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Motivation — ALKS

Automated Lane-Keeping System

» Advanced Driver Assistance System
» Drives on highways up to 130 km/h

» SAE Level 3 — driver does not
need to pay attention

» EU regulation for ALKS approval

» University project with limited
resources

» Rust chosen to focus on developing
functionality instead of debugging
programming errors
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Relatively new language
(Rust 1.0: 2015)

Statically typed, compiled,
no runtime, expressive type
system,

(C++ successor?)

Memory safety

Lisp-like macros
(metaprogramming)

Suitable for complex and
real-time applications

fn main() {

}

// 1. Ounership & Borrowing

let s = String::from("hello"); // s owns the String
print_length(&s); // passing by reference (borrowing)
println! ("Still usable: {}", s); // s is still valid

// 2. Pattern Matching with “match’

let number = Some(7);

match number {
Some(n) if n > 5 => println!("Greater than 5: {}", n),
Some(n) => println!("Number: {}", n),
None => println!("No number"),

¥

// 3. Safe Concurrency (using threads and move)
use std::thread;
let v = vec![1, 2, 3];
let handle = thread::spawn(move || {

println! ("Vector from thread: {:7}", v);
2N
handle.join() .unwrap();

fn print_length(s: &String) {

}

println! ("Length: {}", s.len());
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» Software framework for distributed
robotic applications

» Open source, over 1500 packages
» ROS, ROS 2

» Linux, Windows, macOS

» C++, Python

E

Source: https://arxiv.org/abs/2211.07752
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Rust & ROS

» Rust support in ROS is unofficial, supported only by the community.

> Several independent projects...

rclrs R2R
https://github.com/ros2-rust/ros2_rust https://github.com/sequenceplanner/r2r/
» Rust client library modeled after its » Glue between ROS and Rust
C++ counterpart rclcpp asynchronous execution frameworks
> Accompanied by tools like message » Flexible, more features than rclrs
code generators » How to use it for real-time

applications? Documentation and
examples give no answer
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Detailed comparison of rclcpp, R2R and rclrs
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Goals of this work

» Find out how to structure R2R applications to be suitable for deterministic
real-time operation

P Investigate the execution model of Rust asynchronous runtimes

> Evaluate real-time properties of R2R on:

» Simple synthetic application
> Real-world autonomous driving application

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25



CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND

cypcmmerics ROS & Rust details

Content

ROS & Rust details

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'2



ROS architecture

Application Layer C++ code (ROS nodes)

‘ rclcpp ’
C++ API

ROS 2 Client Layer

| ROS 2 Client Library (rcl), CAPI |

Abstract DDS Layer [ ROS Middleware Interface (rmw) ]

Fast ]o [Cyclone

DDS Implementation Layer[ DDS DDS ]or [Zenoh] or [lceoryx]

Operating System Layer [ Linux ] or [Windows] or [ macOS ] or [RTOS ]
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ROS architecture

Application Layer C++ code (ROS nodes) Rust code (ROS nodes)
‘ rclcpp ’ ‘ R2R Rust async
. C++ APl Rust API run-time
ROS 2 Client Layer (Tokio, futures, ...)

| ROS 2 Client Library (rcl), CAPI |

AN
Abstract DDS Layer [ ROS Middleware Interface (rmw) ]
. Fast Cyclone .
DDS Implementation Layer DDS o] DDS or |Zenoh|or | iceoryx
AV4

Operating System Layer [ Linux ] or [Windows] or [ macOS ] or [RTOS ]
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Asynchronous Rust

» A form of concurrent
programming

» Scheduling decisions in user
space, in cooperative manner

» Language support: async, await

» Compiler creates multiple
schedulable entities from linear
code

» Executors — schedule and execute
async tasks

ROS & Rust details

// Synchronous code

fn read_file_sync(path: &str) -> io::Result<String> {
let mut file = File::open(path)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
Ok(contents)

}

// Asynchronous code

async fn read_file_async(path: &str) -> io::Result<String> {
let mut file = File::open(path).await?;
let mut contents = String::new();
file.read_to_string(&mut contents).await?;
Ok(contents)

¥

fn main() {
// Ezecute a single async task
let res = executor::block_on(read_file_async("file.txt"));

