A first look at ROS 2 applications written in asynchronous Rust

Martin Skoudlil, Michal Sojka, Zdenék Hanzalek

Czech Technical University in Prague, Czech Republic

CcTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

ECRTS'25, July 9, 2025
Brussels, Belgium

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

.| OF INFORMATICS
]@ ROBOTICS AND
CYBERNETICS .
CTU IN PRAGUE Introduction

Motivation — ALKS

Automated Lane-Keeping System

» Advanced Driver Assistance System
» Drives on highways up to 130 km/h

» SAE Level 3 — driver does not
need to pay attention

» EU regulation for ALKS approval

» University project with limited
resources

» Rust chosen to focus on developing
functionality instead of debugging
programming errors

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

Rust

CZECH INSTITUTE

| OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

Relatively new language
(Rust 1.0: 2015)

Statically typed, compiled,
no runtime, expressive type
system,

(C++ successor?)

Memory safety

Lisp-like macros
(metaprogramming)

Suitable for complex and
real-time applications

fn main() {

}

// 1. Ounership & Borrowing

let s = String::from("hello"); // s owns the String
print_length(&s); // passing by reference (borrowing)
println! ("Still usable: {}", s); // s is still valid

// 2. Pattern Matching with “match’

let number = Some(7);

match number {
Some(n) if n > 5 => println!("Greater than 5: {}", n),
Some(n) => println!("Number: {}", n),
None => println!("No number"),

¥

// 3. Safe Concurrency (using threads and move)
use std::thread;
let v = vec![1, 2, 3];
let handle = thread::spawn(move || {

println! ("Vector from thread: {:7}", v);
2N
handle.join() .unwrap();

fn print_length(s: &String) {

}

println! ("Length: {}", s.len());

M. Skoudlil et al.

A first look at ROS 2 applications written in asynchronous Rust

ECRTS'25

CZECH INSTITUTE

.| OF INFORMATICS
@ ROBOTICS AND
CYBERNETICS .
CTU IN PRAGUE Introduction

» Software framework for distributed
robotic applications

» Open source, over 1500 packages
» ROS, ROS 2

» Linux, Windows, macOS

» C++, Python

E

Source: https://arxiv.org/abs/2211.07752

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

https://arxiv.org/abs/2211.07752

CZECH INSTITUTE

.| OF INFORMATICS
ROBOTICS AND .
]@g CYBERNETICS Introduction

CTU IN PRAGUE

Rust & ROS

» Rust support in ROS is unofficial, supported only by the community.

> Several independent projects...

rclrs R2R
https://github.com/ros2-rust/ros2_rust https://github.com/sequenceplanner/r2r/
» Rust client library modeled after its » Glue between ROS and Rust
C++ counterpart rclcpp asynchronous execution frameworks
> Accompanied by tools like message » Flexible, more features than rclrs
code generators » How to use it for real-time

applications? Documentation and
examples give no answer

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

https://github.com/ros2-rust/ros2_rust
https://github.com/sequenceplanner/r2r/

CZECH INSTITUTE

| OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

Detailed comparison of rclcpp, R2R and rclrs

Group

Feature

a
+
=

rclrs

Communication

Message generation
Publishers and subscriptions
Loaned messages (zero-copy)
Tunable QoS settings

Clients and services

Actions

Dynamic type support

SIS
Py

-

KISISISISISISISIS

V]

SISISEQSISISISIS

Lifecycle nodes

Parameters Parameter handling
Parameter ranges !
Parameter locking none per-node | per-parameter
Derived parameters x x
Time Timers x
Simulated time
Tracepoints vE) ¢
Executors Single-threaded VE
Multi-threaded Vi p ¢
Asynchronous programming style | »{ p ¢
Other Composable nodes X X
X X

M. Skoudlil et al.

A first look at ROS 2 applications written in asynchronous Rust

CZECH INSTITUTE

| OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

Detailed comparison of rclcpp, R2R and rclrs

Group

Feature

a
+
=

rclrs

Communication

Message generation
Publishers and subscriptions
Loaned messages (zero-copy)
Tunable QoS settings

