
Parallel Algorithm for Feedforward Neural

Network Controller

Z.Hanz�alek

Trnka Laboratory for Automatic Control

Department of Control Engineering

Karlovo n. 13, 121 35 Prague 2

Czech Technical University in Prague, Czech Republic

hanzalek@rtime.felk.cvut.cz

Abstract. A problem with simulation of multilayer neural network on

transputer array is described in this article. The decomposition and map-

ping on given architecture is proposed as well as a simple message pass-

ing scheme. Practical experiments with inverted pendulum plant are de-

scribed including useful hints for setting neural network architecture and

tuning neural networks parameters. Then neural controller is designed

and criterion function is de�ned for given control problem. Finally the

real-time aspects of the controller design are outlined.

1 Introduction

When designing real-time controller it is necessary to deal with application de-

mands (a plant complexity, time constants, reliability) and algorithm require-

ments (time complexity, memory space). In real time digital control the controller

output must be performed within the loop sample interval on the basis of pe-

riodically sampled measurements. The choice of the controller architecture is a

way how to satisfy the requirements coming from the nature of the real-time

control. Possible way is to use a parallel processing system composed of several

processing elements which can operate concurrently, communicating with each

other when necessary.

2 Parallel Algorithm

2.1 Neural network algorithm

The following equations specify a function of the stochastic gradient learning

algorithm, where Nl is the number of neurons in layer l, k denotes an algorithm

iteration number, I lj(k) denotes input to the cell body of neuron j in layer l, u
l
j(k)

denotes output of neuron j in layer l, �li(k) denotes the error back propagated

through the cell body of neuron i in layer l, wl
ij(k) denotes weight of synapse

between cell body i in layer l�1 and cell body j in layer l, �l denotes the learning

rate, and �l denotes the momentum term in layer l.

Activation - Forward Propagation

I lj(k) =

Nl�1X

i=1

[wl
ij(k) � u

l�1
i (k)] (1)

ulj(k) = f(I lj(k)) =
2

1 + e�I
l
j
(k)=T

� 1 (2)

Error Back Propagation - Output layer

�li(k) = f 0(I li (k)) � (u
desired
i (k)� uli(k)) (3)

Error Back Propagation - Hidden layer

�li(k) = f 0(I li (k)) �

Nl+1X

j=1

(�l+1j (k) � wl+1
ij) (4)

Learning - Gradient Method

�wl
ij(k) = �l � �lj(k) � u

l�1
i (k) + �l ��wl

ij(k � 1) (5)

wl
ij(k) = wl

ij(k � 1) +�wl
ij(k) (6)

2.2 Communication requirements

One part of activation procedure in hidden layer having four neurons is repre-

sented in �gure 1 . Let us assume that this activation step is calculated in four

processors. Then each neuron at each processor has to receive a previous layer

output from all other nodes.

It is evident that an e�cient algorithm could be realized only in a case when

we minimize the amount of data communicated among processors. The basic

idea is to split the neuron into synapses (in sequential activation represented by

equations (1) , (4), (5) and (6)) and a cell body (corresponding to the sigmoid

function - equations (2), (3) and (4)). The splitting operation makes it possible

to simulate each neuron by di�erent processors and minimize communication.

2.3 A Toroidal Lattice Architecture

The problem decomposition is done by the network of virtual processors (VPs).

The VPs could be divided into the three categories:

� synapse processor (SP)

� cell processor (CP)

� input/output processor IO which is present only once. His behaviour is more

complex, once acts as synapse, once as cell and once performs communication

with a host computer.

4 4 44

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

neuron from layer l

neuron from layer l-1

Σ
i=0

Nl−1

[w ij
l (n) • u i

l−1(n)]

u i
l−1(n)

I j
l(n)

f (I jl(n))

Figure 1. The part of activation in four processors and its Petri net representation

VPs having four communication channels are arranged in the toroidal lattice

architecture (Fujimoto, 1992 [2]; Murre, 1993 [5]). Each SP performs operations

corresponding to the functions of a synapse in neural network that are the sum

operation and updates its weight. The CP has the functions corresponding to the

activation sigmoid function and error evaluations. All SPs and CPs are connected

to their four neighbours by unidirectional channels (up, down, left, right).

