|πi|−1∑
k=1

ctransπi,k,πi,k+1
+

∑
i∈M

|πi|∑
k=1

Pπi,k
· tmode
i,k . (1)

This scheduling problem is strongly NP-hard due to the underlying strongly
NP-complete scheduling problem 1|rj , dj |− [8].



3 Solution Approach

Although it is possible to model the scheduling problem introduced in Sect. 2
using either ILP or CP, the resulting model would be very large and could
solve only small instances. Moreover, due to the parallel identical machines, the
scheduling problem has symmetrical solutions, i.e., different solutions may have
the same objective value and one solution can be transformed to another by
simply re-indexing the machines. Symmetries significantly degrade the efficiency
of the models, thus, a specialized approach is necessary. Therefore, we solve this
scheduling problem using Branch-and-Price (BaP) methodology [9] which is de-
signed for solving such large-scale optimization problems. Symmetrical solutions
are avoided by a clever representation of the columns in the BaP algorithm.

Algorithms based on BaP combine the Branch-and-Bound algorithm with
Column Generation (CG) [10]. The CG is a technique for solving Linear Pro-
gramming (LP) models with many variables. The variables (and the correspond-
ing columns of the constraint matrix) are added lazily until a solution with the
restricted set of the variables is optimal for the dual formulation of the model. If
the solution is an integer, the whole algorithm terminates. Otherwise, branching
on the fractional variables is performed.

The LP model used in the CG is based on a set covering model. Let A ⊆
{0, 1}n be a set of columns, where each column al ∈ A represents a particular
assignment of the jobs on a machine. For each al ∈ A we can compute its cost
ccoll , which corresponds to the optimal solution of the single machine scheduling
problem with jobs for which al,j = 1. The goal of the master problem is to select
a subset of columns from A such that every job is assigned to some machine and
the total cost of the selected columns is minimized. Since the number of columns
is exponential in the number of jobs, we use restricted column set A′ ⊆ A, which
is lazily expanded using the CG. The master problem restricted to A′ then can
be modeled as

min
∑
al∈A′

ccoll · xl (2)

s.t.
∑
al∈A′

al,j · xl ≥ 1, j ∈ J (3)

∑
al∈A′

xl ≤ m (4)

xl ≥ 0, al ∈ A′ . (5)

Variable xl denotes, whether column al is selected in the solution. Notice that
the problematic machine symmetries are broken since an assignment of a column
to a specific machine is not important and, therefore, not modeled.

The CG operates on the dual formulation of the restricted master problem;
consequently, variables xl diminish. Instead, new variables λ ∈ R≤0 × Rn≥0
arise in the dual formulation. If the optimal solution to the dual restricted
master problem is feasible for the unrestricted one, the CG terminates, oth-
erwise, column al ∈ A \ A′ with a negative reduced cost has to be found, i.e.,



0 > ccoll −
∑
j∈J al,j ·λj −λ0. A new column for the restricted master problem is

found using another optimization model called a subproblem in which the dual
variables λ are fixed. Solving such a problem is very similar to solving a single
machine variant of the scheduling problem introduced in Sect. 2. The difference
is that the subproblem selects a subset of jobs, i.e., new column al, such that
the reduced cost is minimized.

However, such a subproblem has still a very large solution space, thus se-
lecting the machine profiles is a hard combinatorial problem. If the maximum
number of transitions Kω to the modes is not large (which is true for ŠKODA
AUTO and ERTL Glas), it is possible to enumerate all technologically feasible
profiles Π ⊂