}
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Asynchronous Rust

» A form of concurrent
programming

» Scheduling decisions in user
space, in cooperative manner

» Language support: async, await

» Compiler creates multiple
schedulable entities from linear
code

» Executors — schedule and execute
async tasks

ROS & Rust details

// Synchronous code

fn read_file_sync(path: &str) -> io::Result<String> {
let mut file = File::open(path)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
Ok(contents)

}

// Asynchronous code

fn read_file_async(path: &str) -> io::Result<String> {

Tet mut file = File: :open(path
let mut contents = String::new();
file.read_to_string(&mut contents
Ok (contents)

}

fn main() {
// Ezecute a single async task
let res = executor::block_on(read_file_async("file.txt"));

}
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Executors
ROS, C++ Asynchronous Rust
» Single-threaded executor » Executors are provided by async runtimes:
» Multi-threaded executor > Tokio — prefers throughput over time determinism
» Events executor » Futures — simpler, suitable for real-time
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Executors
ROS, C++ Asynchronous Rust
» Single-threaded executor » Executors are provided by async runtimes:
» Multi-threaded executor > Tokio — prefers throughput over time determinism
» Events executor » Futures — simpler, suitable for real-time

> Tokio executor
> Futures local executor (single-threaded)
> Futures thread-pool executor (multiple-threads)
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Executors
ROS, C++ Asynchronous Rust
» Single-threaded executor » Executors are provided by async runtimes:
» Multi-threaded executor » Tokio — prefers throughput over time determinism
» Events executor » Futures — simpler, suitable for real-time
» Tokio executor
> Futures local executor (single-threaded)
> Futures thread-pool executor (multiple-threads)
Main difference
ROS executors combine Rust async executors are responsible only for
» event sampling and > async task (callback) scheduling & execution.

» callback scheduling & execution.
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Comparison of single-threaded ROS C++ executor and Rust R2R

C+

auto node = make_shared<rclcpp::Node>();
node->create_subscription<UInt64>("/A", 10, cb_A);
node->create_subscription<UInt64>("/B", 10, cb_B);
rclcpp::spin(node);
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Comparison of single-threaded ROS C++ executor and Rust R2R

C+

auto node = make_shared<rclcpp::Node>();
node->create_subscription<UInt64>("/A", 10, cb_A);
node->create_subscription<UInt64>("/B", 10, cb_B);
rclcpp::spin(node);

Response-Time analysis:

[1] T. BlaB, D. Casini, S. Bozhko, and B. B.
Brandenburg, “A ROS 2 Response-Time Analysis
Exploiting Starvation Freedom and Execution-Time
Variance,” in 2021 |IEEE Real-Time Systems
Symposium (RTSS).
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Proposed R2R application structure

Comparison of single-threaded ROS C++ executor and Rust R2R

C+

auto node = make_shared<rclcpp::Node>();
node->create_subscription<UInt64>("/A", 10, cb_A);
node->create_subscription<UInt64>("/B", 10, cb_B);
rclcpp::spin(node);

Response-Time analysis:

[1] T. BlaB, D. Casini, S. Bozhko, and B. B.
Brandenburg, “A ROS 2 Response-Time Analysis
Exploiting Starvation Freedom and Execution-Time
Variance,” in 2021 |IEEE Real-Time Systems
Symposium (RTSS).

R2R equivalent

let ctx = r2r::Context::create()?;
let mut node = r2r::Node::create(ctx, "example", "")?;

let stream_A = node.subscribe("/A", Qos::default())?;
spawner.spawn_local(stream_A.for_each(cb_A))?;
let stream_B = node.subscribe("/B", Qos::default())?;
spawner.spawn_local(stream_B.for_each(cb_B))?;
local_executor.run_until_stalled(); // init.
loop §
node.spin_once(Duration::seconds(1)); // sampling
local_executor.run_until_stalled(); // execution
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Example of execution chain from publisher P to Rust R2R subscriber S

Time |_ """"""""""

publication | [ publication |
Node P —{ B ]—[ A )
|
| ﬁ \r—]
DDS } send send
. T
writer P |
| n:t nit
DDS ! [Receive Receive
listener S| 1 L
e e
| — l * run_until_stalled
Node S | (. — handle ready ; :
R2R) | T spin_once entities: : CBi]‘:_
|
|

|
Topic B end-to-end latency |

The paper contains details and examples about R2R sampling and Rust async executor
scheduling.
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ROS C++ multi-threaded executor, callback groups

» Callback groups allow restricting callback execution (mutual exclusion, etc.)
P [t is possible to emulate multi-threaded executor and callback groups in Rust R2R.

