A Parallel Algorithm for Gradient Training of
Feedforward Neural Networks

Zdenék Hanzalek

Trnka Laboratory for Automatic Control
Department of Control Engineering, Karlovo ndm. 13
Czech Technical University in Prague, 121 35 Prague 2, Czech Republic
tel: +420 2 24357434, fax: +420 2 24357298
E-mail: hanzalek@rtime. felk.cvut.cz

Abstract

This paper presents a message-passing architecture simulating multilayer neural
networks, adjusting its weights for each pair, consisting of an input vector and a
desired output vector. First, the multilayer neural network is defined, and the diffi-
culties arising from parallel implementation are clarified using Petri nets. Then the
implementation of a neuron, split into the synapse and body, is proposed by ar-
ranging virtual processors in a cascaded torus topology. Mapping virtual processors
onto node processors is done with the intention of minimizing external communi-
cation. Then, internal communication is reduced and implementation on a physical
message-passing architecture is given. A time complexity analysis arises from the
algorithm specification and some simplifying assumptions. Theoretical results are
compared with experimental ones measured on a transputer based machine. Finally
the algorithm based on the splitting operation is compared with a classical one.

Preprint submitted to Elsevier Preprint 24 October 1997

1 Introduction

The neural approach to computation has appeared in recent years (see [11,15]).
It deals with problems for which conventional computational approaches have
been proven ineffective. To a large extent, such problems arise when a com-
puter interfaces with the real world. This is difficult because the real world
cannot be modelled with concise mathematical expressions. Some problems of
this type are image processing, character and speech recognition, robot control
and language processing.

Programs simulating neural networks (NN) are notorious for being compu-
tationally intensive. Many researchers have therefore programmed simulators
of different neural networks on different parallel machines (e.g. [2,4]). Some
implementations of algorithms such as self-organizing networks [17,5] or het-
erogenous neural networks [14] have been realized on transputer-based ma-
chines [7,18,20,23]. For more references see the bibliography of neural networks
on parallel machines [22].

A large number of neural network implementations on message-passing archi-
tectures have been reported in the last few years. These implementations usu-
ally deal with a conventional neural network adjusting its parameters (weights)
after performing back propagation on a large number of input/output vectors.
Such algorithms are intuitively easier to decompose and many of them have
already achieved linear speed-up.

The aim of this article is to describe the implementation of a parallel neu-
ral network algorithm performing back propagation on a single sample pair
consisting of an input vector and a desired output (target) vector for a given
time. Then the weights are adjusted for each sample input/output pair; this
loop is called an epoch. In contrast with conventional neural networks, this
function introduces a specific noise that is convenient in certain applications.
Such networks are sometimes called neural networks with a stochastic gradient
learning.

2 Neural network algorithm specification

The neural network under consideration is a multilayer neural network us-
ing error back propagation with stochastic learning. The sigmoid activation
function is used. The neuron under consideration is shown in Figure 1.

Fig. 1. Artificial neuron

As shown in Figure 2, all layers are fully interconnected. The following equa-

tions specify a function of the stochastic gradient learning algorithm simulat-
ing a multilayer neural network with one input, two hidden and one output
layer. N; is the number of neurons in layer [, k£ denotes an algorithm iteration
number, I}(k) denotes input to the cell body of neuron j in layer I, u’(k)
denotes output of neuron j in layer I, 6'(k) denotes the error back propagated
through the cell body of neuron ¢ in layer [, wﬁj(k) denotes weight of synapse
between cell body 7 in layer [— 1 and cell body j in layer [, n* denotes the
learning rate, and o' denotes the momentum term in layer .