⋃
l∈Z>0

Ωl that do not violate the transition limits, solve the sub-
problem for every π ∈ Π and select the one with the minimum objective value.
For each technologically feasible profile π ∈ Π, we solve the corresponding sub-
problem using the following ILP model

min
∑
i∈M

|π|−1∑
k=1

ctransπk,πk+1
+

∑
i∈M

|π|∑
k=1

Pπk
· tmode
k −

∑
j∈J

|π|∑
k=1

yj,k · λj − λ0 (6)

|π|∑
k=1

yj,k ≤ 1, j ∈ J (7)

smode
1 = 0 (8)

smode
k = smode

k−1 + tmode
k−1 + ttransπk−1,πk

, k ∈ {2, . . . , |π|} (9)

smode
|π| + tmode

|π| = H (10)

rj ≤ sj , j ∈ J (11)

sj +

|π|∑
k=1

yj,k · pj,πk
≤ dj , j ∈ J (12)

smode
k ≤ sj +M · (1− yj,k), j ∈ J, k ∈ {1, . . . , |π|} (13)

sj + pj,πk
≤ smode

k + tmode
k +M · (1− yj,k),

j ∈ J, k ∈ {1, . . . , |π|} (14)

sj + pj,πk
≤ sj′ +M · (3− yj,k − yj′,k − zj,j′),

j, j′ ∈ J, j < j′, k ∈ {1, . . . , |π|} (15)

sj′ + pj′,πk
≤ sj +M · (2− yj′,k − yj,k + zj,j′),

j, j′ ∈ J, j < j′, k ∈ {1, . . . , |π|} . (16)

The program uses the following variables: (i) yj,k ∈ {0, 1} denoting whether
j ∈ J is assigned to k-th mode of π, (ii) smode

k ∈ Z≥0 is the start time of the
time interval in which the machine is operating in k-th mode of profile π, (iii)
tmode
k ∈ Z≥0 is the operating time of k-th mode of profile π, (iv) sj ∈ Z≥0

is the start time of job j ∈ J and (v) zj,j′ ∈ {0, 1} denotes the relative order
between jobs j, j′ ∈ J . To see that this subproblem selects a column, notice that

al,j =
∑|π|
k=1 yj,k. Constraint (7) allows each job to be assigned to at most one



mode, constraints (8)–(10) set the start time and operating time of k-th mode,
constraints (11)–(12) assure that the jobs are processed in between its release
time and deadline, constraints (13)–(14) ensure that the jobs are fully contained
in the time period of k-th mode to which they are assigned, and constraints (15)–
(16) ensure that the jobs are not overlapping. To speed-up solving the model,
we generate constraints (15)–(16) using lazy constraints generation.

The initial set of columns is created using a simple heuristic based on Ear-
liest Deadline First strategy. Since even problem 1|rj , dj |− is strongly NP-
complete, there is no guarantee that any heuristic will find the initial A′ that
will represent a feasible solution (although the selected Earliest Deadline First
strategy is generally better aimed at satisfying the deadlines than cost-based
heuristics). Therefore, if the heuristic cannot find a feasible solution, it gen-
erates A′ such that it contains columns covering all the jobs. In such a situ-
ation, it may happen that the master model may not find a feasible solution
because of constraint (4). Therefore the master model has to assume this con-
straint in a slightly different form, i.e.,

∑
al∈A′ xl ≤ m + q, where q ≥ 0 is

a new decision variable indicating whether the solution of the master prob-
lem is feasible or not. Finally, the objective function of the master model is∑
al∈A′ c

col
l · xl + q · C, such that C is much larger than the cost of any feasible

column, e.g., C = m ·H ·maxω∈Ω Pω + maxπ∈Π |π| ·maxω,ω′∈Ω c
trans
ω,ω′ .

If the optimal solution to the master problem is fractional at the end of the
CG, a branching is required. The used branching scheme selects a pair of jobs
(j, j′) that have not been selected before and have the largest overlap of inter-
vals [rj , dj ] and [rj′ , dj′ ] (according to preliminary experiments, this branching
scheme performed better than random selection). Then the scheme creates two
branches, where: (i) jobs j and j′ are forbidden to be processed on the same
machine and (ii) the same two jobs are required to be processed on the same
machine. This scheme generates simple logical constraints that can be included
into the subproblem. For each new branch it is necessary to filter out columns
al ∈ A′ that violate the particular branching decision. However, this step may
result in a column set which is not covering all the jobs. Therefore, as in the
initialization phase, the algorithm has to add columns such that all jobs are
present in A′.