Clients and services

Actions

Dynamic type support

SIS
Py

-

KISISISISISISISIS

1

SISISEQSISISISIS

Lifecycle nodes

Parameters Parameter handling
Parameter ranges !
Parameter locking none er-node | per-parameter
Derived parameters X p-¢
Time Timers X
Simulated time
Tracepoints X
Executors Single-threaded 4
Multi-threaded Vi X
Asynchronous programming style | »{ p ¢
Other Composable nodes X X
v/ X X

M. Skoudlil et al.

A first look at ROS 2 applications written in asynchronous Rust

https://github.com/skoudmar/
Ros2TraceAnalyzer

https://github.com/skoudmar/Ros2TraceAnalyzer
https://github.com/skoudmar/Ros2TraceAnalyzer

CZECH INSTITUTE

.| OF INFORMATICS
]@ ROBOTICS AND
CYBERNETICS .
CTU IN PRAGUE Introduction

Goals of this work

» Find out how to structure R2R applications to be suitable for deterministic
real-time operation

P Investigate the execution model of Rust asynchronous runtimes

> Evaluate real-time properties of R2R on:

» Simple synthetic application
> Real-world autonomous driving application

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND

cypcmmerics ROS & Rust details

Content

ROS & Rust details

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'2

ROS architecture

Application Layer C++ code (ROS nodes)

‘ rclcpp ’
C++ API

ROS 2 Client Layer

| ROS 2 Client Library (rcl), CAPI |

Abstract DDS Layer [ROS Middleware Interface (rmw)]

Fast]o [Cyclone

DDS Implementation Layer[DDS DDS]or [Zenoh] or [lceoryx]

Operating System Layer [Linux] or [Windows] or [macOS] or [RTOS]

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

ROS & Rust details

ROS architecture

Application Layer C++ code (ROS nodes) Rust code (ROS nodes)
‘ rclcpp ’ ‘ R2R Rust async
. C++ APl Rust API run-time
ROS 2 Client Layer (Tokio, futures, ...)

| ROS 2 Client Library (rcl), CAPI |

AN
Abstract DDS Layer [ROS Middleware Interface (rmw)]
. Fast Cyclone .
DDS Implementation Layer DDS o] DDS or |Zenoh|or | iceoryx
AV4

Operating System Layer [Linux] or [Windows] or [macOS] or [RTOS]

M. Skoudlil et al.

A first look at ROS 2 applications written in asynchronous Rust

ECRTS'25

ROS & Rust details

CZECH INSTITUTE

| OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

Asynchronous Rust

» A form of concurrent
programming

» Scheduling decisions in user
space, in cooperative manner

» Language support: async, await

» Compiler creates multiple
schedulable entities from linear
code

» Executors — schedule and execute
async tasks

ROS & Rust details

// Synchronous code

fn read_file_sync(path: &str) -> io::Result<String> {
let mut file = File::open(path)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
Ok(contents)

}

// Asynchronous code

async fn read_file_async(path: &str) -> io::Result<String> {
let mut file = File::open(path).await?;
let mut contents = String::new();
file.read_to_string(&mut contents).await?;
Ok(contents)

¥

fn main() {
// Ezecute a single async task
let res = executor::block_on(read_file_async("file.txt"));

}

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

| OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

Asynchronous Rust

» A form of concurrent
programming

» Scheduling decisions in user
space, in cooperative manner

» Language support: async, await

» Compiler creates multiple
schedulable entities from linear
code

» Executors — schedule and execute
async tasks

ROS & Rust details

// Synchronous code

fn read_file_sync(path: &str) -> io::Result<String> {
let mut file = File::open(path)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
Ok(contents)

}

// Asynchronous code

fn read_file_async(path: &str) -> io::Result<String> {

Tet mut file = File: :open(path
let mut contents = String::new();
file.read_to_string(&mut contents
Ok (contents)

}

fn main() {
// Ezecute a single async task
let res = executor::block_on(read_file_async("file.txt"));

}

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

| OF INFORMATICS
@ ROBOTICS AND .
cypcmmerics ROS & Rust details

Executors
ROS, C++ Asynchronous Rust
» Single-threaded executor » Executors are provided by async runtimes:
» Multi-threaded executor > Tokio — prefers throughput over time determinism
» Events executor » Futures — simpler, suitable for real-time

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

o8 Roserictis ROS & Rust details

Executors
ROS, C++ Asynchronous Rust
» Single-threaded executor » Executors are provided by async runtimes:
» Multi-threaded executor > Tokio — prefers throughput over time determinism
» Events executor » Futures — simpler, suitable for real-time

