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Abstract

Loop scheduling is particularly important when de-

signing e�cient compilers for parallel architectures.

In this article a cyclic schedule of nonpreemptive

tasks with precedence constraints and no commu-

nication delays on an unlimited number of identical

processors will be proposed. In addition an attempt

is made to minimize the number of processors used

without releasing the time-optimality condition. In

order to better understand the nature of the prob-

lem the terms data parallelism and structural par-

allelism are clari�ed �rst.

1. Data parallelism

In order to clarify some terminology we will intro-

duce the following hypothesis.

Hypothesis: there is no other parallelism than

data parallelism and structural parallelism.

We will talk about data parallelism in the two fol-

lowing cases:

i) if the problem can be modelled in such a way

that the resulting PN consists of several identical

disconnected subgraphs

ii) if there is a P-invariant or 'degenerated' P-

invariant containing more than one token. Degener-

ated P-invariant in marked graphs corresponds to

a path from a source place to a sink place (when

adding a dummy transition and connecting this

transition to the source place and the sink place

we obtain a P-invariant consisting of degenerated

P-invariant and the dummy transition).

In our opinion it is very misleading to talk about

'pipe-line parallelism', because pipe-line is not a

source of the parallelism, but it is a scheduling

strategy. This is why we will talk about pipe-line

parallelization.

1.1. SIMD parallelization

We will talk about 'SIMD parallelization' when

identical disconnected subgraphs, mentioned in i),

are scheduled on separate processors.

1.2. Pipe-line parallelization

For example loops without dependence cycles can

be executed in a pipe-line manner, meaning that

each instruction is scheduled on a separate proces-

sor (this technique was adopted for example in vec-

tor computers or inside ALUs).

In a certain level of abstraction we can see the

SIMD parallelization and the pipe-line paralleliza-

tion as two orthogonal approaches, both gaining

from data parallelism.

1.3. Token's view of scheduling problem

A generalization of data parallelism leads to a

schedule allowing the data to be processed as soon

as they are able to do so. The fact that the valid

data are represented by the tokens leads to the fol-

lowing reasoning.

De�nition 1: We say that 'token x holds its own

processor Px' i� there is no �ring of any transition

by any token y 6= x scheduled on processor Px.

Theorem 1: Let a schedule be such that for all

markings M of a PN model each token holds its

own processor, then the schedule is time-optimal.

Proof:

If all tokens for all possible markings hold their

own processors, then the situation, when any of the

tasks is ready to be processed (the token is wait-

ing in front of an enabled transition) and it is not

processed, can never appear. Such schedule is time

optimal.

Remark: Please notice that this approach is very

similar to a dynamic scheduling policy: execute a

task as soon as possible. There are two main stud-

ies devoted to the dynamic schedule behaviour of

cyclic problems. The �rst, developed by Chr�etienne

[3], which uses graph theory arguments and longest-

path computations and the second, developed by

Cohen et al. [1], which uses the (max,+) algebra

approach.



2. Structural parallelism

Positive linear invariants are of our interest when

analyzing structural net properties [5, 6].

Therefore we can �nd many algorithms, some of

them dating from the last century [8, 9], using

di�erent terminologies. So non-negative left an-

nullers of a net's 
ow matrix are called positive

P-invariants, P-semi
ows or direction of a positive

cone. In a similar way the 'set of minimal sup-

port P-invariants'[11] is called 'set of extremal di-

rections of a positive cone' or simply 'generator of

P-semi
ows'. A recent article [2] by Colom & Silva

highlights the connection between convex geometry

and Petri Nets and presents two algorithms using

heuristics for selecting the columns to annul. Per-

formance evaluation of several algorithms can be

found in [16] by Treves.

This paragraph introduces some new notions used

to analyze structural properties of cyclic problems.

Structural properties are independent on marking,

so marked graphs could be replaced by ordinary

directed graphs.

De�nition 2: Let � be a square symmetrical ma-

trix called a parallel matrix representing structural

parallelism. An element �ij is equal to 1 i� there is

no minimal support invariant passing through tran-

sition Ti and transition Tj . Otherwise it is equal

to 0.

An algorithm constructing the parallel matrix �

could be schematically written in the following way:

for i=1...number of transitions

for j=1...number of transitions

if (there is no minimal support invariant

passing through transitions Ti and Tj)

then �ij = 1

else �ij = 0

endif

endfor

endfor

The parallel matrix � is symmetrical so it can be

represented by an undirected graphG(T;E). There

is an edge e between vertices Ti and Tj (correspond-

ing to the transitions of the underlying PN model)

if and only if the transitions Ti and Tj could be

�red concurrently. Please notice that � represents

just a structural parallelism, so it does not hold any

information about data parallelism.

