
A first look at ROS 2 applications written in asynchronous Rust

Martin Škoudlil, Michal Sojka, Zdeněk Hanzálek

Czech Technical University in Prague, Czech Republic

ECRTS’25, July 9, 2025
Brussels, Belgium

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 1 / 24

www.tacr.cz www.mdcr.cz

Introduction

Motivation – ALKS
Automated Lane-Keeping System

I Advanced Driver Assistance System
I Drives on highways up to 130 km/h
I SAE Level 3 – driver does not

need to pay attention
I EU regulation for ALKS approval

I University project with limited
resources

I Rust chosen to focus on developing
functionality instead of debugging
programming errors

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 2 / 24

Introduction

Rust

I Relatively new language
(Rust 1.0: 2015)

I Statically typed, compiled,
no runtime, expressive type
system,
(C++ successor?)

I Memory safety
I Lisp-like macros

(metaprogramming)

I Suitable for complex and
real-time applications

fn main() {
// 1. Ownership & Borrowing
let s = String::from("hello"); // s owns the String
print_length(&s); // passing by reference (borrowing)
println!("Still usable: {}", s); // s is still valid

// 2. Pattern Matching with `match`
let number = Some(7);
match number {

Some(n) if n > 5 => println!("Greater than 5: {}", n),
Some(n) => println!("Number: {}", n),
None => println!("No number"),

}

// 3. Safe Concurrency (using threads and move)
use std::thread;
let v = vec![1, 2, 3];
let handle = thread::spawn(move || {

println!("Vector from thread: {:?}", v);
});
handle.join().unwrap();

}

fn print_length(s: &String) {
println!("Length: {}", s.len());

}

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 3 / 24

Introduction

ROS

Source: https://arxiv.org/abs/2211.07752

I Software framework for distributed
robotic applications

I Open source, over 1500 packages
I ROS, ROS 2
I Linux, Windows, macOS
I C++, Python

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 4 / 24

https://arxiv.org/abs/2211.07752

Introduction

Rust & ROS

I Rust support in ROS is unofficial, supported only by the community.
I Several independent projects...

rclrs
https://github.com/ros2-rust/ros2_rust

I Rust client library modeled after its
C++ counterpart rclcpp

I Accompanied by tools like message
code generators

R2R
https://github.com/sequenceplanner/r2r/

I Glue between ROS and Rust
asynchronous execution frameworks

I Flexible, more features than rclrs
I How to use it for real-time

applications? Documentation and
examples give no answer

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 5 / 24

https://github.com/ros2-rust/ros2_rust
https://github.com/sequenceplanner/r2r/

Introduction

Detailed comparison of rclcpp, R2R and rclrs
Group Feature rclcpp

(C++) R2R rclrs

Communication Message generation
Publishers and subscriptions
Loaned messages (zero-copy)
Tunable QoS settings
Clients and services
Actions 1

Dynamic type support
Parameters Parameter handling

Parameter ranges
Parameter locking none per-node per-parameter
Derived parameters

Time Timers
Simulated time
Tracepoints 3

Executors Single-threaded 4

Multi-threaded 4

Asynchronous programming style
Other Composable nodes

Lifecycle nodes

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 6 / 24

Introduction

Detailed comparison of rclcpp, R2R and rclrs
Group Feature rclcpp

(C++) R2R rclrs

Communication Message generation
Publishers and subscriptions
Loaned messages (zero-copy)
Tunable QoS settings
Clients and services
Actions 1

Dynamic type support
Parameters Parameter handling

Parameter ranges
Parameter locking none per-node per-parameter
Derived parameters

Time Timers
Simulated time
Tracepoints 3

Executors Single-threaded 4

Multi-threaded 4

Asynchronous programming style
Other Composable nodes

Lifecycle nodes

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 6 / 24

https://github.com/skoudmar/
Ros2TraceAnalyzer

https://github.com/skoudmar/Ros2TraceAnalyzer
https://github.com/skoudmar/Ros2TraceAnalyzer

Introduction

Goals of this work

I Find out how to structure R2R applications to be suitable for deterministic
real-time operation

I Investigate the execution model of Rust asynchronous runtimes
I Evaluate real-time properties of R2R on:

I Simple synthetic application
I Real-world autonomous driving application

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 7 / 24

ROS & Rust details

Content

Introduction

ROS & Rust details

Proposed R2R application structure

Evaluation

Conclusion

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 8 / 24

ROS & Rust details

ROS architecture

C++ code (ROS nodes)

rclcpp
C++ API

ROS 2 Client Library (rcl), C API

Fast
DDS

Cyclone
DDS

Zenohor or

ROS Middleware Interface (rmw)

