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Czech Institute of Informatics, Robotics and Cybernetics
Czech Technical University in Prague

Prague, Czech Republic
Email: Zdenek.Hanzalek@cvut.cz

Abstract—Complex systems are often developed incrementally
when subsequent models must be backward compatible with
the original ones. This requirement is relevant not only to
particular components of the system, but also to the technology
that interconnects them. The need to exchange high-volume data,
for example, multimedia streams for infotainment in the avionic
systems, together with safety-critical data, puts demands on both
the high bandwidth and the deterministic behavior of the com-
munication. TTEthernet is a protocol that has been developed to
face these requirements while providing the generous bandwidth
of Ethernet with up to 1 Gbit/s and enhancing its determinism
by enabling the transmission of the time-triggered messages.
However, the efficiency of the time-triggered communication
depends on the schedule it follows. Thus, synthesizing a good
schedule that meets all the real-time requirements and preserves
the backward compatibility with the schedules of preceding
models is essential for the performance of the whole system.

In this paper1, we study the problem of designing periodic
communication schedules for time-triggered traffic. The aim is to
maximize the uninterrupted gap for the remaining non-real-time
traffic. The provided scheduling algorithm, based on MILP and
CP formulation, can obtain good schedules in a reasonable time
while preserving the backward compatibility. The experimental
results show that the time demands of the algorithm grows
exponentially with the number of messages to be transmitted, but,
even for industrial-sized instances with more than 2000 messages,
the algorithm is able to return the close optimal schedules in the
order of hundreds of seconds.

I. INTRODUCTION

The development process in many industrial fields, e.g.,
automotive or avionics, is based on incremental steps where
new models are an evolution of the previous ones. This
incremental process enables the cost-efficient development for
companies and reduces the test effort. Moreover, the customer
is guaranteed that the new model is an upgraded version of
the model that he or she is comfortable with. These benefits
are a side effect of the backward compatibility that should
be assured among incremental development steps. Backward
compatibility affects external systems, e.g., human-machine

1cite as: Z. Hanzalek; J. Dvorak: Incremental Scheduling of the Time-
triggered Traffic on TTEthernet Network, In: 11th International Conference
on Operations Research and Enterprise Systems - ICORES, 302-313, 2022.

interface, as well as internal ones such as the communication
subsystem. The backward compatibility in communication
subsystems significantly reduces the costs spent on debugging,
testing, and maintenance as newly developed Electronic Con-
trol Units (ECUs) and diagnostic tools can follow the agree-
ment on the sharing of communication resources achieved in
previous development steps.

The incremental development process is already ingrained
in the industrial practice. However, there is an ongoing effort
to develop and produce new models even more cost-efficiently.
One possibility on how to reduce production costs in complex
interconnected systems is to combine safety-related commu-
nication together with non-critical communication into one
common medium [1]. Safety-related communication requires
determinism, while non-critical communication demands a
huge bandwidth without hard timing constraints. In the past,
these two communication flows were conducted separately,
as there were no communication protocols that could handle
the requirements of both. However, modern protocols, like
TTEthernet, were developed to bear such a difficult task.

In TTEthernet, safety-related communication is exchanged
based on a periodic time-triggered communication schedule,
while non-critical communication fills the empty gaps in the
schedule. Such a communication schedule has to be designed
in a way that all the real-time requirements are met to enable
the reliable and deterministic operation of the application.
The creation of the schedule involves additional complexity
compared to the bus or passive star topologies of networks like
FlexRay [2] or CAN because TTEthernet supports complex
switched topologies [3]. These aspects, together with the real
case problem proposed by our avionics industry partner, have
motivated us to face the problem of scheduling time-triggered
communication on the TTEthernet network while keeping the
incremental development process in mind.

The paper presents the algorithm for creating schedules
for time-triggered traffic on the TTEthernet network while
maximizing the minimal guaranteed continuous gap for the
traffic with lower criticality. The study aims to develop the
periodic scheduling algorithm, which preserves the backward
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Fig. 1. An example of the TTEthernet network topology with the routing and
scheduling of message m1 from node l to node q

compatibility with the original schedule. Finally, the influence
of the backward compatibility on the communication schedule
is analyzed, and the scalability of the proposed algorithm is
presented.

A. TTEthernet Overview

TTEthernet (TT stands for Time-Triggered) is an exten-
sion of Ethernet for deterministic communication developed
as a joint project among the Vienna University of Tech-
nology [4], TTTech, and Honeywell, and standardized as
SAE AS 6802 [5] in 2011. It operates at Level 2 of the
ISO/OSI model, above the physical layer of Ethernet. It
requires a switched network with full-duplex physical links,
such as Automotive Ethernet standard 1000BASE-T1. An
example of the TTEthernet topology is depicted in Fig. 1.

The global time in the system is assured by the clock
synchronization protocol, where the clocks of all the inter-
connected ECUs are being synchronized periodically. Every
synchronization period is called an integration cycle.

The traffic with various time-criticality is integrated into one
physical network. There are three traffic classes in TTEther-
net. These classes, ordered by decreasing priority, are Time-
Triggered (TT), Rate-Constrained (RC) and Best-Effort (BE)
traffic.

The TT traffic class has the highest priority. A jitter shorter
than µs can be achieved on a physical layer (the physical layer
jitter also depends on the connected network devices). The
TT messages are periodic. We assume that they are strictly
periodic (i.e., no jitter in application level is allowed) in
agreement with [6]. The least common multiple of their period
is called the cluster cycle.

For traffic with less strict timing requirements, the RC
traffic class can be used. This traffic class conforms to the
ARINC 664p7 specification [7] (also called AFDX). The RC
traffic represents event-triggered communication, which does
not follow any schedule known in advance.
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Fig. 2. The example of the communication on a link in one cluster cycle

A simple example of the TT traffic, together with the RC
traffic on one direction of a physical link, is presented in Fig. 2.
In the figure, the particular integration cycles are situated in
rows, and the horizontal axis represents the time instants in
the particular integration cycle. The length of the cluster cycle
(40ms) is equal to four times the length of the integration
cycle (10ms) here. The figure shows that messages TT1, TT3
and TT4 have the same period (twice the duration of the
integration cycle - i.e., 20ms) and TT2 has a period equal to
four times the integration cycle length. The dark message at
the beginning of each integration cycle is the synchronization
message.