2.4 Data distribution

Training data delivering is the crucial problem for e�cient parallel processing in

the simulation of large scale neural networks. The training data in typical appli-

cation are available on one processor - typically on a root processor connected to

host computer. If we assume that neurons from the input layer are "placed" on

a root transputer (respective sigmoid function of input layer could be calculated

in advance) then input data are delivered to the �rst row of NPs. Output layer

neurons are present in all NPs so the output has to be send from all NPs to the

root and the output error has to be delivered from the root to all NPs.

If we want to run the described algorithm on an array of processors con-

nected by links we have to deal with the data distribution problem. The solution

proposed in �gure 2 is to create communication process MP on each physical

processor and to connect this MP to process performing calculation. MPs in the

�rst row are connected with root in ring as well as all MPs in each column. All

MPs are connected by the same physical links as calculation processes but in

opposite direction. All data among communication processes are delivered with

the identi�cation number. Each MP is assigned as a high priority process.

r o o t

H O S T
Q = 4

P=4

other MPs

calculation process

00 01 02 03

10 11 12 13

20 21 22

30 31 32 33

23

I O

MP in the first row

Figure 2. Realization on array of 17 transputers

For more details on implementation and experimental results see [3].

3 Neural Controller

Besides the performance measurement the neural network controller was imple-

mented. Experiments were done on an inverted pendulum physical model LIP

manufactured by the Amira company. This problem has been studied by many

control theorists and engineers as an inverted pendulum problem. The task is to

stabilize the pendulum in upright position having information about pendulum

angle � and angular speed !. Based on the measurements the controller gener-

ates a suitable signal u which controls the DC motor. The controller was realized

by the transputer network with ADT108 and DAT208 converters in a form of

TRAM modules. Such a system allows to realise fast controller with sampling

frequency up to 1kHz (this limit is given by the communication with A/D and

D/A converters). Figure 3 shows schematically the experimental environment.

The inverted pendulum is a non-linear system that is linearized by approxi-

mation of goniometric functions at the operating point. Plant input is limited by

the saturation of the control voltage for the motor (�10V). The most signi�cant

nonlinearities acting on the cart are the dry friction and the static friction.

Transputer

network with

A/D and D/A

converters

Neural Controller

 Θ , ω
Plant

u Θ

Figure 3. Neural controller with inverted pendulum plant

3.1 Copying an existing controller

At �rst conventional PD controller was designed by the second Ziegler-Nichols

method (refer to Ogata, 1990 [6]). Such a discret controller given by the equation

(7) is very easy to tune by �nding critical gainKcr and critical period Pcr. These

values were found by setting Kd = 0 and rising up Kp from 0 to the critical one.

u(k) = Kp � e(k) +Kd � [e(k)� e(k � 1)]=Tv (7)

Where e(k) = �(k)��desired(k) is the input to the controller and Tv is the

sampling period (in our experiments Tv = 10ms).

The closed loop system was stable and the conventional linear PD controller

with non-linear friction compensator served us for comparison with a neural

controller.

In order to gain experience in setting neural network architecture and tuning

neural network parameters a simple task 1 was examined - o� line learning of

the controller function using a random generator to generate the input data.

Then simple task 2 was performed - on line copying the existing conventional

controller with a neural network.

Doing this and studying reference Hush and Horne (1993) [4] validity of

following facts was tested:

� From the algorithm convergence purposes the momentum is limited by 0 <

� < 1.

� The weights are initialized to small random number (refer to the back-

propagation phase).

� The use of the linear output nodes tends to make learning easier.

� The learning rate � is inversely proportional to the gain of the network - so

it is useful to normalize input and output signals, then �+ � � 1.

� The neural network with one hidden layer will be su�cient for our purpose,

using networks with more layers leads to the problems with propagating

error to the input layer. According to the theorem of Weierstrass and to the

study of de Villier (1992) [11] more layers do not seem to be necessary.

� The upper bound on the number of hidden layer neurons is generally a

function of the number of training samples. Concerning to the simplicity of

controller functions in our case not more than 8 neurons were used.

� Learning NN with 4 inputs [�(k); �desired(k); �(k� 1); �desired(k� 1)] was

easy and fast (10 seconds) in the task 1 because input data generated by the

random generator covered all input range.

� Learning NN with 4 inputs [�(k); �desired(k); �(k� 1); �desired(k� 1)] was

impossible in the task 2 because input data did not cover all input range,

namely in the case of the desired values.

� Learning neural network with 2 inputs [e(k); e(k � 1)] was possible and rel-

atively fast in the task 2.