Activation - Forward Propagation

N1
IL(k) = ; [wi, (k) x u ' (k)] Vi=1...3,¥j=1...N, (1)
0 . .
I;(k)...j — th neural network input

2
l _ l _ _ L
W) =) = g =1 =03 =1..N (2

Error Back Propagation - Output layer

0i(k) = f'(Ii(k)) x (ug*™*!(k) —uy(k)) ~ for 1=3 (3)

Error Back Propagation - Hidden layers
Nit1

0i(k) = f(Ii(k)) x 3 (657 (k) x wif (k) for =21 (4)

i=1

Learning - Gradient Method (k = 1,2, 3)
LY — ol o S - ! l _
Awi;(k) =n' x 85(k) x u; (k) + o x Awj;(k —1) Vi=1...3 ()

w;(k) = wi;(k — 1) + Awl; (k) Vi=1...3 (6)

Fig. 2. Example of multilayer neural network

Let us consider a neural network used for unknown non-linear system simula-
tion or a neural network used as a controller [9] interacting with a controlled
system. In such cases, we deal with the problem of the dynamic behavior of
a neural network algorithm implemented on a multiprocessor machine. The
problem is difficult to understand if the NN behavior is described just in terms
of matrix operations.

3 Model of neural network with stochastic gradient learning

This section presents a Petri net model of the algorithm given in previous
section. Petri nets are used for their capability to model the algorithm data
dependencies and to detect possible parallelism (for more details see [10]).
Petri nets, in contrast to ordinary directed acyclic graphs, are able to model
pipe-line parallelism owing to existence of tokens.

Fig. 3. Learning algorithm represented by a generalized Petri net

Let us assume a model shown in Figure 3 where each phase of each layer is rep-
resented by a transition (activation ... T0,T1,T2,T3, error back propagation ...
T4,T5,T6, learning ... T7,T8 T9) with input and output data corresponding
to the places (outputs from layers ... P1,P1’ P2 P2’ P3,P3’ P4, error values ...
P6,P7,P8, weights ... P9,P10,P11). The initial markings in P9,P10,P11 repre-
sent initial weights generated by a random number generator. The number of
tokens corresponds to the multiple data usage.

In this article, a stochastic gradient learning algorithm is assumed. The term
"stochastic” is used because the weights are updated in each cycle (activation
= back prop. = learning = activation = ...). Such processing introduces a
little noise to the learning procedure that could be advantageous in certain
neural network applications. On the other hand, this algorithm is very difficult
to parallelize because transitions T0,T1,T2,T3,T4,T5,T6,T9 form a loop with
just one token devoted to circulate in it. This fact implies that the mentioned
transitions have to be fired sequentially. The only detected parallelisms on this
level of granularity are pipeline parallelism of T0O and simultaneous execution
of T7,T8,T9 in the learning phase. This is easy to prove by the reduction of
PN model given in Figure 3 based on the elimination of self-loop places and
implicit places (refer to [25]).

So that the only reasonable parallelization could be done on lower level by the
transition decomposition; i.e. by expression of a parallelism of fine grain.

4 Simple mapping

How the simulation task of the NN with various configurations and sizes is
divided into subtasks is important for efficient parallel processing. The data
partitioning approach [21] is dependent on learning algorithm and needs the
duplication of stored data. The network partitioning approach used by many
researchers (e.g.[4,13]), in this article called a ”classical algorithm”, uniformly
divides neurons from each layer to n node processors (NP). Then each proces-
sor simulates No/n+ Ny /n+ No/n+ N3/n neurons. One part of the activation

phase in the second hidden layer is represented in Figure 4. The problem is
seen from the PN representation: each neuron at each node processor has to
receive the outputs of the previous layer from all other node processors.

Fig. 4. The activation in the second hidden layer (4 neurons in both hidden layers
mapped on 4 NPs) and decomposed Petri net representation of P2 and T2.

In order to avoid this problem we split the neuron into synapses and a cell
body. The splitting operation makes it possible to split the computation of
one neuron into several processes and to minimize the communication as it is
shown in the following section and proven in section 10.

5 Cascaded torus topology of virtual processors

In this section the algorithm running on the network of virtual processors
(VPs) will be considered, hence we don’t have to care about load balancing and
training data delivering. Problems of this type will be solved in the following
two sections, in this section we will focus on the algorithmic matters, so that
the results of this section will be applicable to several architectures.