Standard Ethernet traffic can be transmitted through the
network too. Such traffic is called the Best-Effort (BE) traffic
and has the lowest priority.

When the TT traffic is used together with other traffic
classes, a TT message could be delayed by another RC or
BE message. The delay happens when a TT message arrives
while an RC or BE message is in transmission. The Timely
block integration policy, which causes no extra delay of the
TT traffic, is used in this paper. In this case, an RC or BE
message can only be transmitted if there is enough time for the
transmission of the entire message before the next TT message
is scheduled. If there is insufficient time, the transmission of
the RC or BE message is postponed until after the TT message
is transmitted. It additionally means that the TT traffic follows
the schedule without any delays.

B. Related works

The area of time-triggered communication scheduling on
Ethernet-based networks has already been examined in many
publications. Steiner [8] was among the first to study the
problem. They described the basic constraints for scheduling
the communication in the TTEthernet network and provided
the Satisfiability Modulo Theories (SMT) formulation that was
able to find a feasible schedule for small instances with up to
100 messages. The concept of schedule porosity was intro-
duced in [9]. The porosity (the allocated blank slots for RC
messages spread over the integration cycle) is introduced to the
schedule to decrease the delay posed on RC traffic by T traffic.
Thus, the porosity allows improving the communication delays
while the complexity of the direct delay optimization [10]
is tackled. To evaluate the impact of the porosity on the



RC traffic, Steiner et al. provided a pessimistic worst-case
delay calculation, which was consequently tightened by a new
method published by Tamas-Selicean et al. in [6]. A more de-
tailed study of the impact of the time-triggered schedule on the
RC communication has been presented in [11]. In [12], Tamas-
Selicean et al. employed the TabuSearch algorithm to over-
come the scalability problem of previous SMT formulations.
As noted by [13], porosity scheduling has a disadvantage that
gaps introduced at the beginning of the scheduling process do
not consider the profile of the RC traffic. The concept of poros-
ity is also weak in the case of scheduling TT messages with
short periods. Wang et al. [14] used back-to-back schedule
optimization, which aims to minimize the standard deviation
of the messages offset in the integration cycle (hence, create as
compact schedule as possible), to overcome the weakness of
the porosity approach. The concept of minimization of the TT
communication block length, called makespan minimization,
was presented by Dvorak et al. in [15]. The paper formulated
the scheduling problem as an RCPSP model to solve the
problem efficiently. However, their method did not allow one
to preserve the backward compatibility, and the quality of the
resulting schedule was limited by the use of naive shortest-
path-tree routing algorithm. Pozo et al. in [16] used a divide-
and-conquer method to overcome the scheduling scalability
limitations in large-scale hybrid networks considered to be
used in, for example, smart cities in the future.

Based on the given TTEthernet communication schedule,
Craciunas et al. scheduled the tasks on the communication
endpoints in [17]. Furthermore, they presented a holistic
scheduling algorithm that makes network-level schedules to-
gether with task-level schedules in [18]. Zhao et al. studied
the problem of holistic security-aware scheduling in [19].
They used a modified TESLA authentication mechanism to
protect the authenticity of the messages and provided MILP-
formulation based scheduling algorithm.

The closely related problem to TTEthernet scheduling is the
scheduling of TT communication for IEEE 802.1Qbv, which
is the standard of the IEEE Time-Sensitive Networking group.
Craciunas et al. derived the scheduling constraints for the TT
communication on IEEE 802.1Qbv in [20] and provided an
SMT model that aims to minimize the number of queues
needed to schedule a given set of messages. Consequently,
Zhao, together with Pop and Craciunas, provided the calculus
for the Worst-case delays in [21]. Rottenstreich et al. [22]
are using a greedy algorithm to find the shortest schedule
for strictly periodic data streams and show that the greedy
algorithm is able to find the optimal solution in special cases
that often occur in practice.

All the published papers aim to create schedules from
scratch, and none of them considers backward compatibility
with the preceding systems, which limits the use of the pro-
posed method in industries with an incremental development
process.

C. Contribution and paper outline

The main contributions of this paper are:

1) The formal description of the incremental TTEthernet
scheduling problem with real-time constraints.

2) The three-stage heuristic algorithm, which includes
• the routing algorithm that balances the communica-

tion load among the links
• the message-to-integration cycle assignment algo-

rithm that balances the communication load among
the integration cycles

• the message scheduling method based on the con-
straint programming model of the problem

3) An examination and discussion of the impact of the
incremental aspect on TTEthernet scheduling.

4) An evaluation of the proposed algorithm from quality
and performance point of view.

The paper is organized as follows: Section II describes the
studied problem of the incremental TT message scheduling
in the TTEthernet network comprehensively. In Section III,
the proposed method of the schedule creation is described
consisting of a message routing method, a load-balancing
heuristic, and a CP based formulation of the scheduling prob-
lem. The method and the impact of the backward compatibility
on the scheduling are evaluated and discussed in Section IV.
Section V concludes the paper.

II. PROBLEM STATEMENT

This paper aims to design a method for finding feasible
strictly periodic schedules for time-triggered communication
on the TTEthernet network so that the maximal part of the
remaining bandwidth can be preserved for the RC and BE
messages, the timing constraints are satisfied, and the back-
ward compatibility with the original schedule is preserved. All
aspects of the tackled problem are described in this section.