> Tokio executor
> Futures local executor (single-threaded)
> Futures thread-pool executor (multiple-threads)

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

| OF INFORMATICS
]@ ROBOTICS AND .
cypcmmerics ROS & Rust details

Executors
ROS, C++ Asynchronous Rust
» Single-threaded executor » Executors are provided by async runtimes:
» Multi-threaded executor » Tokio — prefers throughput over time determinism
» Events executor » Futures — simpler, suitable for real-time
» Tokio executor
> Futures local executor (single-threaded)
> Futures thread-pool executor (multiple-threads)
Main difference
ROS executors combine Rust async executors are responsible only for
» event sampling and > async task (callback) scheduling & execution.

» callback scheduling & execution.

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND o
CYBERNETICS Proposed R2R application structure
CTU IN PRAGUE

Content

Proposed R2R application structure

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

}@ CVBERNETICS. Proposed R2R application structure
CTU IN PRAGUE

Comparison of single-threaded ROS C++ executor and Rust R2R

C+

auto node = make_shared<rclcpp::Node>();
node->create_subscription<UInt64>("/A", 10, cb_A);
node->create_subscription<UInt64>("/B", 10, cb_B);
rclcpp::spin(node);

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

}% CVBERNETICS. Proposed R2R application structure

CTU IN PRAGUE

Comparison of single-threaded ROS C++ executor and Rust R2R

C+

auto node = make_shared<rclcpp::Node>();
node->create_subscription<UInt64>("/A", 10, cb_A);
node->create_subscription<UInt64>("/B", 10, cb_B);
rclcpp::spin(node);

Response-Time analysis:

[1] T. BlaB, D. Casini, S. Bozhko, and B. B.
Brandenburg, “A ROS 2 Response-Time Analysis
Exploiting Starvation Freedom and Execution-Time
Variance,” in 2021 |IEEE Real-Time Systems
Symposium (RTSS).

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

| OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

Proposed R2R application structure

Comparison of single-threaded ROS C++ executor and Rust R2R

C+

auto node = make_shared<rclcpp::Node>();
node->create_subscription<UInt64>("/A", 10, cb_A);
node->create_subscription<UInt64>("/B", 10, cb_B);
rclcpp::spin(node);

Response-Time analysis:

[1] T. BlaB, D. Casini, S. Bozhko, and B. B.
Brandenburg, “A ROS 2 Response-Time Analysis
Exploiting Starvation Freedom and Execution-Time
Variance,” in 2021 |IEEE Real-Time Systems
Symposium (RTSS).

R2R equivalent

let ctx = r2r::Context::create()?;
let mut node = r2r::Node::create(ctx, "example", "")?;

let stream_A = node.subscribe("/A", Qos::default())?;
spawner.spawn_local(stream_A.for_each(cb_A))?;
let stream_B = node.subscribe("/B", Qos::default())?;
spawner.spawn_local(stream_B.for_each(cb_B))?;
local_executor.run_until_stalled(); // init.
loop §
node.spin_once(Duration::seconds(1)); // sampling
local_executor.run_until_stalled(); // execution

M. Skoudlil et al.

A first look at ROS 2 applications written in asynchronous Rust

ECRTS'25

CZECH INSTITUTE

]@f CVBERNETICS. Proposed R2R application structure

CTU IN PRAGUE

Example of execution chain from publisher P to Rust R2R subscriber S

Time |_ """"""""""

publication | [publication |
Node P —{ B]—[A)
|
| ﬁ \r—]
DDS } send send
. T
writer P |
| n:t nit
DDS ! [Receive Receive
listener S| 1 L
e e
| — l * run_until_stalled
Node S | (. — handle ready ; :
R2R) | T spin_once entities: : CBi]‘:_
|
|

|
Topic B end-to-end latency |

The paper contains details and examples about R2R sampling and Rust async executor
scheduling.

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

g Shimenancs
@ CYBERNETICS Proposed R2R application structure

CTU IN PRAGUE

ROS C++ multi-threaded executor, callback groups

» Callback groups allow restricting callback execution (mutual exclusion, etc.)
P [t is possible to emulate multi-threaded executor and callback groups in Rust R2R.

» Details in the paper.