» Details in the paper.
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ROS C++ multi-threaded executor, callback groups

» Callback groups allow restricting callback execution (mutual exclusion, etc.)
P [t is possible to emulate multi-threaded executor and callback groups in Rust R2R.
» Details in the paper.

» ROS C++ multi-threaded executor has various problems

In R2R one can do better...

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25



CZECH INSTITUTE

}@ CVBERNETICS. Proposed R2R application structure

CTU IN PRAGUE

Proposed R2R application structure

fn main() -> Result<(), Box<dyn Error>> {

set_thread_priority_and_policy( 1. Run the main thread with the

thread_native_id(), highest priority
ThreadPriority: :try_from(MAIN_PRIORITY)?, » Inherited by DDS threads
RealTime (Fifo), spawned from

)7, r2r::Node: :create()

P Used for ROS sampling
(node.spin_once()), i.e.
dispatching events from ROS
to Rust asynchronous

let ctx = r2r::Context::create()7;
let mut node = r2r::Node::create(ctx, "example", "")7;

executors
let subs = node.subscribe("/topic", Qos::default())?;
let future = subs.for_each(move |msg: Msg| async move { 2. Run Rust async executor(s)
// process msg executing callbacks in lower

D; priority thread(s)
spawn_in_thread(future, CALLBACK_PRIORITY);

» 1 thread = 1 executor

loop { » 1 executor = 0..n callbacks

node.spin_once (SPIN_TIMEOUT); // ROS sampling
¥

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25
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Proposed R2R application structure

fn main() -> Result<(), Box<dyn Error>> {
set_thread_priority_and_policy(

1. Run the main thread with the

thread_native_id(), highest priority
ThreadPriority: :try_from(MAIN_PRIORITY)?, » Inherited by DDS threads
RealTime (Fifo), spawned from

)7, r2r::Node: :create()
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(node.spin_once()), i.e.
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let ctx = r2r::Context::create()7;
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executors
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let future = subs.for_each(move |msg: Msg| async move { 2. Run Rust async executor(s)
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Proposed R2R application structure

fn main() -> Result<(), Box<dyn Error>> {
set_thread_priority_and_policy(

1. Run the main thread with the

thread_native_id(), highest priority
ThreadPriority: :try_from(MAIN_PRIORITY)?, » Inherited by DDS threads
RealTime(Fifo), spawned from
)7 r2r::Node: :create()
P Used for ROS sampling
let ctx = r2r::Context::create()?; (node.spin_once()), i.e.
let mut node = r2r::Node::create(ctx, "example", "")7; dispatching events from ROS
to Rust asynchronous
executors
let subs = node.subscribe("/topic", Qos::default())?;
let future = subs.for_each(move |msg: Msg| async move { 2. Run Rust async executor(s)
// process msg executing callbacks in lower

b; Lo
spawn_in_thread(future, CALLBACK_PRIORITY); priority thread(s)
» 1 thread = 1 executor
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Proposed R2R application structure

fn main() -> Result<(), Box<dyn Error>> {
set_thread_priority_and_policy(

1. Run the main thread with the

thread_native_id(), highest priority
ThreadPriority: :try_from(MAIN_PRIORITY)?, » Inherited by DDS threads
RealTime(Fifo), spawned from
)73 r2r::Node: :create()
» Used for ROS sampling
let ctx = r2r::Context::create()?; (I_1°de'sl_)in—°n°eo)' e
let mut node = r2r::Node::create(ctx, "example", "")7; dispatching events from ROS
to Rust asynchronous
executors
let subs = node.subscribe("/topic", Qos::default())?;
let future = subs.for_each(move |msg: Msg| async move { 2. Run Rust async executor(s)
// process msg executing callbacks in lower

B; ority thread
spawn_in_thread (future, CALLBACK_PRIORITY); priority thread(s)