A. Messages

Each message mi from a set of the TT messages M that is
to be scheduled has the following parameters:

• ti - period
• ci - message length in the number of bits consisting of a

payload, headers and interframe gap
• di - deadline
• ri - release date
• qi - identifier of the transmitting node
• Qi - set of the receiving node identifiers (the set contains

only one receiving node in the case of a unicast message)

The message period ti is assumed to be an integer multiple of
the length of the integration cycle ic. The length of the result-
ing schedule is determined by the length of the cluster cycle
cc. The cluster cycle consists of set of the integration cycles I .
The transmission time of message mi has to be smaller than or
equal to the duration of the integration cycle (it would not be
possible to send a synchronization message otherwise), and its
length ci does not exceed the maximal Ethernet frame length
of 1530 bytes. Deadline di and release date ri are assumed to
have the value in the range 0 ≤ ri ≤ di ≤ ti.
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B. Network topology

The TTEthernet topology consists of nodes and links which
interconnect them. The nodes ei ∈ E are divided into two
classes: redistribution nodes ER and communication endpoints
EC . The communication endpoints are nodes that generate or
process the data (e.g., sensors, actuators, control units, and
other ECUs). Thus, only the identifier of a communication
endpoint can be assigned to message mi as transmitter qi or
one of the receivers from set Qi. The redistribution nodes,
on the other side, are switches without any of their own
data to transmit and serve as intermediary nodes for the
communication. In Fig. 1, the communication endpoints are
titled by ”ECU”, and the redistribution nodes have arrows
drawn on the top side. The front side of each node is labeled
by its name.

Each hop in the network introduces a technical delay caused
by queuing in the ingress and egress port. Such a delay in a
switch is represented by parameter τ for the TT messages. The
value of τ can be in the range from 1 µs to 2.4 µs according
to the network configuration [23].

Each link ki,j from a set of links K connects two nodes
ei and ej . This connection covers just one direction of the
full-duplex communication. Therefore, two links ki,j and kj,i
model one full-duplex physical link between nodes ei and
ej . These two links are two independent resources from the
scheduling point of view. The instance of message mi in link
kl,m is called a message instance ml,m

i . The set of all the
message instances is denoted by MI . All the transmissions
of some message mi in one particular link represent the
same message instance. The message occurrence, on the other
hand, represents all the transmissions of some message mi in
one particular integration cycle. The difference between the
message instance and the message occurrence is graphically
explained in Fig. 3. The figure shows the detailed view on the
sub-segment of the network topology from Fig. 1 with node
el, em and eo only. Both links of any physical link are labeled
here already.

C. Message routing

A sequence of the links Sq
i = (kl,m, km,o, ..., kp,q) repre-

sents the routing path of message mi from transmitter qi = el

to receiver eq ∈ Qi through the redistribution nodes em, ..., ep.
The union of all the routing paths ∪Sq

i | ∀q ∈ Qi for a
given message mi determines the routing tree Si. For example,
the transmission of message m1 through routing path Sq

1 is
presented in Fig. 1. Only one direction of each physical link
is labeled in the figure for the sake of simplicity. The routing
paths Sq

i are not known in advance. Therefore, finding the
appropriate routing trees is part of the optimization process.

D. Original schedule

Additionally, the original schedule is given for the incre-
mental scheduling. The original schedule defines the start
time of transmissions for the message instances m̃k,l

i from
the subset of the message instances M̃I ⊂ MI which are
already present in the original schedule. The original schedule
can be determined for a subset of messages as well as for
a subset of its message instances. This representation of the
original schedule even allows the extension of the topology as
well as the extension of the set of receivers for the already
present messages. More precisely, all the modifications of the
topology and message set that do not force the backward
compatibility to be broken are allowed in the incremental
development process.

E. Schedule

The schedule is so-called strictly periodic, which means that
the next message occurrence of message mi in a particular link
appears in the schedule exactly ti time units after the current
one. Therefore, the positions of all the message occurrences of
message mi in the strictly periodic schedule can be deduced
from the position of the first message occurrence and its
periodicity.

A feasible schedule has to fulfill the following hard
constraints:
Completeness constraint: Each message mi ∈ M has to be
scheduled.
Contention-free constraint: Any link is capable of
transferring at most one message at a time.
Timing constraint: Each message has to be transmitted after
its release date and received by all the receivers before its
deadline.
Transmission compactness constraint: The message
transition from transmitting node qi to all the receivers from
Qi has to be accomplished in one integration cycle.
Backward compatibility constraint: The start of
transmission time must be preserved for all the message
instances participating in the original schedule.
Precedence constraint: Message mi has to be scheduled in
link km,o at least τ time units after it is scheduled in kl,m if
kl,m precedes km,o in Sq

i .

F. Objective

The coherent TT traffic segment should be compressed
as much as possible to preserve the maximum part of the
remaining bandwidth for the RC and BE traffic. This idea



follows the practice from the FlexRay bus or Profinet, where
the dedicated communication segment is allocated for the TT
traffic. The TT traffic can be scheduled at the beginning of
the integration cycle, and the remaining coherent gap in the
integration cycle without the TT traffic is preserved for the
RC and BE traffic. The gap, which is the shortest among all
the links, is denoted as a minimal guaranteed gap (see Fig. 2).
Considering the constraints and aspects above, the goal of the
scheduling is to find a feasible schedule for the TT messages,
which maximizes the minimal guaranteed gap.

III. ALGORITHM

The described problem is extensively complex as it involves
scheduling together with routing. The algorithm that would
solve the whole problem at once would put extreme demands
on the computational resources or time needed to find the
solution. Thus, the incremental scheduling problem proposed
in the paper is decomposed into three subproblems to tackle
the computational effort. The solution of each subproblem
fixes some decisions for the subsequent problem. Hence,
the incremental scheduling algorithm can be considered as
being divided into three stages. In the first stage (Sec. III-A),
the routing of the messages is established. In the second
stage (Sec. III-B), the algorithm finds the assignment of the
messages to the particular integration cycles. The transmission
times for each message in each link are decided in the last
stage (Sec. III-C).