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

Proposed R2R application structure

ROS C++ multi-threaded executor, callback groups

» Callback groups allow restricting callback execution (mutual exclusion, etc.)
P [t is possible to emulate multi-threaded executor and callback groups in Rust R2R.
» Details in the paper.

» ROS C++ multi-threaded executor has various problems

In R2R one can do better...

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

}@ CVBERNETICS. Proposed R2R application structure

CTU IN PRAGUE

Proposed R2R application structure

fn main() -> Result<(), Box<dyn Error>> {

set_thread_priority_and_policy(1. Run the main thread with the

thread_native_id(), highest priority
ThreadPriority: :try_from(MAIN_PRIORITY)?, » Inherited by DDS threads
RealTime (Fifo), spawned from

)7, r2r::Node: :create()

P Used for ROS sampling
(node.spin_once()), i.e.
dispatching events from ROS
to Rust asynchronous

let ctx = r2r::Context::create()7;
let mut node = r2r::Node::create(ctx, "example", "")7;

executors
let subs = node.subscribe("/topic", Qos::default())?;
let future = subs.for_each(move |msg: Msg| async move { 2. Run Rust async executor(s)
// process msg executing callbacks in lower

D; priority thread(s)
spawn_in_thread(future, CALLBACK_PRIORITY);

» 1 thread = 1 executor

loop { » 1 executor = 0..n callbacks

node.spin_once (SPIN_TIMEOUT); // ROS sampling
¥

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

}% CVBERNETICS. Proposed R2R application structure

CTU IN PRAGUE

Proposed R2R application structure

fn main() -> Result<(), Box<dyn Error>> {
set_thread_priority_and_policy(

1. Run the main thread with the

thread_native_id(), highest priority
ThreadPriority: :try_from(MAIN_PRIORITY)?, » Inherited by DDS threads
RealTime (Fifo), spawned from

)7, r2r::Node: :create()

P Used for ROS sampling
(node.spin_once()), i.e.
dispatching events from ROS
to Rust asynchronous

let ctx = r2r::Context::create()7;
let mut node = r2r::Node::create(ctx, "example", "")7;

executors
let subs = node.subscribe("/topic", Qos::default())?;
let future = subs.for_each(move |msg: Msg| async move { 2. Run Rust async executor(s)
// process msg executing callbacks in lower

b; Lo
spawn_in_thread(future, CALLBACK_PRIORITY); priority thread(s)
» 1 thread = 1 executor
loop { » 1 executor = 0..n callbacks
node.spin_once (SPIN_TIMEOUT); // ROS sampling

}

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

}% CVBERNETICS. Proposed R2R application structure

CTU IN PRAGUE

Proposed R2R application structure

fn main() -> Result<(), Box<dyn Error>> {
set_thread_priority_and_policy(

1. Run the main thread with the

thread_native_id(), highest priority
ThreadPriority: :try_from(MAIN_PRIORITY)?, » Inherited by DDS threads
RealTime(Fifo), spawned from
)7 r2r::Node: :create()
P Used for ROS sampling
let ctx = r2r::Context::create()?; (node.spin_once()), i.e.
let mut node = r2r::Node::create(ctx, "example", "")7; dispatching events from ROS
to Rust asynchronous
executors
let subs = node.subscribe("/topic", Qos::default())?;
let future = subs.for_each(move |msg: Msg| async move { 2. Run Rust async executor(s)
// process msg executing callbacks in lower

b; Lo
spawn_in_thread(future, CALLBACK_PRIORITY); priority thread(s)
» 1 thread = 1 executor
loop { » 1 executor = 0..n callbacks
node.spin_once (SPIN_TIMEOUT); // ROS sampling

}

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

@ CVBERNETICS. Proposed R2R application structure

CTU IN PRAGUE

Proposed R2R application structure

fn main() -> Result<(), Box<dyn Error>> {
set_thread_priority_and_policy(

1. Run the main thread with the

thread_native_id(), highest priority
ThreadPriority: :try_from(MAIN_PRIORITY)?, » Inherited by DDS threads
RealTime(Fifo), spawned from
)73 r2r::Node: :create()
» Used for ROS sampling
let ctx = r2r::Context::create()?; (I_1°de'sl_)in—°n°eo)' e
let mut node = r2r::Node::create(ctx, "example", "")7; dispatching events from ROS
to Rust asynchronous
executors
let subs = node.subscribe("/topic", Qos::default())?;
let future = subs.for_each(move |msg: Msg| async move { 2. Run Rust async executor(s)
// process msg executing callbacks in lower