The pro�t of this approach lies in the method consisting of the two following

phases:

� 1) Neural network was taught to function in the same way as the non optimal

controller able to stabilize a plant - weights pre-setting.

� 2) In order to optimise the controller behaviour a new criterion function was

de�ned and the neural controller was applied on line with the plant to adapt

its parameters - weights tuning.

The fundamental problem formulated by Barto (1991) [1] is: where does the

training information come from ? In a control application target plant output

is known but not target network output - control signal. This problem appears

when phase 2 is performed or when the neural controller starting from the ran-

dom values on line with plant is realized. Corresponding questions and solutions

are clari�ed in the following paragraph.

3.2 Learning control architecture

Figure 4 shows the feedback controller, implemented as neural network, with its

output u driving the plant (in the terms of equations specifying neural network

algorithm u = u
output
1

). Speci�ed architecture using neural network as controller

require training information, that is based on the knowledge of measured values

and the criterion function. This procedure requires knowledge of the Jacobian

of the plant.

Our learning algorithm for the multilayer neural network uses a stochastic

gradient search technique to �nd the network weights that minimize a criterion

desired

-

Neural

network
Plant

J

Θ
u

ωωdesired

Θ

-

+

+

Figure 4. Neural controller learning architecture

function. The criterion function to be minimized at each time step is the weighted

sum of squared errors:

J =
1

2
[c�(�(k) ��desired(k))

2+ (8)

+c!(!(k)� !desired(k))
2]

Error back propagation cannot be applied directly to the special learning

architecture because of the location of the plant. Referring to �gure 4, the plant

can be thought of as an additional, although unmodi�able, layer (refer to Psaltis,

1988 [7]). Then the total error is propagated back through the plant using the

partial derivatives of the plant at its operating point. So equations specifying

back-propagation phase have to be recalculated in order to minimize J .

@J

@wl
ij

=
@J

@I lj

@I lj

@wl
ij

=
@J

@I lj
ul�1i (9)

There is no change for the input and hidden layers, so for the output layer

consisting of one linear neuron and for �desired = !desired = 0 the chaining rule

is used, once more:

@J

@Iout
=

@J

@u

@u

@Iout
= (

@J

@�

@�

@u
+

@J

@!

@!

@u
) � 1 (10)

In practice the neural controller was used in order to avoid the plant identi-

�cation, so only qualitative knowledge of the plant should be used. This means

that the Jacobian of the plant will be approximated by +1 or -1 :

@J

@Iout
=

@J

@�
� 1 +

@J

@!
� 1 = 2 �

(c��)

2
+ 2 �

(c!!)

2
(11)

So the equation (3) changes in the case of the on-line neural controller with

Iout 2 (�10;+10) to the form:

�out(k) = c��(k) + c!!(k) (12)

Figure 5 shows the neural controller under consideration. It is evident that

for Iout =2 (�10;+10) the equation changes to the form: �out = 0.

Practically experimenting with the neural controller it was found out that

bias input to the output layer causes many problems in the learning procedure.

The reason lies in the fact that control loop closes over �out and not over con-

troller input. In such cases the system works but changes its weights all the

time.

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

1

Σ
10−

−−10

u

ω ω- desired

Θ Θ- desired

I

u

out

Figure 5. Internal structure of neural controller

Using the architecture given in the �gure 5 with the input vector [e(k); eprime(k)]

better results were achieved than using the second controller with the input vec-

tor [e(k); e(k � 1)]. Referring to the equation (7) there should not be a big

di�erence, but the second controller was not able to distinguish the angular

speed !. This problem is connected with the value of the sampling frequency. In

the other words the second controller functioned more like P one than like PD

one.

3.3 Experimental results

Applying neural controller on the inverted pendulum we have performed several

experiments similar to ones published by Barto et al:(1983) [1], Saerens and

Soquet (1991) [8] and others. The controller was able to stabilize the plant (at

least for 15 minutes) after less than 10 trials. At the beginning of each trial the

pendulum was put to the origin � = 0. The controller was considered that failed

when � =2 (�10;+10). The number of trials was dependent on the initial weights

generated by the random generator and on the disturbances as well. In order to

have similar conditions for all experiments the initial weights were set to small

random numbers so that u did not reach saturation and the learning procedure

could take place. The weights usually converged in 10 seconds (Tv = 10ms).