A. Messages routing problem

The network topology is often a tree in industrial networks.
It means that there are no cycles and, therefore, only one
possible path from a communication endpoint to any other
endpoint exists. Thus, the determination of the routing is trivial
in such a case. However, the TTEthernet does not restrict
the network topology to the tree. The cycles introduce new
redundant paths for messages that can serve as a backup dur-
ing a partial network malfunction. Moreover, the appropriate
selection of the routing path of the message can balance the
load among the network. Thus, redundant paths can remove
the bottleneck of the tree topology. However, the TT messages

have to know which path they are routed through in advance.

min F

s.t. fl,m ≤ F ∀kl,m ∈ K∑
i

cl,mi · cc
ti
· xi,l,m = fl,m ∀kl,m ∈ K∑

l

xi,l,m = 1 ∀mi ∈M ; ∀m ∈ Qi∑
m

xi,l,m ≥ 1 ∀mi ∈M ; l = qi∑
l

xi,l,m ≤
∑
k

xi,m,k ∀mi ∈M ; ∀m ∈ ER

∑
l

xi,l,m ≤ 1 ∀mi ∈M ; ∀m ∈ ER

∑
l

xi,l,m ≥
∑

k xi,m,k

deg−(m)
∀mi ∈M ; ∀m ∈ ER

si,m ≥ 1 + si,l −B +Bxi,l,m ∀mi ∈M ; ∀kl,m ∈ K
si,m ≤ 1 + si,l +B −Bxi,l,m ∀mi ∈M ; ∀kl,m ∈ K
si,l = 0 ∀mi ∈M ; l = qi

xi,l,m = 1 ∀ml,m
i ∈ M̃I

xi,l,m ∈ {0, 1} ∀mi ∈M ; ∀l,m ∈ E
fl,m ∈ Z+

0 ∀l,m ∈ E
F ∈ R
si,l ∈ Z+

0 ∀mi ∈M ; ∀l ∈ E
(1)

Therefore, the first stage of the algorithm finds the routing. In
accordance with the claim above, the algorithm aims to find
such a routing that the network load is as balanced among the
links as possible. The balanced network gives a good premise
that the resulting communication schedules will be shorter
than in the case of an unbalanced network. Thus, this routing
objective corresponds to the aims of the scheduling algorithm.

An MILP model is used to solve the routing subproblem
and decide routing tree Si for each message.

The binary variable xi,l,m decides whether the message mi

is routed through the link kl,m, and variable fi,m represents
the load of the link kl,m. The real variable F is, consequently,
the load of the busiest link. The auxiliary variable si,l assigns
a numerical label to each node el for each message mi. The
label determines the depth of the node el in the routing tree Si.
The artificial constant B represents any number that is bigger
than the maximal depth (max si,l). Parameter cl,mi represents
the transmission time of message mi in link ll,m. Note, that
if the links are configured to have a different bandwidth, then
the transmission time of the same message varies among the
links.

The objective of the MILP model minimizes the load of the
busiest link. The first constraint, together with the objective,
ensures that the value of F equals the load of the busiest
link. The second constraint calculats the load fl,m for each
link. The third and fourth constraints force the routing path
for each message to also contain the receiving nodes and
the transmitting node. The fifth, sixth, and seventh constraint



assure that the redistribution nodes serve as the inner nodes
of the routing tree. The eighth, ninth and tenth constraints
guarantee the routing tree of any message not to contain the
cycle. B represents any constant that is larger than the number
of nodes in the topology here. Its aim is to make the model
ignore the constraints if the value of xi,l,m is equal to zero.
The eleventh constraint forces the resulting routing to satisfy
the backward compatibility.

The routing tree Si defines the set of links in which the
message is to be scheduled and specifies the precedence
relations among the message instances.

B. Integration cycle assignment problem

To distribute the messages among the integration cycles,
we used an idea from the multiprocessor scheduling area.
In the area, if all the workload of the tasks is distributed
among the processors evenly, then the part of the integration
cycle used by the TT communication has a good chance to
be minimal. Following that, the algorithm tries to distribute
the messages among the integration cycles evenly. All the
precedence constraints, the time lags imposed by the switch
delay τ , and the real-time constraints are relaxed here. The
integration cycle assignment problem is formulated as the
following MILP model 2.

The binary variable ai,j = 1 iff message mi is assigned
to the integration cycle j ∈ {0 ... ti}. Similarly, the binary
parameter ãi,j = 1 iff message mi was scheduled to the
integration cycle j ∈ {0 ... ti} in the original schedule.
The first constraint assures that the first message occurrence
appears in exactly one of the possible integration cycles. Thus,
it satisfies the completeness constraint. The second constraint
makes the variable z have the value equal to or greater than the
time needed to exchange all the messages in any integration
cycle of any link in the network. The constraint is evaluated
for each link and each integration cycle in the cluster cycle
so that the transmission times of all the message occurrences
assigned to the particular integration cycle in the given link
are summed up. The resulting total time must be less than or
equal to variable z. The aim of the MILP model is to find
such an assignment that minimizes z. Thus, the maximal time
needed for the message exchange among all the resources is
minimized. The third and fourth constraint force the messages
to be assigned to the integration cycle, which can satisfy the
release date and deadline constraints. The last constraint forces
the messages from the original schedule to be assigned to the

corresponding integration cycle in the new schedule.

min
ai,j

z

s.t.
∑
j

ai,j = 1 ∀i ∈M

∑
mi∈kl,m

cl,mi · ai,j mod ti ≤ z ∀j, l,m | j ∈ {0 ... cc
ic
}

ai,j = 0 ∀i, j | di < j · ic
ai,j = 0 ∀i, j | ri > (j + 1) · ic
ai,j = 1 ∀i, j | ãi,j = 1

ai,j ∈ {0, 1}; z ∈ R ∀i, j
(2)

The resulting assignment balances the load among the integra-
tion cycles, follows the routing of the messages, and preserves
the timing and backward compatibility constraints.

C. Link schedules creation problem

The constraint programming model is employed to create
the resulting schedule. For the description of the model, the
IBM CP Optimizer formalism [24] will be used. The CP model
is based on so-called interval variables which, in our case,
represent each message instance ml,k

i ⊂MI in the schedule.
The set of message instances to be scheduled on a particular
link is known since the routing of the messages has been
already decided. For each interval variable, the solver decides
its start time. In the model, the time is considered as a relative
offset to the start time of the integration cycle. Thus, two
message instances that are scheduled with the same offset in
the integration cycle, but with a different integration cycle are
considered as being scheduled at the same time.