» 1 thread = 1 executor
loop { » 1 executor = 0..n callbacks

node.spin_once (SPIN_TIMEOUT); // ROS sampling

}

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25



CZECH INSTITUTE

Proposed R2R application structure

fn main() -> Result<(), Box<dyn Error>> {
set_thread_priority_and_policy(

Proposed R2R application structure

1. Run the main thread with the

thread_native_id(), highest priority

ThreadPriority: :try_from(MAIN_PRIORITY)?, >
RealTime (Fifo),
)7?;

let ctx = r2r::Context::create()7;
let mut node = r2r::Node::create(ctx, "example", "")7;

Inherited by DDS threads
spawned from

r2r::Node: :create()

Used for ROS sampling
(node.spin_once()), i.e.
dispatching events from ROS
to Rust asynchronous

executors
let subs = node.subscribe("/topic", Qos::default())?;
let future = subs.for_each(move |msg: Msg| async move { 2. Run Rust async executor(s)
// process msg executing callbacks in lower

B
spawn_in_thread(future, CALLBACK_PRIORITY);

>

loop { >

node.spin_once (SPIN_TIMEOUT); // ROS sampling
¥

priority thread(s)

1 thread = 1 executor
1 executor = 0..n callbacks

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust

ECRTS'25



CZECH INSTITUTE

]@f CVBERNETICS. Proposed R2R application structure

CTU IN PRAGUE

The effect of running DDS & sampling with the highest priority

) DDS Highest priority Receive Receive
listener S
—
Node spin| Highest priority (. — handle ready
(R2R) LSp'”—Once antios . AB]
[
> Minimizes latency < Y A A v
Callbacks . .
(R2R) Time H H
— > : '

run_until_stalled

» Scheduling determined only by policies of Rust async executor and OS scheduler
» DDS & ROS sampling introduces just execution time overhead
> Similar effect as ROS events executor

» Simplest case: 1 callback per executor = only OS scheduler policy is relevant
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Evaluation on synthetic benchmarks

> Five topics End-to-end
. latency

» C++ publisher

» Multiple subscriber implementations

» Linux, LT Tng trace processing

Topic # 1 2 3 4 5
Publisher period [ms] 10 20 50 100 200
Subscription callback execution time [ms] | 2 4 5 15 50
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End-to-end latency — comparison with response-time analysis

200 1 T period & deadline BN tokio-rt I futures-join
T RTA I futures I futures-threadpool

— BN futures-2-threads FEEE  tokio

150 4 rclcpp-rt I rclcpp-st I nort-tokio
o'
E
[}
£ 100
|_

50 1

0 .
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Failing to set high priority of DDS threads

10000 200 A
nort-futures-rt %
1000 4+ futures-rt ,g 150 - pr—

S 100- 2 1001
)] =
'_

IOEEm i 1" F' 1 | IRET B 50

1 T T T T o =

0 20 40 60 1
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Complex autonomous driving case study
Simulation of Automated Lane-Keeping System (ALKS)

_Test vehicle

FlexRay bus  “FlexRay bridge ™
> ' 3
() : rviz (C++)

Rust/C++ APl & Automated
. FlexRa
ROS topics [ cARLA Flexray |90 Lane-Keeping o
dapter (R | > system - ALKS visualizer
adap FlexRay (R2R)
ROS messages (R2R)

ECRTS'25

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust



CZECH INSTITUTE

| OF INFORMATICS
ROBOTICS AND
CYBERNETICS

CTU IN PRAGUE

Evaluation

Complex autonomous driving case study
Simulation of Automated Lane-Keeping System (ALKS)

_Test vehicle

FlexRay bus “FlexRay bridge ™
> . |

++ - .

() odometry end-to-end latency rviz (C++)

Rust/C++ APl & Automated

f FlexRa
ROS topics (- cARLA FlexRay odom. 5| Lane-Keeping visualiz);r

adapter (R2R) »| System - ALKS

FlexRa R2R
ROS mességes (R2R) 2
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Complex autonomous driving case study
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Conclusion

Conclusion

» Proposed structure of Rust R2R applications that can provide
deterministic timing, comparable to C++ ROS applications

» Examples and benchmarks available —

» Evaluated on two case studies
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