The network of VPs arranged in Cascaded Torus Topology (CTT) of size
Ny — N; — Ny — Nj corresponding to the neural network given in Figure 2 is
shown in Figure 5. The VPs are divided into three categories:

e synapse virtual processor (SVP)
e cell virtual processor (CVP)
e input/output virtual processor (I10)

Fig. 5. Cascaded torus topology of VPs (for NN 2-4-4-2)

Each SVP performs operations corresponding to the functions of a synapse
in the neural network - the sum operation given in (1) and (4) and weight
updating given in (5) and (6). The CVP simulates the functions corresponding
to the activation sigmoid function given in (2) and error evaluations given in
(3) and (4). All SVPs and CVPs are connected to their four neighbours by

unidirectional channels.

Using the terminology of [3,24] the program simulating the multilayer neural
network is described:

e initialize weights w!; in SVPs to a random number

calculate u in 10 and distribute it to the SVPs in the layer 1 (scattering)
e for the 1st, 2nd and output layers do:

calculate the product wﬁj x ut~" in SVPs

accumulate [Jl in CVPs (single node accumulation)

calculate ué in CVPs

send ug to the SVPs in the following layer (broadcasting)
e receive u? to I0

calculate output error in IO and send it to CVPs in the output layer
e for the output, 2nd and 1st layers do:

calculate 6! in CVPs

send 4! to the SVPs in the same layer (broadcasting)

calculate the error 67! (k) x wi (k) in SVPs

accumulate the products in CVPs (single node accumulation)
e update weights in SVPs

The whole network (cascaded torus topology) could be seen as a set of rings
(each ring has just one active virtual processor) because the communications
are performed only in vertical or only in horizontal rings at a given time.

The cascaded torus topology of VPs is reminiscent of the systolic approach to
parallel computing [12,21]. But the systolic processing is essentially pipelined
array processing and this algorithm has a very low degree of pipeline paral-
lelism owing to the data dependency loop and lack of tokens in this loop (see
the section 3 and [19]). Mapping VPs of different layers to one node processor
avoids the inefficiency of the systolic approach.

6 Mapping virtual processors onto node processors

In this section VPs arranged in CTT are mapped onto a torus of P x () node
processors (NPs).

The input arguments of the mapping algorithm given below are P, () and
N(1..3), the number of neurons. The output arguments are the row and the
column node processor indexes of all SVPs and CVPs. Where colCVP(L,j)
indicates a column index of processor calculating j-th cell in layer L and
rowSVP(L,i,j) indicates a row index of processor calculating synapse between
i-th cell in layer (I-1) and j-th cell in layer L. Function 'floor()’ returns a value
rounded towards minus infinity and operator 'rem’ gives remainder after divi-
sion.

for L =1...3
for j = 1...N(L)
for i = 1...N(L-1)
if (Lrem2) =1

else

rowSVP(L,i,j) = floor((i-1)/(N(L-1)/P))
?ISVP(LJJ) = floor((j-1)/(N(1)/Q))
end
if (Lrem?2) =1
1X = ((((G-1) rem (N(L)/P))*(N(L-1)/Q)) rem N(L-1)) + 1
}fi: (((G-1) rem (N(L)/Q))*(N(L-1)/P)) rem N(L-1)) + 1
rowCVP(L,j) = rowSVP(L,x,j)
colCVP(L,j) = colSVP (L x,j)
end
end

In order to fully demonstrate the mapping strategy, a larger neural network
(containing 16 neurons in each layer) mapped on the torus of 16 processors is
shown in Figure 6.

Fig. 6. VPs simulating NN with 16-16-16-16 neurons mapped on 4 x 4 NPs

Assuming the environment without virtual channels, we can not simply map a
group of VPs on one NP, because each pair of adjacent NPs is connected by one
channel. One solution is to add multiplexing and demultiplexing processes. The
solution chosen in our implementation is to create more complex processes that
could function as groups of VPs and that eliminate internal communication.