The objective of the scheduling is to minimize the part of
the integration cycle used by the TT communication:

minmax
i,l,m

endOf(ml,m
i )

The length of the message is preserved by:

lengthOf(ml,m
i ) = cl,mi | ∀i ∈M ; l,m ∈ E

Further constraints have to be introduced to satisfy the
timing constraints. Due to the known message instance to the
integration cycle assignment, the release date r̂i and deadline
d̂i relative to the integration cycle in which message mi is
transmitted are also known. Thus, the timing constraints can
be defined as the start time limitation of the related interval
variable:

startMin(ml,m
i ) = r̂i | ∀ml,m

i ∈MI

endMax(ml,m
i ) = d̂i | ∀ml,m

i ∈MI

Similarly, the backward compatibility is assured to be satisfied
by:

startOf(ml,m
i ) = startOf(m̃l,m

i ) | ∀ml,m
i ∈ M̃I

where startOf(m̃l,m
i ) denotes the offset of the message

instance in the original schedule.



The contention-free constraint is necessary to be satisfied
next. From the model point of view it means that no two
message instances, which appear in the same integration cycle
and on the common link, can overlap. As the assignment of
the message instances to the links (routing) and integration
cycles is already decided, it can be trivially deduced in which
link and integration cycle message mi appears. Let us denote
MI l,mi the set of message instances which appear in the same
integration cycle ici and link kl,m. Now, the contention-free
constraint is stated as:

noOverlap(MI l,mi ) | ∀i ∈ I; l,m ∈ K
where noOverlap is a CP operator that keeps all the interval
variables in the given set to be scheduled in distinct time
intervals.

Finally, it is necessary to keep the precedences among
message instances. In this case, the precedence constraints are
given by the routing of the message Si and by the technical
delay caused by switching the logic in the redistribution nodes.
Let P l,m

i be the set of predecessors of the message instance
ml,m

i in Si. The message instance mk,l
i is part of the P l,m

i if
and only if xi,k,l = 1 (see the MILP model for the routing).
Consequently, the precedence constraint is formulated as:

endBeforeStart(p,ml,m
i , τ) | ∀p ∈ P l,m

i ;∀i ∈M ; l,m ∈ K
With these constraints, the CP model for the message

scheduling is defined completely.

IV. EXPERIMENTAL RESULTS

The proposed scheduling method was tested on a PC with
Intel R© CoreTM i7-4610M CPU (two cores with 3 GHz and
hyper-threading) and 32 GB RAM. The algorithm uses the
Gurobi ILP Solver for determining the messages routing and
for solving the Integration cycle assignment problem. The
Link schedules creation problem was solved by the IBM CP
Optimizer. The time to solve a benchmark instance was limited
to 5min.

The benchmark instances used in this study were syntheti-
cally generated. The benchmark generator defines the topology
first. In this study, a random graph topology is generally
used. Consequently, the message parameters are generated
randomly, considering the imposed limitations. These imposed
limitations are described individually in detail for each test
in the following sections. Each message is assigned to either
the broadcast, multicast, or unicast group. Finally, the set of
receivers is generated for each message according to the group.

The generation of the incremental scheduling benchmark
instances was performed in reversed order, i.e., the benchmark
instance for the last incremental iteration was generated first.
Then the original instances for the incremental scheduling are
made. For example, to generate an instance for the penultimate
incremental iteration, the last instance is taken, and some of
the messages, nodes, and links are removed from the instance
according to the given pruning ratio.

To provide statistically significant results, thirty instances of
each benchmark set were generated, and the presented values
represent the mean value from all these instances.

A. Evaluation of the routing algorithm
The proposed algorithm uses the message routing that aims

to support the scheduling objective by the uniform scattering
of the messages among the links. Thus, it unloads the commu-
nication on the most utilized links. To evaluate the algorithm’s
performance, the proposed routing method is compared to the
Shortest path tree (SPT) routing method. The SPT routing
method minimizes the number of hops the message needs to
take to get from the transmitter to the receivers. It optimizes
the overall bandwidth utilized by the communication on the
network, but it does not prevent the bottlenecks caused by the
individual overutilized links.

The comparison of both methods is presented in Fig. 4.
For the evaluation, the complete scheduling algorithm was
executed while the MILP or SPT method was used for the
routing.

Fig. 4. The evaluation of the routing quality

Benchmark sets with 200 TT messages generated with
periods in a range from one to three integration cycles and with
Ethernet frame lengths in full range (i.e., up to 1500 bytes)
were used to test the routing algorithm.

Fig. 4 presents how the method is able to utilize the
redundant links in the graph. The x-axis denotes the number
of redundant links added to the tree topology. The left y-axis,
related to the Schedule SPT and Schedule ILP lines, represents
the duration of the part of the integration cycle used for the
TT communication and the right y-axis, related to the New
link ILP and New link SPT line, represents the volume of the
data exchanged through the newly introduced links.

As can be observed from “Schedule SPT” and “Schedule
ILP” lines in Fig. 4, adding nine additional edges to the
tree topology can shorten the duration of the part of the
incremental cycle used by the TT communication to almost
50%. However, the benefits of the redundant links is that it
can utilize the proposed method based on the MILP model
(labeled as “Schedule ILP” in the figure) better than the
method based on the SPT algorithm. On the tree topology, both
methods behave equally as the routing tree is already decided
by the topology. However, as the number of additional links is
increasing, the proposed method acts significantly better than
the SPT method.



The “New link” lines, on the other hand, shows how the
significance of the newly introduced links evolves with the
number of additional edges in the topology. The routing
algorithms are able to forward through the last added message
only about one-third of the data volume compared to the data
volume it was able to forward through the first added link.

B. Impact of the incremental scheduling on the schedule

The backward compatibility constraint introduced to the
scheduling problem causes the overhead in the resulting sched-
ule. To measure the overhead of the incremental scheduling
over the non-incremental scheduling, another experiment was
performed. The new set of benchmark instances was generated
with ten incremental iterations. In the case of the incremental
scheduling, the resulting schedule from the previous iteration
was used as the original schedule. The first incremental
scheduling iteration has an empty original schedule. All the
messages were generated with a period in a range from one
to three integration cycles and with Ethernet frame lengths in
full range. The last incremental iteration instances contained
500 TT messages.