B; ority thread
spawn_in_thread (future, CALLBACK_PRIORITY); priority thread(s)

» 1 thread = 1 executor
loop { » 1 executor = 0..n callbacks

node.spin_once (SPIN_TIMEOUT); // ROS sampling

}

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

Proposed R2R application structure

fn main() -> Result<(), Box<dyn Error>> {
set_thread_priority_and_policy(

Proposed R2R application structure

1. Run the main thread with the

thread_native_id(), highest priority

ThreadPriority: :try_from(MAIN_PRIORITY)?, >
RealTime (Fifo),
)7?;

let ctx = r2r::Context::create()7;
let mut node = r2r::Node::create(ctx, "example", "")7;

Inherited by DDS threads
spawned from

r2r::Node: :create()

Used for ROS sampling
(node.spin_once()), i.e.
dispatching events from ROS
to Rust asynchronous

executors
let subs = node.subscribe("/topic", Qos::default())?;
let future = subs.for_each(move |msg: Msg| async move { 2. Run Rust async executor(s)
// process msg executing callbacks in lower

B
spawn_in_thread(future, CALLBACK_PRIORITY);

>

loop { >

node.spin_once (SPIN_TIMEOUT); // ROS sampling
¥

priority thread(s)

1 thread = 1 executor
1 executor = 0..n callbacks

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust

ECRTS'25

CZECH INSTITUTE

]@f CVBERNETICS. Proposed R2R application structure

CTU IN PRAGUE

The effect of running DDS & sampling with the highest priority

) DDS Highest priority Receive Receive
listener S
—
Node spin| Highest priority (. — handle ready
(R2R) LSp'”—Once antios . AB]
[
> Minimizes latency < Y A A v
Callbacks . .
(R2R) Time H H
— > : '

run_until_stalled

» Scheduling determined only by policies of Rust async executor and OS scheduler
» DDS & ROS sampling introduces just execution time overhead
> Similar effect as ROS events executor

» Simplest case: 1 callback per executor = only OS scheduler policy is relevant

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE
OF INFORMATICS
BOTICS AND

@ nﬁ%’ﬁfgﬁz Evaluation
Content

Evaluation

M. Skoudlil et al. A first look at ROS 2 applications writ: in asynchronous Rust ECRTS'25

Evaluation

Evaluation on synthetic benchmarks

> Five topics End-to-end
. latency

» C++ publisher

» Multiple subscriber implementations

» Linux, LT Tng trace processing

Topic # 1 2 3 4 5
Publisher period [ms] 10 20 50 100 200
Subscription callback execution time [ms] | 2 4 5 15 50

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

.| OF INFORMATICS
]@g ROBOTICS AND
CYBERNETICS i
CTU IN PRAGUE Evaluation

End-to-end latency — comparison with response-time analysis

200 1 T period & deadline BN tokio-rt I futures-join
T RTA I futures I futures-threadpool

— BN futures-2-threads FEEE tokio

150 4 rclcpp-rt I rclcpp-st I nort-tokio
o'
E
[}
£ 100
|_

50 1

0 .

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

Failing to set high priority of DDS threads

10000 200 A
nort-futures-rt %
1000 4+ futures-rt ,g 150 - pr—

S 100- 2 1001
)] =
'_

IOEEm i 1" F' 1 | IRET B 50

1 T T T T o =

0 20 40 60 1

M. Skoudlil et al.

Latency [ms]

A first look at ROS 2 applications written in asynchronous Rust

period
RTA

futures-rt

nort-futures-rt

ECRTS'25

CZECH INSTITUTE

.| OF INFORMATICS
@ ROBOTICS AND

CYBERNETICS i

CTU IN PRAGUE Evaluation

Complex autonomous driving case study
Simulation of Automated Lane-Keeping System (ALKS)

_Test vehicle

FlexRay bus “FlexRay bridge ™
> ' 3
() : rviz (C++)

Rust/C++ APl & Automated
. FlexRa
ROS topics [cARLA Flexray |90 Lane-Keeping o
dapter (R | > system - ALKS visualizer
adap FlexRay (R2R)
ROS messages (R2R)

ECRTS'25

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust

CZECH INSTITUTE

| OF INFORMATICS
ROBOTICS AND
CYBERNETICS

CTU IN PRAGUE

Evaluation

Complex autonomous driving case study
Simulation of Automated Lane-Keeping System (ALKS)

_Test vehicle

FlexRay bus “FlexRay bridge ™
> . |

++ - .