To achieve uniform workload distribution among node processors, each NP
has to have VPs of both categories (CVP and SVP) and from all layers. The
reason is seen from Figure 3 (for example: output layer has to wait for results
from layer 2 in the activation phase). In the following analysis, it is assumed
that the number of neurons in each layer (Ng, N1, Ny, N3) is greater than or
equal to the number of NPs (n = P x Q).

One possible solution for workload distribution is row and column permutation
[8]. In this case, CVPs of one layer are divided into P X () parts and the mesh
of SVPs from the following layer has to be divided into P x P x @) parts.

In our solution it is assumed, that the activation of the input layer is calculated
by the IO process and the CTT is split into six subregions (three rectangular
subregions of SVPs and three diagonal subregions of CVPs). When using
scattered mapping each node processor has a part of each subregion. As seen
from Figure 6, the solution to the mapping problem is done by reconfiguration
of NPs in a case of layer 2. Then all subregions are divided into P x () parts.

7 Data distribution

Delivering of training data is a crucial problem for efficient parallel simulation
of large scale neural networks. We assume that training data are available on
one node processor - typically on the root processor (processor connected to
the host computer). Assuming what was mentioned in the previous section,
the input data are delivered to the first row of a P x @ torus (see Figure 7).
Output layer neurons are mapped onto all NPs so the output has to be sent
from all NPs to the root processor and the output error has to be sent by the
root processor to all NPs.

Fig. 7. Realization on array of 17 transputers

The implementation realized on a transputer array is shown in Figure 7. The
solution to data distribution is to create a message passing process (MP) on
each node processor and to connect it to the process performing computation.
MPs in the first row of the torus are connected in a horizontal ring with the
10 process mapped on the root processor, and MPs in each column of the
torus are connected into vertical rings. All MPs are connected by the chan-
nels mapped on the same physical links as channels connecting computation
processes but in the opposite direction. Each MP is a high priority process.
This implementation written in OCCAM is available from the author upon
request.

There are two kinds of MPs:

e 1) MP in the first row of the torus is merging an input from its neighbour
in row, its neighbour in column and its computation process. Then the
message identification number is decoded and the message is sent to the
correct direction.

e 2) Other MPs are performing similar actions with the exception of merging
neighbour in row.

It is clear that the node processors in the first row communicate more than
the other node processors. A possible solution of this problem is to create a
more complex interconnection of MPs.

8 Time complexity analysis

Assumptions:

e 1) P x @ =n ... number of NPs without root
P>2Q>2P=0Q=n.

e 2) Each node processor can transmit messages along one of its links at
a time. This type of communication will be called ”1-port”. We assume
no gain of physical parallelism of type (PAR in? out!) and no overlap of
communication and computation (see reference [1]).

e 3) Oriented topologies (CTT with unidirectional links).

e 4) Linear time communication model 7, = # + L x 7. We assume messages
to be of constant length containing just one data unit (we don’t assume
any minimization of communication overhead). So the time required for
transferring one data unit is 7;.

e 5) The processing time required for the sigmoid function (derivative of the
sigmoid function respectively) is denoted 75. The processing time required
for one multiplication and one addition is denoted 7,,.

e 6) Each node processor contains the same amount of VPs.

According to the algorithm specification (Eq. (1) to (6) in the section ”Neural
network algorithm specification” ;| the algorithm description and synchroniza-
tion between the root processor and CTT), the time requirements for one
iteration can be evaluated as:

T(No, N1, N3, N3,n) = (75 + 27) No+
—_———
scattering from the Root

3
Niy = Ni-i/n Ni_1N Ny — Ni/n Ny

2 m 2 s
—l—;[Ty 7 + T + 27 NG + 7 —]+

n

activ‘trztion
+ 2(Ty + 273) N3+
simulation in the root, gathering and scattering
Ng N3 — Ng/n
+r— o=y
n \/ﬁ

back—propagation—output layer

N1 N, N, — N;/n N, N, — N;/n
+ mn”lﬂﬂni—JL+nJ+%rL—ﬂ{+
= n Vn n NZD)
back—propagatio;—hidden layers
3
Ni_1N
+> [37m]
-1 n
le(lT‘T'Li’l’Lg