Alternatively, the subproblem can be easily modeled using CP, where efficient
filtering techniques for unary resources with optional jobs are employed [11]. Let
us introduce two types of interval variables Imode

k and Ij,k, where j ∈ J, k ∈
{1, . . . , |π|}. Variables Ij,k are optional, which means that the presence of Ij,k
in a schedule is to be decided. The length of Ij,k is fixed to pj,πk

, whereas
the length of Imode

k is to be determined. Constraints (15)–(16) are substituted
by no-overlap constraints, i.e., for each k ∈ {1, . . . , |π|}, we add constraint
NoOverlap(

⋃
j∈J Ij,k). The other constraints are straightforward. Note that the

state function variable [12] for modeling the modes of a machine cannot be ef-
ficiently used as the lengths of the modes are involved in the objective function
and the transition times between modes are fixed.



4 Preliminary Experiments

We evaluated the proposed BaP algorithm (with subproblem implemented as
both ILP and CP model) on a set of random problem instances that were
generated as follows. The scheduling horizon was fixed to H = 1000 and the
set of assumed machines modes was chosen as Ω = {OFF, IDLE,ON}, i.e.,
the machines have one power-saving mode IDLE and the jobs can be pro-
cessed only in mode ON. The set of technologically feasible profiles is Π =
{(OFF,ON,OFF), (OFF,ON, IDLE,ON,OFF)}. The processing time of the jobs
in mode ON was randomly sampled from discrete uniform distribution U {1, 100}.
The release times and deadlines were randomly generated in such a way that the
generated instances were feasible and the jobs had non-zero overlap.

For each pair n ∈ {15, 20, 25},m ∈ {1, 2, 3, 4}, 4 random instances were
generated using the scheme described above; each instance had time-limit of
3600 s. The experiments were carried out on an Intel R© CoreTM i5-3320M CPU
@ 2.6 GHz computer with 8 GB RAM. For solving the ILP and CP models, we
used Gurobi 7.5 and IBM CP Optimizer 12.7.1 solvers, respectively. The source
code of the algorithms with the generated instances are publicly available at
https://github.com/CTU-IIG/PSPSM.

The results shown in Tab. 1 clearly indicate that the BaP algorithm with
ILP subproblem (BaP+ILP) outperforms the CP subproblem (BaP+CP). Using
continuous variables for the start times of the jobs instead of integer variables
led to only a slight deterioration in the computational time, while the number
of nodes and the number of columns slightly decreased.

Although it could be possible to compare the proposed algorithm with the
time-indexed ILP formulation from the literature [2], the resulting model would
be huge for the scheduling granularity usually used in production scheduling (1
minute). For example, the time-indexed ILP formulation would require 4 · 25 ·
1000 = 100000 binary variables just to represent the start times of the jobs for
the largest problem instance from Tab. 1.

Table 1: Experimental results.

Instance Parameters BaP+ILP BaP+CP
m n Computational

time [s]
Nodes Columns Computational

time [s]
Nodes Columns

1 1 15 9.50 1 113 58.57 1 115
2 1 15 9.58 1 116 92.80 1 124
3 1 15 9.38 1 102 41.77 1 82
4 1 15 11.37 1 132 50.71 1 118
5 2 15 31.15 13 253 179.53 13 270
6 2 15 14.91 1 93 65.10 1 66
7 2 15 8.66 1 97 45.95 1 90
8 2 15 10.23 1 87 79.79 1 102
9 3 15 40.05 17 173 177.20 17 156