() odometry end-to-end latency rviz (C++)

Rust/C++ APl & Automated

f FlexRa
ROS topics (- cARLA FlexRay odom. 5| Lane-Keeping visualiz);r

adapter (R2R) »| System - ALKS

FlexRa R2R
ROS mességes (R2R) 2

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

.| OF INFORMATICS

@ ROBOTICS AND

CYBERNETICS .
CTU IN PRAGUE Evaluation

Complex autonomous driving case study
Simulation of Automated Lane-Keeping System (ALKS)

_Test vehicle
FlexRay bus “FlexRay bridge ™
> 3

(€) odometry end-to-end latency rviz (C++)

Rust/C++ AP| & Automated
X FlexRa
ROS topics (* caRLAFlexRay |__°9°™ | Lane-Keeping o
PR ﬁ? System - ALKS visualizer
ceER (R2R)

FlexRay
ROS messages (R2R)

Odometry source jitter
10000

1000
1004+
104+

145
0 - T T T

Source jitter

Count

Duration [ms]

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

.| OF INFORMATICS
@ ROBOTICS AND
CYBERNETICS .
CTU IN PRAGUE Evaluation

Complex autonomous driving case study
Simulation of Automated Lane-Keeping System (ALKS)

_Test vehicle
FlexRay bus “FlexRay bridge ™
> 3

(C++) //,

odometry end-to-end latency rviz (C++)

Rust/C++ AP| & Automated FloxR
. exRa!
ROS topics (* caRLAFlexRay |__°9°™ | Lane-Keeping Visua“:;r

adapter (R2R) FlexRay »| System - ALKS (R2R)
ROS messages (R2R)

Odometry source jitter ALKS callbacks
10000 10000 47
100041 Source jitter % 100 1+ Odometry
- o 14k
31010 10000 1 ' ' ' '
O 1 = =)
10 § 1004+ Timer
0 1 2 3 0 5 10 15 20
Duration [ms] Duration [ms]

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

.| OF INFORMATICS
]% ROBOTICS AND
CYBERNETICS .
CTU IN PRAGUE Evaluation

Complex autonomous driving case study
Simulation of Automated Lane-Keeping System (ALKS)

_Test vehicle

FlexRay bus “FlexRay bridge ™
>

(C++) //,

odometry end-to-end latency rviz (C++)

>
I

Rust/C++ AP| &
ROS topics

Automated

FlexRay
visualizer
(R2R)

odom.

CARLA FlexRay
adapter (R2R)

Lane-Keeping
System - ALKS
(R2R)

4
A

FlexRay
ROS messages

Odometry source jitter ALKS callbacks
10000 210000 17 — gs{;metry end-to-end latency
S ji 4.0 lometry
1000 4+ ource Jitter é 100 1 b Source jitter
€ 100 14 T T T T T - 1000 End-to-end latency
ug ,.10000 % 1004+
104+ § 1004+ Timer O 04
IR B 18 . Ly
0L . . , R & ; ; ; ; 14 4,—"—;'—-4-7“77
0 1 2 3 0 5 10 15 20 0 T T T
Duration [ms] Duration [ms] 0 1 2 3
Time [ms]

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

M. Skoudlil et A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

CZECH INSTITUTE

| OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

Conclusion

Conclusion

» Proposed structure of Rust R2R applications that can provide
deterministic timing, comparable to C++ ROS applications

» Examples and benchmarks available —

» Evaluated on two case studies

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

https://gitlab.ciirc.cvut.cz/skoudmar1/ros-r2r-analysis

CZECH INSTITUTE

| OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

Conclusion

Conclusion

» Proposed structure of Rust R2R applications that can provide
deterministic timing, comparable to C++ ROS applications

» Examples and benchmarks available —

» Evaluated on two case studies

Questions?

M. Skoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS'25

https://gitlab.ciirc.cvut.cz/skoudmar1/ros-r2r-analysis

	Introduction
	ROS & Rust details
	Proposed R2R application structure
	Evaluation
	Conclusion