In order to clarify dependence on the problem size let us assume the particular
case when there is the same number of neurons in each layer (N = Ny = N; =

Ny = Nj). Then the time complexity is given by:
221y(N — N 147,,N? + 67,N
T(N. 1) = 7uN + 25N + 6m,N + 2202 NG /n) | 147mN” + 6
~ ~ - n n

Troot ~ ~~ ’ e
Tcomp

(7)

Tcomm

Fig. 8. Separate parts of the execution time for NN with 64-64-64-64 neurons

o T..0 is the sequential part of the algorithm (for its influence on a speedup,
refer to Amdahl’s law explained e.g. in [3,24]).
The communication part (67;/N) is not dependent on n. This is not the case
when communication overhead would be minimized by omitting assumption
4. In the case when all data for one NP would be sent in one packet, then
the communication time with root (scattering and gathering) would depend
on (n X 4+ N x L x 7). In the case when bigger packets (containing data
for one column of NPs) would be sent in the first row of node processors,
the communication with root would depend on (2 X \/n x 3+ N x L x 7).
The computation part could be done using pipeline parallelism (in the case
when the input data is available in advance) with computations in CTT.
This fact was not taken into account in the time complexity analysis.

® Teomm includes 11 communications (1 broadcasting, 5 times gossiping, 5
times multinode accumulation) on vertical /horizontal rings consisting of
v/n NPs; where each NP works with N/n data units.

® Tiomp is the computational part of the algorithm. It corresponds to the part
of Ty, (the processing time of the sequential algorithm running on one node
processor) distributed among n node processors in CTT.

Fig. 9. Theoretical execution time of NN algorithm

We write T'(N,n), to denote that the processing time is the function of the
number of neurons and number of NPs, because 7, 7, and 7,, are constants
given by the parallel computer hardware. By assuming that data unit length
is 12 bytes (one REAL64 and one INT32 as the identification number) and
by applying # = 3.9us and 7 = 1.1us/byte (refer to [6]), we obtain 7, =
17.1pus/data unit. The floating point operations processing time was estimated
by 7, = 4.6us and 7, = 32us. Figure 9 visualizes one iteration processing time
T given by eq. (7) and labelled as ”parallel algorithm”. The parabolic curve
estimating T.,(N) is labelled as ”sequential algorithm” (in this case 7, = 0).

9 Some experimental results

Figure 10 compares the theoretical results given by eq. (7) and the practical
results measured on parallel computer (Telmat T-node 32 x T800). Small

10

Table 1
Numerical values for neural network with 30-150-150-30 neurons

Number of node processors 1 4 6 9 15 20 25 30

Execution time [ms] 753 | 212 | 144 | 99 | 63 | 48 | 40 | 34
Speedup 1 3.5 |52 |76|11.9 | 155 | 18.7 | 21.8

divergencies are given namely by the assumptions 1, 2 and 6, but in general
we can claim that eq. (7) estimates very well the time complexity of the given
parallel algorithm. From the hyperbolic character of the curves in Figure 10,
it seems that we succeeded to reduce the time complexity O(N x N) of the
sequential algorithm to O(N x N/n) with the proposed parallel algorithm.
This question is clarified by Figure 11 showing experimental speedup results.

Fig. 10. Comparison of theoretical and experimental results
The speedup is defined as the ratio:

Tseq o Tseq

S(N,n) = =
(’ n) T Troot + Tcomm + Tcomp

(8)

It is clear that with a large scale neural network, a very good speedup could
be achieved with any parallel algorithm that does not communicate anything
dealing with synapses (N x N). In the case of the mentioned algorithm and
referring to eq. (7) and (8) we can write:

2
lim S(N,n) = lim TsN + 27, N + 147, N* 4 67, N - ()

N—o0 N—oxo T

A more difficult task is to achieve a reasonable speedup in the case when
the number of node processors n approaches the number of neurons N (for
example, imagine a real-time neural controller used to control a fast physical
plant).