Linux Windows macOS RTOSororor

Application Layer

ROS 2 Client Layer

Abstract DDS Layer

DDS Implementation Layer

Operating System Layer

iceoryxor

Rust code (ROS nodes)

R2R
Rust API

Rust async
run-time

(Tokio, futures, …)

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 9 / 24

ROS & Rust details

ROS architecture

C++ code (ROS nodes)

rclcpp
C++ API

ROS 2 Client Library (rcl), C API

Fast
DDS

Cyclone
DDS

Zenohor or

ROS Middleware Interface (rmw)

Linux Windows macOS RTOSororor

Application Layer

ROS 2 Client Layer

Abstract DDS Layer

DDS Implementation Layer

Operating System Layer

iceoryxor

Rust code (ROS nodes)

R2R
Rust API

Rust async
run-time

(Tokio, futures, …)

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 9 / 24

ROS & Rust details

Asynchronous Rust

I A form of concurrent
programming

I Scheduling decisions in user
space, in cooperative manner

I Language support: async, await
I Compiler creates multiple

schedulable entities from linear
code

I Executors – schedule and execute
async tasks

// Synchronous code
fn read_file_sync(path: &str) -> io::Result<String> {

let mut file = File::open(path)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
Ok(contents)

}

// Asynchronous code
async fn read_file_async(path: &str) -> io::Result<String> {

let mut file = File::open(path).await?;
let mut contents = String::new();
file.read_to_string(&mut contents).await?;
Ok(contents)

}

fn main() {
// Execute a single async task
let res = executor::block_on(read_file_async("file.txt"));

}

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 10 / 24

ROS & Rust details

Asynchronous Rust

I A form of concurrent
programming

I Scheduling decisions in user
space, in cooperative manner

I Language support: async, await
I Compiler creates multiple

schedulable entities from linear
code

I Executors – schedule and execute
async tasks

// Synchronous code
fn read_file_sync(path: &str) -> io::Result<String> {

let mut file = File::open(path)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
Ok(contents)

}

// Asynchronous code
async fn read_file_async(path: &str) -> io::Result<String> {

let mut file = File::open(path).await?;
let mut contents = String::new();
file.read_to_string(&mut contents).await?;
Ok(contents)

}

fn main() {
// Execute a single async task
let res = executor::block_on(read_file_async("file.txt"));

}

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 10 / 24

ROS & Rust details

Executors

ROS, C++
I Single-threaded executor
I Multi-threaded executor
I Events executor

Asynchronous Rust
I Executors are provided by async runtimes:

I Tokio – prefers throughput over time determinism
I Futures – simpler, suitable for real-time

I Tokio executor
I Futures local executor (single-threaded)
I Futures thread-pool executor (multiple-threads)

Main difference
ROS executors combine
I event sampling and
I callback scheduling & execution.

Rust async executors are responsible only for
I async task (callback) scheduling & execution.

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 11 / 24

ROS & Rust details

Executors

ROS, C++
I Single-threaded executor
I Multi-threaded executor
I Events executor

Asynchronous Rust
I Executors are provided by async runtimes:

I Tokio – prefers throughput over time determinism
I Futures – simpler, suitable for real-time

I Tokio executor
I Futures local executor (single-threaded)
I Futures thread-pool executor (multiple-threads)

Main difference
ROS executors combine
I event sampling and
I callback scheduling & execution.

Rust async executors are responsible only for
I async task (callback) scheduling & execution.

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 11 / 24

ROS & Rust details

Executors

ROS, C++
I Single-threaded executor
I Multi-threaded executor
I Events executor

Asynchronous Rust
I Executors are provided by async runtimes:

I Tokio – prefers throughput over time determinism
I Futures – simpler, suitable for real-time

I Tokio executor
I Futures local executor (single-threaded)
I Futures thread-pool executor (multiple-threads)

Main difference
ROS executors combine
I event sampling and
I callback scheduling & execution.

Rust async executors are responsible only for
I async task (callback) scheduling & execution.