A similar approach, called concurrency theory, was

suggested by C.A. Petri. Concurrency theory is an

axiomatic theory of binary relations of concurrency

and causality. For a selection of recent results see

[12].

3. Cyclic scheduling

Loop scheduling is particularly important when de-

signing e�cient compilers for parallel architectures.

Up to now, iterative scheduling problems have been

studied from several points of view, depending on

the target application. Some theoretical studies

have recently been devoted to these problems, in

which basic results are often proved independently

using di�erent formalism. We hope that this arti-

cle might contribute to the synthesis of this class of

problems.

3.1. Additional terminology

We call a directed graph G(V;E) a tree if its un-

derlying graph is a tree in the undirected sense. We

call a vertex v a root of a directed graph G if there

are directed paths from v to every other vertex in

G. A directed graph is called a directed tree if it

is a tree and it contains a root (root has no input

edge). We call a vertex with no output edge in a

directed tree an endpoint.

There are simple relations between the spanning

trees (set of trees covering the graph) and cycles in

undirected graphs. To describe these relations we

will introduce some terminology. Let G(V;E) be

a connected graph and let Tr be a spanning tree

of G. An edge of G not lying in Tr is called a

chord of Tr. Each chord of Tr determines a cycle

in G, called fundamental cycle; namely, the cycle

produced by adding the chord to Tr. Any cycle

in G can be represented as a linear combination of

fundamental cycles.

It is evident that a set of fundamental cycles forms

the cycle subspace in a similar way like a basis of

P-invariants when the Petri Net under assumption

is a marked graph.

In the following paragraphs we will adopt a schedul-

ing policy making use �rst of the structural paral-

lelism �rst and then using the data parallelism.

3.2. Structural approach to scheduling

This paragraph introduces a structural approach

to scheduling problems, so no tokens are assumed

to be in the Petri Net model. The algorithms

presented in this paragraph were inspired by P-

invariants and the fact that the set of minimal sup-

port invariants is unique.

De�nition 3: A timed marked graph is a pair

< N;� > such that:

N is a marked graph



� is a time associated with transitions

� : T ! R
+

Remark: in the case of marked graphs a repre-

sentation of the scheduled algorithm by a T-timed

marked graph (where a processing time is associ-

ated to a transition) is equivalent to a represen-

tation by a P-timed marked graph (the processing

time is associated to output places). For a detailed

discussion see paragraph 2.5.2.6. in [1].

De�nition 4: Let � be a schedule matrix of size

[number of transitions, number of processors]. An

element �ij is equal to 1 i� a transition Ti is allo-

cated to processor j and equal to 0 otherwise.

Rule 1: Let X be a matrix specifying the set

of minimal support P-invariants of a given marked

graph. An algorithm A1 for structural scheduling

(no gain of data parallelism is assumed) without

communication on an unbounded number of proces-

sors could be schematically written in the following

way:

Input: �; P reT ; X

Output: �

while there exists a zero line in the matrix �

j:=index of the maximum entry

in (�� Pre
T �X);

concatenate a column [PreT �X ]:j to �;

for i=1..number of places

if Xij = 1

then zero the line Xi:

endif;

endfor;

endwhile;

Remark 1: Notice that matrix [PreT �X ] is a set

of minimal support P-invariants expressed in the

terms of transitions (each column is composed of

transitions present in given P-invariant). Then (��
Pre

T � X) is a vector with entries corresponding

to the total execution time of a given P-invariant.

Remark 2: The schedule � is time-optimal because

( time of parallel algorithm execution) = ( time

of a minimal support P-invariant with the longest

execution time).

Example 1: consider an example of

algorithm modeled by the marked graph

given in Fig. 1 with �=[ 1 3 1 1 4 2 1]:

Step 1: � � Pre
T � X = [10 8 8 6] therefore P-

invariant X1 is scheduled on processor 1

P1

P2 P3

P4 P5

P6 P7

P8 P9

T1

T2 T3

T4

T5 T6

T7

Figure 1: A simple instance for structural scheduling

X =

2
66666664

X1 X2 X3 X4

P1 6 1 6 1 6 1 6 1
P2 6 1 6 1 6 0 6 0
P3 0 0 1 1

P4 6 1 6 1 6 0 6 0
P5 0 0 1 1

P6 6 1 6 0 6 1 6 0
P7 0 1 0 1

P8 6 1 6 0 6 1 6 0
P9 0 1 0 1

3
77777775

� =

2
6664

T1 1

T2 1

T3 0

T4 1

T5 1

T6 0

T7 1

3
7775

Step 2: � � Pre
T � X = [0 2 1 3] therefore P-

invariant X4 is scheduled on processor 2

X =

2
66666664

X1 X2 X3 X4

P1 0 0 0 0

P2 0 0 0 0

P3 6 0 6 0 6 1 6 1
P4 0 0 0 0

P5 6 0 6 0 6 1 6 1

P6 0 0 0 0

P7 6 0 6 1 6 0 6 1

P8 0 0 0 0

P9 6 0 6 1 6 0 6 1

3
77777775

� =

2
6664

T1 1 0

T2 1 0

T3 0 1

T4 1 0

T5 1 0

T6 0 1

T7 1 0

3
7775

In the following study we will show that less than

rank(X) processors will be needed by the algorithm

A1.

Theorem 2: Let G(V;E) be a graph consisting of

k connected components. Then G contains m�n+k
linearly independent cycles, where m = jEj and n =

jV j.

Proof:

The proof is given in paragraph 14.1 in [7]. No-

tice that each of the k components is supposed to

be connected (there exists a semipath from each

vertex to each vertex) but not strongly connected

(there exists a directed path from each vertex to

each vertex).



Theorem 3: Let G(V;E) be a strongly connected

directed graph specifying precedence constraints of

instance I. Algorithm A1 allocates p processors

to schedule the instance I, where p � m � n + 1.

Proof:

1) from Theorem 2 ) dim(semicycles of G) =

m� n+ 1

2) each cycle is a semicycle

3) dim(minimal support invariants of G) =

dim(cycles of G)

4) from 1),2) and 3)

) dim(minimal support invariants of G) �
m� n+ 1

5) each invariant chosen in the k-th iteration of A1

is linearly independent of invariants chosen in the

(k � 1) preceding iterations (this is due to the fact

that the invariant chosen in the k-th iteration has a

nonzero element in (��X), so it contains at least

one element of � that was not zeroed in the (k�1)

preceding iterations)) by mathematical induction

we prove: the chosen invariants are linearly

independent

6) from 4) ) p = (number of processors) =

(number of chosen invariantss) �
dim(minimalsupportinvariants of G)

7) from 4) and 6) ) p � m� n+ 1

As stated in [15], the matrix X can have a non-

polynomial number of columns (corresponding to

minimal support invariants), as a consequence the

algorithm A1 is not polynomial. So it will be more

interesting to �nd an algorithm which operates on

a positive basis of P-invariants.

Theorem 4: Let G(V;E) be a strongly connected

directed graph. It is possible to �nd in polynomial

time a basis B such that:

i) B is nonnegative

ii) each cycle of G can be represented as a linear

combination of fundamental cycles represented by

columns of B (
P

g

i=1
�ib

i) where �i 2 Z.

Proof:

1) G is strongly connected) A Depth First Search

algorithm (see basic textbooks on graph theory

[7, 14]) starting in an arbitrary vertex r 2 V �nds

a directed spanning tree T covering the graph G

2) the vertex r, called root, has no input edge lay-

ing in T
3) there is a directed path from r to every other

vertex

4) from 2) and (G is strongly connected) ) there

is at least one edge x 2 E which is an input edge

to r and which is a chord (not laying in T )
5) from 3) and 4) ) there is a cycle bk consisting

of edge x and the path from r to input vertex of x

6) when reducing (joining) all edges and all vertices

of cycle bk into one vertex r, we obtain a new graph

G, which is still strongly connected and a new tree

T which is still a directed spanning tree of G

7) when repeating 2)3)4)5)6) we obtain as many

cycles bk as many there are chords

8) each cycle b
k is linearly independent of cycles

b
1
; :::; b

k�1 because it contains a chord x which is

not present in cycles b1; :::; bk�1

9) from the tree properties) there are m� (n�1)

chords

10) from 8) and 9) ) all cycles b
1
; :::; b

m�n+1

are linearly independent, so they are fundamen-

tal cycles found in polynomial time = (Depth First

Search) + (m-n+1)

Remark: An algorithm �nding directed spanning

trees of general directed graphs (consisting of more

strongly connected components) is given in para-

graph 5.2.3. in [14].