To get an indication of the speed-up, dependent upon the network size, a
number of different NN configurations have been executed. The aim in this
case was not to learn a specific example problem, but to get general speedup
results of the algorithm. To indicate speedup, a small number of iterations
suffices.

Fig. 11. Experimental results achieved on T-node

The results for the varying sizes of 4-layer network are given in Figure 11 and
Table 1. The results are better in the case when (N7 +Ns) > (Ny+ V3) because
there is relatively less work for the communication subsystem included in 7}.,4.

11

10 Comparison with a classical algorithm

In the following analysis, we will distinguish between a ”classical algorithm”
and the one explained in the sections 5 to 9 - ”splitting algorithm”. In the
case of the classical algorithm it is assumed that each node processor handles
one partition of neurons (refer to Figure 4) as shown in the section ”Simple
mapping”. All weights coming into a neuron are stored at the same NP as the
neuron. In other words, the neuron was not split into the cell and body.

To derive the time complexity of the classical algorithm, let us assume the same
conditions as in the chapter ”Time complexity analysis” with the exception
of assumption 4. This means the messages sent will differ in length, of type
B+ x x L x T where z is a count of data units and L is the data unit length.

Using the terminology of [3,24], let us imagine one iteration of the classical
algorithm:

e calculate input layer at the ROOT
distribute results [uf, ... , u},] to the processor network (scattering)
e for 1st, 2nd and output layers do:
calculate [uf, ..., uly]
exchange results with all other node processors (gossiping)
e collect results [u}, ..., u},] at the ROOT (gathering)
e calculate the error at the ROOT
distribute results [e}, ..., e},] to the processor network (scattering)
e calculate [67, ..., 0%,]
e for 2nd and 1st layers do:
calculate the partial sums of errors,
exchange results (gossiping),
add the partial sums and calculate [61, ..., 6%]
e update weights

As argued by [16], there is an upper bound for the gossiping problem. Let us
omit assumptions 2) and 3) from the section ” Time complexity analysis” and
let us now consider a general topology. Each node processor in this topology
has A fully duplex links able to work in parallel (A port). During scattering
the node processor 0 has to send (n — 1) packets of length N/n over A links,
so the solution time for scattering sp« is at least ”T_l%LT. Let us consider that
this topology has a diameter D, so the solution time for scattering sp- is at
least Df3. Then the lower bound for scattering is:

n—lﬂ)
A n

sp+(N) > max(D3, LT (10)
This fact shows that T,,, is at least proportional to N in both algorithms

12

(classical and splitting). Communication with ROOT could be accelerated
using processing elements having more communication links and arranged in
a convenient architecture. The efficacy of this fact could be increased in the
classical algorithm, because the connection of four links are already predefined
in the splitting algorithm. Assuming A is a constant given by the processor
hardware, the mentioned acceleration is only constant depending on A and the
given topology. Concerning the hierarchy of basic communication problems, it
is evident that gossiping takes at least the same time as scattering (sp- < gp-).
During gossiping in the general topology, any node processor has to receive
(n — 1) packets of length N/n from A links, so the lower bound for gossiping
(used only by the classical algorithm) is also at least proportional to N. In
the case of the classical algorithm, it means that: T,omm.clas = D X g« (N). On
the other hand, in the case of the splitting algorithm, we communicate only
N/y/n data units in vertical and horizontal rings, s0: Teomm = 11 X gp(%)
Please refer to eq. (7). So finally we can write:

N N?
Tsplitting = root(N) + Tcomm(%) + Tcomp(?) (11)
N2
Tclassical - Troot.clas(-]v) + Tcomm.clas<N) + Tcomp(?) (12)

The above-mentioned equations express the difference between both algo-
rithms. The computational workload is the same, the time for communica-
tion with ROOT can differ, but it is a function of N in both cases. The only
difference is in the communication time inside the processor network that is
decreased by /n in the case of the splitting algorithm. This difference is signif-
icant in the case of a large processor network. Eq. (12) shows that the splitting
algorithm is faster than the classical one, but the difference is not enormous.

11 Conclusion

The problem of multilayer neural network simulation on message passing mul-
tiprocessors was addressed in this article.