The results from the experiment are presented in Fig. 5.
The incremental scheduling iteration is situated on the x-
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Fig. 5. The difference between the incremental and non-incremental schedul-
ing

axis of the graph, and the schedule duration of the part of
the integration cycle used by TT communication is on the
y-axis. The dark purple row represents the result from the
algorithm where the original schedule is considered, while the
orange row represents the results of the algorithm, assuming
no original schedule is given.

The result for the first incremental iteration is the same
for incremental and non-incremental scheduling as no original
schedule is used and, consequently, no backward compatibility
constraint is applied in both cases. The most notable change
in the difference between the incremental and non-incremental
scheduling is present in the second incremental iteration. The
prolongation caused by new messages in the case of the
incremental scheduling is almost twice as much compared to

the prolongation caused by the new messages in the case of
the non-incremental scheduling. This causes the fact that the
messages that were already scheduled in the first incremental
iteration cannot be moved in the incremental scheduling.
Thus, the new messages cannot be incorporated in such an
efficient way as in the case of the non-incremental scheduling.
However, this overhead also introduces a new porosity to
the schedule. The further incremental scheduling iterations
are able to use this porosity to place the new signals into
those gaps efficiently. That is the reason why the overhead
stays almost constant in the future scheduling iterations, and
the difference between the incremental and non-incremental
schedule is almost the same as can be observed in the graph.

C. Evolution of the schedule utilization over incremental
iterations

To support the statement from the previous section, the
way how the utilization of the schedule evolves with the
incremental iterations has been studied more deeply. For the
purpose of this section, the utilization of the schedule (or
just utilization) is defined as the portion of the part of the
integration cycle used for the TT communication that is
utilized by the message transmission averaged over all the
integration cycles. In other words, considering only the part
of the integration cycle used by the TT communication, the
utilization represents the portion of the time when the link
is busy. In order to test the utilization, similar benchmark
instances were generated to the testing of the impact of the
incremental scheduling. The only exception is the topology of
the network. To avoid the impact of the routing on the porosity
test, the generated instances use a tree topology. Two different
measurements were performed.

Firstly, the average of the schedule utilization over the whole
network (all the links) has been measured. The resulting graph
can be seen in Fig. 6. The figure presents the evolution for two
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Fig. 6. The average utilization of the communication over the whole topology

cases: the dark purple line shows how the utilization evolves
when the topology is not extended during the incremental
iterations; the orange line shows the utilization evolution when



the topology grows together with the number of messages.
The x-axis represents the incremental scheduling iteration, and
the y-axis represents the average utilization of the schedule in
percent. This unutilized/free space can be used by the new
messages in the future incremental scheduling iteration that
are local (their transmitter and receivers are close to each
other according to the network topology). Note that less than
30 % of the schedule is used according to the graph. This
small amount is caused by the tree topology, where the links
close to the leaves of the topology are rarely used. The figure
also shows that the overall schedule utilization increases if
there is no topology extension which is caused by adding new
messages to the schedule and the significant part of them are
local messages (thus, the part of the integration cycle used
by the TT communication is not prolonged too significantly).
If the topology is extended, the new sparse links introduce a
lot of unutilized bandwidth to the schedule, which causes a
decrease in the overall utilization.

Opposed to the new local messages that, as can be observed
from Fig. 6, can be easily incorporated into the schedule
without prolongation of the part of the integration cycle used
by TT communication because of the low utilization of the
links close to leaves, the new messages that need to transit the
root node could cause the prolongation of the part easily. To
study how the schedule utilization can impact the scheduling
of these messages, the second measurement was performed
where the utilization was calculated only on the most utilized
link.
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Fig. 7. The porosity of the most utilized link

The utilization of the most utilized link is presented in
Fig. 7. Here, the utilization is about 77 to 86 %, depending
on the particular incremental scheduling iteration. This makes
it harder to incorporate the long-distance messages efficiently
into the schedule without prolongation of the part of the
integration cycle used by the TT communication. The figure
also shows that there is no significant difference for the long-
distance messages, whether the topology is extended (but no

cycles introduced) or not as the topology does not influence
the flow of the messages over the most utilized link.

These graphs also support the statement from the last section
as both the utilization metrics are the worst in the first in-
cremental scheduling iteration, making the second scheduling
iteration the most difficult. After that, the utilization metric
changes slowly and, thus, the difference between the efficiency
of the incremental and non-incremental scheduling is similar.

D. Scalability of the scheduling algorithm

The previous experiments aimed to study the quality and the
impact of the incremental scheduling on the resulting schedule.
However, the scalability of the algorithm and its computational
complexity needs to be examined next. The scalability of the
algorithm is strongly dependent on three factors - the lengths
of the messages, the distinct message periods, and, finally,
the number of messages in the instance. The impact of all of
these factors on the algorithm’s runtime will be studied in the
following subsections.

D.1 The scalability of the algorithm based on the message
length

Firstly, the influence of the maximal allowed message length
is presented. For this experiment, the instances with the
maximal allowed message lengths from 1 byte to 1500 bytes
of the payload were generated. To ensure that the finding of
the optimal schedule and proving that the found solution is
optimal will be accomplished in twenty minutes (the time limit
for the computation of one benchmark instance is extended
for all the scalability tests), the instances contained just 50
messages. The period of the generated messages is randomly
chosen from one, two, four, or eight times the duration of the
integration cycle. The results of the test are presented in Fig. 8.
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lengths



The x-axis of the graph represents the maximal allowed
message length while the y-axis represents the time needed
to solve the given instance set in the logarithmic scale. The
orange line presents the time needed for the routing, the
red line presents the time needed for finding the assignment
of the messages to the incremental cycles, the magenta line
represents the time needed to find a solution and to prove that
its value is at maximum 1 % off the optimum, and the dark
purple line is the total time needed for the creation of the
optimal schedule. Note that the error bars represent the range
in which the results for the particular benchmark set were
acquired (the lower cap is minimal obtained value, and the
upper cap is maximal obtained value) rather than the standard
deviation because the standard deviation was often larger than
the mean (and it is not possible to depict them in a logarithmic
scale). The position of the markers was slightly adjusted for
each line of the graph, even if they represent the same value
on the x-axis, to make the reading of the error bars easier.