10 3 15 41.59 35 301 210.12 35 341
11 3 15 5.29 1 47 60.41 1 48
12 3 15 24.37 15 200 188.80 15 187
13 4 15 32.43 31 243 278.96 33 213
14 4 15 4.82 1 51 44.23 1 54
15 4 15 7.46 1 77 87.70 1 75
16 4 15 5.43 1 38 45.72 1 42
17 1 20 38.78 1 298 250.04 1 250
18 1 20 79.39 1 323 406.87 1 302
19 1 20 86.69 1 429 453.85 1 437
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20 1 20 17.57 1 166 267.30 1 252
21 2 20 372.76 71 1,357 1,719.14 79 1,263
22 2 20 35.91 1 187 169.87 1 118
23 2 20 97.80 3 345 355.56 3 291
24 2 20 195.30 15 413 927.75 15 465
25 3 20 65.91 1 146 288.09 1 144
26 3 20 35.79 1 143 179.21 1 114
27 3 20 38.25 1 156 193.89 1 134
28 3 20 161.99 51 537 1,803.98 385 1,263
29 4 20 30.26 1 94 254.23 1 119
30 4 20 143.86 61 511 965.07 71 623
31 4 20 27.83 1 81 155.68 1 72
32 4 20 81.48 15 213 696.28 15 265
33 1 25 99.17 1 274 383.83 1 258
34 1 25 181.60 1 329 1,008.59 1 288
35 1 25 58.33 1 249 410.03 1 262
36 1 25 87.39 1 287 266.63 1 249
37 2 25 2,362.55 89 4,685 > 3,600.00 1 168
38 2 25 125.78 1 319 647.76 1 314
39 2 25 795.59 101 2,164 2,383.94 53 1,438
40 2 25 111.70 1 273 714.10 1 234
41 3 25 516.39 21 806 1,913.10 21 794
42 3 25 277.58 15 634 1,142.37 15 530
43 3 25 2,657.06 181 4,393 > 3,600.00 61 1,172
44 3 25 1,184.67 39 914 > 3,600.00 39 730
45 4 25 162.21 1 230 755.30 1 258
46 4 25 226.80 49 663 > 3,600.00 221 1,758
47 4 25 99.28 1 170 727.78 1 223
48 4 25 596.11 33 663 3,472.82 79 1,349

For the sake of comparison with the global approach, we also evaluated var-
ious global CP models. All the global models gave competitive results up to 2
machines, but for 3 or more machines, the global models are strongly suffering
from the symmetries caused by parallel identical machines (the best global model
time-outed for 9 instances having 4 machines).

5 Conclusion

Reducing energy consumption costs of manufacturing processes can be a signifi-
cant competitive advantage for producers. This work-in-progress paper provides
a Branch-and-Price algorithm for a multi-machine production scheduling prob-
lem minimizing energy consumption. The experimental results show that the
algorithm can solve instances with four machines and up to 25 jobs in a reason-
able time. To be able to solve real production instances, the algorithm can be
easily transformed into a heuristic, e.g., by reducing branching. Nevertheless, we
work on further improvements of the exact algorithm to make it applicable to
larger problem instances. For example, the computational time of the subprob-
lem could be decreased by an online machine learning algorithm [13] that reuses
the results of previously solved subproblems.
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4. Ángel González, M., Oddi, A., Rasconi, R.: Multi-objective optimization in a job
shop with energy costs through hybrid evolutionary techniques (2017)

5. Selmair, M., Claus, T., Trost, M., Bley, A., Herrmann, F.: Job shop scheduling
with flexible energy prices. In: European Conference for Modelling and Simulation.
(2016)

6. Mitra, S., Sun, L., Grossmann, I.E.: Optimal scheduling of industrial combined heat
and power plants under time-sensitive electricity prices. Energy 54(Supplement
C) (2013) 194 – 211

7. Kong, F., Wang, Y., Deng, Q., Yi, W.: Minimizing multi-resource energy for real-
time systems with discrete operation modes. In: 2010 22nd Euromicro Conference
on Real-Time Systems. (July 2010) 113–122

8. Lenstra, J., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems.
In Hammer, P., Johnson, E., Korte, B., Nemhauser, G., eds.: Studies in Integer
Programming. Volume 1 of Annals of Discrete Mathematics. Elsevier (1977) 343
– 362

9. Feillet, D.: A tutorial on column generation and branch-and-price for vehicle rout-
ing problems. 4OR 8(4) (Dec 2010) 407–424
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