Algorithm analysis is based on understanding its dynamic behavior as de-
scribed by Petri Nets. It was argued that the splitting of the neuron into
synapse and cell body makes it possible to efficiently simulate a neural net-
work of a given class. The decomposition and the mapping on this architecture
is proposed, as well as a simple and convenient message passing scheme. The
experimental results show a very good speedup, especially for networks hav-
ing many neurons in hidden layers. The time complexity analysis matches the

13

experimental results well and facilitates estimation of the parallel execution
time for large processor networks.

The splitting algorithm is better than the other known algorithms in the case
of fully connected neural networks adjusting weights for each input/output
pair. The classical network partitioning approach is the most effective in the
case of neural networks with sparse connections between layers. A data parti-
tioning approach can be used only in the case that the neural network does not
use stochastic learning. In such a case, separate input/output pairs are treated
in the different processors, each of them containing the whole neural network.
When using a parallel computer with a big communication/computation ra-
tio, then the data partitioning algorithm is probably the only one achieving
reasonable speedup.

Acknowledgement

I wish to thank to G. Authie and R. Valette from LAAS-CNRS Toulouse who
provided comments and suggestions that improved this paper. This work was

supported by the Ministry of Education of the Czech Republic under Project
VS97/034.

References

[1] P. Atkin, Performance Maximization, INMOS Technical Note 17, 72 TCH
01700, (1987).

[2] P. Banerjee et.al., Parallel Simulated Annealing Algorithm for Standard Cell
Placement on a Hypercube Multiprocessors, IEEE Transactions on Parallel and
Distributed systems, 1 (1990) 91-106.

[3] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation -
Numerical Methods, (Prentice Hall, 1989).

[4] G. Blelloch, and C.R. Rosenberg, Network Learning on the Connection Machine,
in Proc. IJCAI, (Milano, 1987) 323-326.

[5] V. Demian, J.-C. Mignot, Optimization of the self-organizing feature map on
parallel computers, in Proc. [JCNN, (Nagoya, 1993) 483-486.

[6] F. Desperez and B. Tourencheau, Modelisation des Performances de
Communication sur le Tnode avec le Logical System Transputer Toolset, La
lettre du transputer et des calculateurs distribues, (1990) 65-72.

14

[7] N. Dodd, Graph Matching by Stochastic Optimisation Applied to the
Implementation of Multi-layer Perceptrons on Transputer Networks, Parallel
Computing, 10 (1989) 135-142.

[8] Y. Fujimoto, N. Fukuda, T. Akabane, Massively Parallel Architectures for Large
Scale Neural Networks Simulations, IEEFE Transactions on Neural Networks,
3/6 (1992) 876 - 887.

[9] Z. Hanzdlek, Real-time Neural Controller Implemented on Parallel Architecture,
in: A. Crespo (ed.): Proc. Artificial Intelligence in Real-Time Control, (Elsevier
Science, Amsterdam, 1995) 313-316.

[10] Z. Hanzalek, Parallel Algorithms for Distributed Control - Petri Net Based
Approach, PhD Thesis, (CTU Prague & LAAS-CNRS Toulouse, 1997).

[11] D.R. Hush and B.G. Horne, Progress in Supervised Neural Networks, IEEE
Signal Processing Magazine, 10 (1993) 8-39.

[12] J. Kadlec, F.M.F. Gaston, G.W. Irwin, The block regularised parameter
estimator and it’s parallel implementation, IFAC Automatica, 31/7 (1995)
1125-1136.

[13] S.Y. Kung, J.N. Hwang, Parallel architectures for artificial neural nets, in Proc.
ICNN, 2 (San Diego, 1988) 165-172.

[14] T.E. Lange, Simulation of Heterogenous Neural Networks on Serial and Parallel
Machines, Parallel Computing, 14 (1990) 287-303.

[15] R.L. Lippmann, An Introduction to Computing with Neural Nets, IEEE ASSP
magazine, 4/2 (1987) 4-22.