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 11 / 24

Proposed R2R application structure

Content

Introduction

ROS & Rust details

Proposed R2R application structure

Evaluation

Conclusion

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 12 / 24

Proposed R2R application structure

Comparison of single-threaded ROS C++ executor and Rust R2R

C++

auto node = make_shared<rclcpp::Node>();

node->create_subscription<UInt64>("/A", 10, cb_A);

node->create_subscription<UInt64>("/B", 10, cb_B);

rclcpp::spin(node);

Response-Time analysis:
[1] T. Blaß, D. Casini, S. Bozhko, and B. B.
Brandenburg, “A ROS 2 Response-Time Analysis
Exploiting Starvation Freedom and Execution-Time
Variance,” in 2021 IEEE Real-Time Systems
Symposium (RTSS).

R2R equivalent

let ctx = r2r::Context::create()?;

let mut node = r2r::Node::create(ctx, "example", "")?;

let stream_A = node.subscribe("/A", Qos::default())?;

spawner.spawn_local(stream_A.for_each(cb_A))?;

let stream_B = node.subscribe("/B", Qos::default())?;

spawner.spawn_local(stream_B.for_each(cb_B))?;

local_executor.run_until_stalled(); // init.

loop {

node.spin_once(Duration::seconds(1)); // sampling

local_executor.run_until_stalled(); // execution

}

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 13 / 24

Proposed R2R application structure

Comparison of single-threaded ROS C++ executor and Rust R2R

C++

auto node = make_shared<rclcpp::Node>();

node->create_subscription<UInt64>("/A", 10, cb_A);

node->create_subscription<UInt64>("/B", 10, cb_B);

rclcpp::spin(node);

Response-Time analysis:
[1] T. Blaß, D. Casini, S. Bozhko, and B. B.
Brandenburg, “A ROS 2 Response-Time Analysis
Exploiting Starvation Freedom and Execution-Time
Variance,” in 2021 IEEE Real-Time Systems
Symposium (RTSS).

R2R equivalent

let ctx = r2r::Context::create()?;

let mut node = r2r::Node::create(ctx, "example", "")?;

let stream_A = node.subscribe("/A", Qos::default())?;

spawner.spawn_local(stream_A.for_each(cb_A))?;

let stream_B = node.subscribe("/B", Qos::default())?;

spawner.spawn_local(stream_B.for_each(cb_B))?;

local_executor.run_until_stalled(); // init.

loop {

node.spin_once(Duration::seconds(1)); // sampling

local_executor.run_until_stalled(); // execution

}

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 13 / 24

Proposed R2R application structure

Comparison of single-threaded ROS C++ executor and Rust R2R

C++

auto node = make_shared<rclcpp::Node>();

node->create_subscription<UInt64>("/A", 10, cb_A);

node->create_subscription<UInt64>("/B", 10, cb_B);

rclcpp::spin(node);

Response-Time analysis:
[1] T. Blaß, D. Casini, S. Bozhko, and B. B.
Brandenburg, “A ROS 2 Response-Time Analysis
Exploiting Starvation Freedom and Execution-Time
Variance,” in 2021 IEEE Real-Time Systems
Symposium (RTSS).

R2R equivalent

let ctx = r2r::Context::create()?;

let mut node = r2r::Node::create(ctx, "example", "")?;

let stream_A = node.subscribe("/A", Qos::default())?;

spawner.spawn_local(stream_A.for_each(cb_A))?;

let stream_B = node.subscribe("/B", Qos::default())?;

spawner.spawn_local(stream_B.for_each(cb_B))?;

local_executor.run_until_stalled(); // init.

loop {

node.spin_once(Duration::seconds(1)); // sampling

local_executor.run_until_stalled(); // execution

}

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 13 / 24

Proposed R2R application structure

Example of execution chain from publisher P to Rust R2R subscriber S

Node P

net

publication
B

Node S
(R2R) waitspin_once handle ready

entities: CB AA B CB B

run_until_stalled

DDS
listener S

DDS
writer P send

Receive

net

Receive

Time

Topic B end-to-end latency

publication
A

send

The paper contains details and examples about R2R sampling and Rust async executor
scheduling.

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 14 / 24

Proposed R2R application structure

ROS C++ multi-threaded executor, callback groups

I Callback groups allow restricting callback execution (mutual exclusion, etc.)
I It is possible to emulate multi-threaded executor and callback groups in Rust R2R.
I Details in the paper.

I ROS C++ multi-threaded executor has various problems

In R2R one can do better...

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 15 / 24

Proposed R2R application structure

ROS C++ multi-threaded executor, callback groups

I Callback groups allow restricting callback execution (mutual exclusion, etc.)
I It is possible to emulate multi-threaded executor and callback groups in Rust R2R.
I Details in the paper.

I ROS C++ multi-threaded executor has various problems

In R2R one can do better...