Monitoring a neural controller shape it was seen that the system behaved in

a way very similar to man's thinking. First dependency on � was chosen (P-

controller), then dependency on ! was adjusted (D-controller).

Assuming the learning procedure to be already stopped the neural controller

could be seen as a non-linear static function with two inputs and one output as

shown in the �gure 6. Its behaviour is very similar to the conventional linear PD

controller with saturation. In order to compare the stability of both controllers

an investigation of the non-linear controller stability has to be made, which could

be done for example by the approximation of u by its �rst harmonic.

−10
−5

0
5

10

−1

−0.5

0

0.5

1
−10

−5

0

5

10

e(k)eprime(k)

u(
k)

Trial number:8 Number of itrations from start:3840 / one iteration is10ms/

Figure 6. Neural controller characteristics

The evolution of the neural controller at the time is dependent on neural

network architecture and parameters, but the �nal shape of the neural controller

is given namely by the ratio c�=c! de�ned by the criterion function J . This

ratio seems to be the function of the plant parameters, namely critical period

Pcr. In the other words - target controller behaviour is in
uenced by de�ning

the criterion function J , but this behaviour is not known when we have no

quantitative knowledge of the plant, so it is very di�cult to set J when the

plant is seen as a black box.

3.4 Real-time aspects

Designing real-time controller in the OCCAM environment we have to deal with

several questions coming from the nature of real-time control. Typically we need

at least two processes running in parallel and communicating each other - process

control and process monitor.

The process control performs all control functions in limited time given by the

sampling period. The process monitor communicates with the operator (display,

keyboard, disk) that means there is no safety that these functions could be done

in a de�ned time.

4 Conclusion

This paper presents a toroidal lattice architecture used to simulate multilayer

neural network. Application of neural controller to drive physical plant was ex-

amined and described. The same system could be used in a case of plants with

higher demands because using parallel architecture, we can gain from the ad-

vantages of parallel processing (increased computational speed, easy expansion

within a uniform hardware and software, closer relationship between the inherent

parallelism expressed at the design stage,
exibility etc.)

Acknowledgements

This research has been conducted at Trnka Laboratory for Automatic Con-

trol (supported by the Ministry of Education of the Czech Republic under

VS97/034).

References

1. Barto, A.G.,1991, In: Neural Networks for Control (Miller, W.T., Sutton, R.S.,

Werbos, P.J, Ed.) Chap.1 - Connectionist Learning for Control, MIT Press, pp.5-

58.

2. Fujimoto, Y., N.,Fukuda, T., Akabane,1992, Massively Parallel Architectures for

Large Scale Neural Networks Simulations, IEEE Transactions on Neural Networks,

3, No. 6, pp.876 - 887.

3. Z. Hanz�alek, A Parallel Algorithm for Gradient Training of Feedforward Neural

Networks, accepted for publication by Parallel Computing, Elsevier Science.

4. Hush,D.R., B.G., Horne,1993, Progress in Supervised Neural Networks, IEEE

Signal Processing Magazine, January 1993, pp.8-39.

5. Murre,J.,1993) Transputers and Neural Networks: An Analysis of Implementation

Constrains and Performance, IEEE Transactions on Neural Networks, 4, No. 2,

pp.284 - 292.

6. Ogata, K.,1990, Modern Control Engineering, Prentice-Hall International 1990, pp.

597-604.

7. Psaltis, D., A., Sideris, A.A., Yamamura,1988, A Multilayered Neural Network

Controller Based on Back-Propagation Algorithm, IEEE Control Systems Maga-

zine, April 1988, pp.17-21.

8. Saerens, M., A., Soquet,1991, Neural Controller based on back-propagation algo-

rithm, IEE Proceedings-F, 138, No. 1, pp.55-62.

9. Sutton, R., A.G., Barto, C., Anderson,1983, Neuron-like Adaptive Elements that

can solve Di�cult Learning Control Problems, IEEE Trans., SMC-13, 5, pp.834-

846.

10. Tollenaere, T., G.A., Orban,1991, Simulating modular neural networks on

message-passing multiprocessors, Parallel Computing, No. 17, North-Holland, pp.

361-379.

11. de Villier,J., E., Bernard,1992, Backpropagation Neural Nets with One and Two

Hidden Layers, IEEE Transactions on Neural Networks, 4, No.1, January 1992,

pp.136-141.