e 3

e 7

e 3

e 1 = x

e 9

e 8

e 6

e 5 = x

e 9

e 5e 4

e 7
e 2

e 3
e9=x

 ( a )  ( c )

 ( b )

Figure 2: Underlying directed graph for Figure 1 and

its reduction

Figure 2 illustrates the proof of Theorem 4 on a

given instance reduced in three steps. The proof of

the Theorem 4 is in fact an algorithm �nding basis

B:



B =

2
666666666666664

b
1

b
2

b
3

e1 1 1 1

e2 1 1 0

e3 0 0 1

e4 1 1 0

e5 0 0 1

e6 1 0 1

e7 0 1 0

e8 1 0 1

e9 0 1 0

3
777777777777775

Remark: Consequence for structural properties of

Petri Nets: we can always �nd a basis consisting

of positive P-invariants in fully connected marked

graphs. If the marked graph under assumption is

not fully connected it is desirable to �nd fully con-

nected components �rst.

Theorem 5: Let an algorithm A2 be created from

the algorithm A1 in such a way that the set of min-

imal support invariants X is replaced by a basis B.

Then the schedule obtained by algorithm A2 is time-

optimal.

Proof: Let us assign one token to each P-invariant

corresponding to the column of the schedule matrix

�, then for each marking each token holds at least

one processor because the number of tokens inside

P-invariant is constant and the schedule matrix �

covers the whole net. The schedule is time-optimal

as a consequence of Theorem 1.

Remark 1: An algorithmA2 is computed in polyno-

mial time = (time to �nd B) + maximally (m-n+1)

iterations of the algorithm A2.

Remark 2: The algorithm A2 does not �nd a sched-

ule with a minimal number of processors. When

scheduling the instance given in Figure 2(a) we ob-

tain a schedule onto three processors:

� =

2
666666664

t1 1 0 0

t2 1 0 0

t3 0 0 1

t4 1 0 0

t5 1 0 0

t6 0 1 0

t7 1 0 0

3
777777775

It is evident that the number of processors is not

minimized, because it is possible to �nd the time-

optimal schedule on two processors as shown in Ex-

ample 1.

3.3. Quasi-dynamic scheduling

Only structural parallelism was under consideration

up to now. In this paragraph we make use of both

forms of parallelism - data parallelism and struc-

tural parallelism.

The new term 'quasi-dynamic' is used to express

the fact that the scheduling policy adopted in this

paragraph assigns each task to a set of processors.

This scheduling policy is still static because we are

able to specify the processor on which the k-th it-

eration of a given task will be scheduled.

The quasi-dynamic scheduling policy is based on

the observation given in Theorem 1 leading to al-

gorithm A3.

Theorem 6: Let an algorithm A3 be created from

algorithm A2 in such a way that a column of the

schedule matrix � is replicated as many times as

there are tokens present in the corresponding pos-

itive P-invariant. Then the schedule obtained by

algorithm A3 is time-optimal.

Proof: similar to the proof of Theorem 5:

1) the schedule matrix � covers the whole net

2) the number of tokens inside a P-invariant is con-

stant

3) from 1) and 2) ) each token in any marking

holds at least one processor (the su�cient condi-

tion for Theorem 1 is satis�ed)

To be exact the algorithm A3 could be written in

the following way:

Input: �; P reT ; B;M

Output: �

oldB = B

while there exists a zero line in the matrix �

j := index of the maximum entry

in (�� Pre
T �B);

q = number of tokens in the P-invariant

given by oldB:j ;

concatenate q-times a column Pre
T �B:j

to the schedule matrix �

for i=1..number of places

if Bij = 1

then zero the line Bi:

endif;

endfor;

endwhile;

4. Conclusion

The objective of this article was to bring original

ideas to scheduling theory.

Some of the most distinctive features of the article

are:



� It speci�es the terms 'data parallelism' and

'structural parallelism' in order to understand

where the parallelism comes from.

� An attempt is made to see a scheduling prob-

lem from the token side.

� Via two cyclic scheduling algorithms, gain-

ing just from the structural parallelism, it

leads to an original cyclic scheduling algo-

rithm called 'quasi-dynamic scheduling'. The

quasi-dynamic scheduling is time-optimal and

achieves the same results like the so-called

'Periodic scheduling' (see [4]) and very sim-

ilar results like cyclic scheduling based on

(max,+) algebra (see [1]), but it uses its

proper reasoning. This reasoning allows the

extention of quasi-dynamic scheduling to gen-

eral Petri Nets (not only marked graphs) if a

positive P-invariant basis B will be found for

general Petri Nets.
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