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 15 / 24

Proposed R2R application structure

Proposed R2R application structure
fn main() -> Result<(), Box<dyn Error>> {

set_thread_priority_and_policy(
thread_native_id(),
ThreadPriority::try_from(MAIN_PRIORITY)?,
RealTime(Fifo),

)?;

let ctx = r2r::Context::create()?;
let mut node = r2r::Node::create(ctx, "example", "")?;

let subs = node.subscribe("/topic", Qos::default())?;
let future = subs.for_each(move |msg: Msg| async move {

// process msg
});
spawn_in_thread(future, CALLBACK_PRIORITY);

loop {
node.spin_once(SPIN_TIMEOUT); // ROS sampling

}
}

1. Run the main thread with the
highest priority

I Inherited by DDS threads
spawned from
r2r::Node::create()

I Used for ROS sampling
(node.spin_once()), i.e.
dispatching events from ROS
to Rust asynchronous
executors

2. Run Rust async executor(s)
executing callbacks in lower
priority thread(s)

I 1 thread = 1 executor
I 1 executor = 0..n callbacks

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 16 / 24

Proposed R2R application structure

Proposed R2R application structure
fn main() -> Result<(), Box<dyn Error>> {

set_thread_priority_and_policy(
thread_native_id(),
ThreadPriority::try_from(MAIN_PRIORITY)?,
RealTime(Fifo),

)?;

let ctx = r2r::Context::create()?;
let mut node = r2r::Node::create(ctx, "example", "")?;

let subs = node.subscribe("/topic", Qos::default())?;
let future = subs.for_each(move |msg: Msg| async move {

// process msg
});
spawn_in_thread(future, CALLBACK_PRIORITY);

loop {
node.spin_once(SPIN_TIMEOUT); // ROS sampling

}
}

1. Run the main thread with the
highest priority

I Inherited by DDS threads
spawned from
r2r::Node::create()

I Used for ROS sampling
(node.spin_once()), i.e.
dispatching events from ROS
to Rust asynchronous
executors

2. Run Rust async executor(s)
executing callbacks in lower
priority thread(s)

I 1 thread = 1 executor
I 1 executor = 0..n callbacks

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 16 / 24

Proposed R2R application structure

Proposed R2R application structure
fn main() -> Result<(), Box<dyn Error>> {

set_thread_priority_and_policy(
thread_native_id(),
ThreadPriority::try_from(MAIN_PRIORITY)?,
RealTime(Fifo),

)?;

let ctx = r2r::Context::create()?;
let mut node = r2r::Node::create(ctx, "example", "")?;

let subs = node.subscribe("/topic", Qos::default())?;
let future = subs.for_each(move |msg: Msg| async move {

// process msg
});
spawn_in_thread(future, CALLBACK_PRIORITY);

loop {
node.spin_once(SPIN_TIMEOUT); // ROS sampling

}
}

1. Run the main thread with the
highest priority

I Inherited by DDS threads
spawned from
r2r::Node::create()

I Used for ROS sampling
(node.spin_once()), i.e.
dispatching events from ROS
to Rust asynchronous
executors

2. Run Rust async executor(s)
executing callbacks in lower
priority thread(s)

I 1 thread = 1 executor
I 1 executor = 0..n callbacks

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 16 / 24

Proposed R2R application structure

Proposed R2R application structure
fn main() -> Result<(), Box<dyn Error>> {

set_thread_priority_and_policy(
thread_native_id(),
ThreadPriority::try_from(MAIN_PRIORITY)?,
RealTime(Fifo),

)?;

let ctx = r2r::Context::create()?;
let mut node = r2r::Node::create(ctx, "example", "")?;

let subs = node.subscribe("/topic", Qos::default())?;
let future = subs.for_each(move |msg: Msg| async move {

// process msg
});
spawn_in_thread(future, CALLBACK_PRIORITY);

loop {
node.spin_once(SPIN_TIMEOUT); // ROS sampling

}
}

1. Run the main thread with the
highest priority

I Inherited by DDS threads
spawned from
r2r::Node::create()

I Used for ROS sampling
(node.spin_once()), i.e.
dispatching events from ROS
to Rust asynchronous
executors

2. Run Rust async executor(s)
executing callbacks in lower
priority thread(s)

I 1 thread = 1 executor
I 1 executor = 0..n callbacks

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 16 / 24

Proposed R2R application structure

Proposed R2R application structure
fn main() -> Result<(), Box<dyn Error>> {

set_thread_priority_and_policy(
thread_native_id(),
ThreadPriority::try_from(MAIN_PRIORITY)?,
RealTime(Fifo),