[16] J. Murre, Transputers and Neural Networks: An Analysis of Implementation
Constraints and Performance, IEEE Transactions on Neural Networks, 4/2
(1993) 284 - 292.

[17] K. Obermayer, H. Ritter, K. Schulten, Large-scale Simulations of Self-
Organizing Neural Networks on Parallel Computers: Application to Biological
Modelling, Parallel Computing, 14 (1990) 381-404.

[18] H. Paugam-Moisy, Parallelisation de Reseaux de Neurones Artificiels sur
Reseaux de Transputers, La lettre du transputer et des calculateurs distribues
(1992) 7-18.

[19] A. Petrowski, G. Dreyfus, C. Girault, Performance analysis of a pipelined
backpropagation parallel algorithm, IEEE Transactions on Neural Networks
4 (1993) 970-981.

[20] A. Pinti et.al., Etude d’un Reseaux de Neurones Multi-couches pour ’Analyse
Automatique du sommeil sur T-Node, La lettre du transputer et des calculateurs
distribues (1990) 21-32.

[21] D.A. Pomerleau, G.L. Gusciora, D.S. Touretzky, H.T.Kung, Neural network
simulation at wrap speed: how to got 17 million connections per second, in
Proc. ICNN, 2 (San Diego, 1988) 143-150.

15

[22] T. Tollenaere, Bibliography Neural Networks on Parallel Machines, Parallel
Computing, 14 (1990) 1-12.

[23] T. Tollenaere and G.A. Orban, Simulating Modular Neural Networks on
Meassage-passing Multiprocessors, Parallel Computing, 17 (1991) 361-379.

[24] P. Tvrdik, Parallel Systems and Algorithms, (Publishing house of CTU, Prague,
1994).

[25] R. Valette, Analysis of Petri Nets by Stepwise Refinement, J. Comput. Syst.
Sci, 18 (1979) 35-46.

Notation

NN Neural Network

PN Petri Net

VP Virtual Processor

CVP Cell Virtual Processor

SVP Synapse Virtual Processor
NP Node Processor

MP Message passing Process
N Number of neurons in layer
n number of node processors

CTT Cascaded Torus Topology
P number of node processor columns

Q number of node processor rows

16

Keywords

message-passing architecture, neural networks, gradient learning, time com-
plexity

17

layer1

Vs

output

~N

)

layer 1 layer 2
Y Y layer
Input Activati
p TO P1 T1 P2 T2 P3 T3
- P4
P1' 2 2! 2 P3’
1 I Il \
Learning | % | P11 T8 [p1o |/\T7 | po
° [
° o O
P8 T6 TS

o -
Error back propagation

ul (k)

?wﬁ»ﬁ%n
()
FHIME

neuron from layer [-1

neuron from layer [

(v (v (v (¥

SVP in layer 1
CVP 1n layer 1
SVP in layer 2
CVP 1in layer 2
SVP 1n output layer

CVP 1n output layer

0001

A
Q
\Z

02

23

4x4 SVPs mapped
on the transputer 02

0/22 CVP mapped on

the transputer 02

© 02

03

00
0102

”””” 33

HOST

o) [l ol [

(10):
roo’t

O MP in the first row

‘ calculation process

300

o o o o o o -
Te) o Lo o Lo
N N -l —

/SW/ 8w uonNNIaxa uoielall auo |

128

N number of neurons in each layer

number of processing elements

300

T one iteration execution time /ms/

a1
o

N
Ul
o

2007

150

100¢

¥ exper. time for NN 30-150-150-2
1 X exper. time for NN 64-64-64-64
+ exper. time for NN 32-32-32-32

O corresponding theoretical time

® @

46 9 12 16 20 25 30
n number of node processors

20

S speedup

=
o
T

[
(62}
T

O...

. NN with 30-150-150-30 neurons

. NN with 64-64-64-64 neurons

NN with 32-32-32-32 neurons

5 10 15 20 25
n number of processing elements

30

time/ms/

80

70

60

20

10

X Tcomp

O Troot

4 9 16 25

n number of processing e ements