The graph shows that the major part of the time is consumed
by the link scheduling algorithm. The time complexity of the
routing algorithm and also the messages to the integration
cycle assignment algorithm does not depend on the message
lengths at all. On the other hand, the time demands of the
link scheduling algorithm are almost constant for messages
with lengths up to 32 bytes, and then it grows exponentially.
Also, the time range for solving the instances was much wider
in the case of instances with a payload larger than 64 bytes.
The variance in time demands for those instances is caused by
the uncertain difficulty of proving that the current scheduling
solution is optimal. It can also be read, from the figure, that the
tolerance of 1 % can reduce the scheduling time by one order
in the case of messages with a full variety of their lengths.

D.2 The scalability of the algorithm based on the message
periods

The second experiment evaluates the influence of the time
demands on the allowed set of message periods. Two different
scenarios are commonly used in practice - messages with
arbitrary periods and messages with harmonic periods. The
messages with arbitrary periods can have periods equal to any
integer multiple of the integration cycle, while, in the case of
harmonic periods, the messages can have periods only equal
to any duration of the integration cycle multiplied by a power
of two. The harmonic periods ensure the shortest possible
cluster cycle, which can grow fast in the case of arbitrary
periods because the cluster cycle is equal to the least common
multiple of all the possible periods. To examine the behavior
of the algorithm in both scenarios, two separate tests were
performed.

Each benchmark instance contains 50 messages with up to
eight bytes of payload. The general graph topology has been
used. The results for the messages with the arbitrary periods
are presented in Fig. 9, and the results for the messages with
the harmonic periods are shown in Fig. 10. The x-axis of the
graphs represents the maximal allowed message period used.

1 2 3 4 5 6 7 8 9 10
Maximal allowed message period [ic]

10−2

10−1

100

101

102

T
im

e
to

so
lv

e
[s

]

Complete

Complete with 1% tolerance
Assignment
Routing

Fig. 9. The scalability of the scheduling method according to the used
message periods
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Fig. 10. The scalability of the scheduling method according to the used
harmonic periods

The routing algorithm is not dependent on the set of used
periods, and its computing demands stay low during the
whole evaluation. The assignment algorithm is affected by the
number of the used message periods because the messages
with longer periods have more possible integration cycles to
be assigned to. The computational complexity of the link
scheduling algorithm grows exponentially with an increasing
set of possible periods. However, the computational demands
grow much steeper in the case of arbitrary periods. It is
caused by the difficulty in the scheduling of the messages
whose periods are co-prime. This statement is also supported
by the observation that the computational complexity grows
most significantly if a new prime period is introduced to
the instance (specifically, if the messages with periods 5 · ic
and 7 · ic are introduced in our case). The second reason
is that the long cluster cycle (e.g., 2520 · ic for the case
with a maximal allowed period equal to 10 · ic) means a



significant increase in the scheduling model variable domains
for the constraint programming optimization. The computation
complexity of the algorithm is considerably much lower if the
periods are harmonic. In this case, the complexity growth is
mainly cause by the prolongation of the cluster cycle, which is
not significant as in the case of the instances with the arbitrary
periods because the cluster cycle is only as long as the longest
period here. The graphs also show that the benevolence of the
loss of 1 % in the optimality does not help to reduce the time
demands much here.

D.3 The scalability of the algorithm based on the message
counts

The most important thing is to know how the complexity
grows with the increasing number of messages, which is the
subject of the third scalability experiment. The benchmark
instances with messages containing up to 8 bytes of payload
and with a maximal allowed period equal to 8 · ic were
generated. For these benchmark instances, harmonic periods
were used, and the topology of the network corresponds to a
general graph. The results of the experiment are depicted in
Fig. 11. The x-axis represents the number of messages used
in the instance.
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Fig. 11. The scalability of the scheduling method according to the number
of messages

The results show that the routing algorithm and assignment
algorithm are affected by the number of messages in a similar
way as the link scheduling algorithm. The narrow range of the
results (with the exception of instance set with 50 messages
which is affected by outliers) shows that the increase in
the number of messages stably influences the computational
complexity. However, the complexity grows exponentially in
the number of messages. While scheduling links with instances
containing 100 messages to optimality took 1 s, the instances
with 2000 messages needed almost 20min. For bigger in-
stances, the result with a proven distance of the link scheduling
objective function value not further than 1 % from the optimal

value can be obtained faster by an order even if this tolerance
needs to be proven by the solver.

E. Evolution of the scheduling objective function in time

It is necessary to note that the optimal solution for the
routing algorithm, together with the optimal solution for the
link scheduling algorithm, does not ensure the optimal solution
from the problem statement point of view. Thus, in practical
cases, it is not needed to wait until the link scheduling
algorithm proves that the current solution is optimal (or close
to optimum in the case of the 1 % tolerance), and the search
can be stopped sooner. This allows for creating schedules for
bigger industrial size instances in a reasonable time. To show
how the duration of the part of the incremental cycle used by
the TT communication evolves in time, the same benchmark
instance set with 2000 messages as in Section IV-D.3 was
used. The evolution of the duration of the part of the incre-
mental cycle used by the TT communication during the link
schedule creation is presented in Fig. 12.

Fig. 12. The evolution of the duration of the part of the incremental cycle
used by the TT communication in the time domain

The x-axis of the figure represents the time limit for the
scheduling. At the time of 1200 s, all the instances in the
set were solved to optimality. The left y-axis represents the
average duration of the part of the integration cycle used by
the TT communication over the whole benchmark set. The left
y-axis represents the ratio of the obtained objective value at
a particular time compared to the optimal one in percentage.
Until time 100 s, the scheduling algorithm was not able to
find a feasible solution for two instances out of thirty. At
time 200 s, there was only one instance without finding a
feasible solution. In all further times, all the instances have
found a solution. The major change in the duration occurs
in the beginning, and the slope is decreasing in time. Even
if there is some improvement in the average duration of the
part of the integration cycle used by the TT communication
during the whole scheduling period, the improvement between
the average duration obtained at time 100 s and 1200 s is less
than 1.3%. Thus, it is sufficient to use a solution, which is not
necessarily optimal from the link schedules creation problem
point of view but obtained in a shorter time, in many practical
cases.



F. Scheduling of the real industrial instances

The work has been motivated by our industrial partner,
who develops electronic systems for the avionic industry.
This section describes the behavior of the proposed algorithm
on the real instance obtained from the partner. The instance
contains 1922 messages (407 unicast messages and 1515
multicast messages) with a payload of up to 1036 bytes and
periods from the set {12.5ms, 25ms, 50ms, 100ms, 200ms,
1000ms}. The system consists of 38 nodes. The topology
is based on three switches SW1, SW2 and SW3 that are
mutually interconnected. Each such switch is in the topology
twice called SW1 A and SW1 B, and these two instances are
interconnected too. Thus, the backbone of the network is based
on such a double triangle topology. Each endpoint is connected
to one of those switches. The schedule for this instance,
which is optimal from all the subproblem’s point of view, was
obtained after less than 250 s. The schedule utilization of the
most utilized link reached 96.3% while the schedule utilization
averaged over the whole network was only 19.6%. This shows
that the integration cycle assignment was able to distribute the
messages in the most utilized link very efficiently. Figure 13
presents how the payload is distributed among the links in the
network. The links are classified according to the volume of
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Fig. 13. The histogram of the links utilization

the TT data transmitted through them per second. The first
class includes links with the volume from 0 to 0.1 MB/s,
the second one includes the links with the volume from
0.1 to 0.2 MB/s, etc. The y-axis then represents the percentage
of the links that belong to the particular class. The histogram
shows that almost 70 % of the links have very low utilization
of the links. About 50 % of these links are empty. That means
that these links are connected to the endpoints that serve
as a transmitter or a receiver (note that each transmission
direction of the Full-duplex physical link is represented by
two separate links here). Moreover, there is just one link in
the class with 0.7 - 0.8 MB/s. This link (and also the links
from classes with 0.5-0.6 MB/s and 0.6-0.7 MB/s) connects the

redistribution node with the communication endpoint. Thus,
the routing algorithm was not able to reroute some messages
from this link through another path to lighten the link. The
backbone links belong to the 0.2-0.3 MB/s and 0.3-0.4 MB/s
classes. The interesting observation is that, considering the
100 MB/s TTEthernet network, the TT communication utilizes
less than 1 % of the bandwidth in this instance. The rest of
the bandwidth is used for the RC and BE communication.

V. CONCLUSION

The paper focuses on the problem of the incremental
time-triggered communication scheduling on the TTEthernet
network, and studies the influence of introduced backward
compatibility on the resulting schedules.

The incorporation of the event-triggered Rate-Constrained
traffic with the Time-Triggered traffic is very important for
mixed-criticality applications [25]. Event-triggered communi-
cation is usually used in industrial applications nowadays.
However, the pressure placed on, for example, the automotive
or avionics industries to verify and certify its systems on a
component and system integration level pushes system devel-
opers to use time-triggered traffic for safety-related communi-
cation as its behavior is deterministic. However, the creation of
schedules for time-triggered communication is a challenging
task.

We have followed the idea of separating the time-triggered
traffic and event-triggered traffic already used in [15], which
was inspired by the scheme of the FlexRay bus communication
cycle. The objective has been to maximize the minimal guar-
anteed coherent gap left in each integration cycle on each link
that can be continuously used by the Rate-Constrained and
Best-Effort traffic while keeping the backward compatibility
with the original schedules created in the previous develop-
ment iterations. The problem has been decomposed into three
subproblems - (i) message routing, (ii) deciding in which
integration cycles each message will be exchanged and, finally,
(iii) creating schedules for each link on the network. We have
designed the algorithm based on the MILP formulation of the
routing and integration cycle assignment problem and the CP
formulation of the link scheduling problem.

The experiments show that the incremental scheduling on
one side prolongs the part of the integration cycle used by
the TT communication in the order of a percent (in the
experiments it was about 1%), but it brings the advantage
of backward compatibility. The performance of the algorithm
is dependent on the number of messages in the instance, the
length, and the periodicity of the messages. However, the
experiments show that the method can return good results even
for industry sized instances in a few minutes.

LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviations
BE Best-Effort
CP Constraint Programming
ECU Electronic control unit
ILP Integer Linear Programming



RC Rate-Constrained
SMT Satisfiability modulo theories
SPT Shortest Path Tree
TT Time-Triggered
Symbols
τ Hop delay
ãi,j Predicate denoting if message mi was scheduled to

integration cycle icj in original schedule
M̃I Message instances present in the original schedule
õl,mi Start of the transmision time for message instance

ml,m
i in the original schedule

ai,j Decision variable for integration cycle assignemnt
problem

ci Length of message mi

cl,mi Transmission time of message mi in link kl,m
cc Cluster cycle
di Deadline of message mi

E Set of nodes
EE Communication endpoints
ER Redistribution nodes
ei Node i
F Load of the most bussy link
fi,m Load of the link kl,m
I Set of integration cycles
ic Integration cycle
K Set of links
ki,j Link between nodes ei and ej
mi Message i
ml,m

i Instance of message mi on link kl,m
MI Set of message instances
MI l,mi Set of message instances which appear in integration

cycle ici and link kl,m
Qi Set of receivers of message mi

qi Transmitter of message mi

ri Release date of message mi

Si Routing tree of message mi

Sq
i Routing path of message mi to receiver eq
si,l Numerical label of node el for message mi

ti Period of message mi

xi,l,m Decision variable for routing
z Maximal bandwidth utilization among integration cy-

cles
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