)?;

let ctx = r2r::Context::create()?;
let mut node = r2r::Node::create(ctx, "example", "")?;

let subs = node.subscribe("/topic", Qos::default())?;
let future = subs.for_each(move |msg: Msg| async move {

// process msg
});
spawn_in_thread(future, CALLBACK_PRIORITY);

loop {
node.spin_once(SPIN_TIMEOUT); // ROS sampling

}
}

1. Run the main thread with the
highest priority

I Inherited by DDS threads
spawned from
r2r::Node::create()

I Used for ROS sampling
(node.spin_once()), i.e.
dispatching events from ROS
to Rust asynchronous
executors

2. Run Rust async executor(s)
executing callbacks in lower
priority thread(s)

I 1 thread = 1 executor
I 1 executor = 0..n callbacks

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 16 / 24

Proposed R2R application structure

The effect of running DDS & sampling with the highest priority

Node spin
(R2R)

waitspin_once handle ready
entities:

cb_A

A B

run_until_stalled

DDS
listener S

Receive Receive

Time

Highest priority

Highest priority

Minimizes latency
Callbacks

(R2R)
cb_B

I Scheduling determined only by policies of Rust async executor and OS scheduler
I DDS & ROS sampling introduces just execution time overhead
I Similar effect as ROS events executor
I Simplest case: 1 callback per executor ⇒ only OS scheduler policy is relevant

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 17 / 24

Evaluation

Content

Introduction

ROS & Rust details

Proposed R2R application structure

Evaluation

Conclusion

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 18 / 24

Evaluation

Evaluation on synthetic benchmarks

I Five topics
I C++ publisher
I Multiple subscriber implementations
I Linux, LTTng trace processing

Topic # 1 2 3 4 5
Publisher period [ms] 10 20 50 100 200
Subscription callback execution time [ms] 2 4 5 15 50

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 19 / 24

/topic_1

Publisher

Node: /publisher

Subscriber

Node: /subscriber

/topic_5

Publisher

Subscriber

End-to-end
latency

Evaluation

End-to-end latency – comparison with response-time analysis

1 2 3 4 5
Topic

0

50

100

150

200

Ti
m

e
[m

s]

period & deadline
RTA
futures-rt
rclcpp-rt

tokio-rt
futures
futures-2-threads
rclcpp-st

futures-join
futures-threadpool
tokio
nort-tokio

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 20 / 24

Evaluation

Failing to set high priority of DDS threads

0 20 40 60
Latency [ms]

1

10

100

1000

10000

Co
un

t

nort-futures-rt
futures-rt

1 2 3 4 5
Topic

0

50

100

150

200

Ti
m

e
[m

s]

period
RTA
futures-rt
nort-futures-rt

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 21 / 24

Evaluation

Complex autonomous driving case study
Simulation of Automated Lane-Keeping System (ALKS)

CARLA simulator Rust/C++ API &
ROS topics

Test vehicle
FlexRay bus

CARLA FlexRay
adapter (R2R)

Automated
Lane-Keeping
System – ALKS

(R2R)

FlexRay
visualizer

(R2R)

odom.

rviz (C++)

FlexRay bridge
(C++)

odom.

FlexRay
ROS messages

odometry end-to-end latency

Odometry source jitter

0 1 2 3
Duration [ms]

0
1

10
100

1000
10000

Co
un

t

Source jitter

ALKS callbacks

1
100

10000

Co
un

t

Odometry

0 5 10 15 20
Duration [ms]

1
100

10000

Co
un

t

Timer

Odometry end-to-end latency

0 1 2 3
Time [ms]

0
1

10
100

1000
10000

Co
un

t

Source jitter
End-to-end latency

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 22 / 24

Evaluation

Complex autonomous driving case study
Simulation of Automated Lane-Keeping System (ALKS)

CARLA simulator Rust/C++ API &
ROS topics

Test vehicle
FlexRay bus

CARLA FlexRay
adapter (R2R)

Automated
Lane-Keeping
System – ALKS

(R2R)

FlexRay
visualizer

(R2R)

odom.

rviz (C++)

FlexRay bridge
(C++)

odom.

FlexRay
ROS messages

odometry end-to-end latency

Odometry source jitter

0 1 2 3
Duration [ms]

0
1

10
100

1000
10000

Co
un

t

Source jitter

ALKS callbacks

1
100

10000

Co
un

t

Odometry

0 5 10 15 20
Duration [ms]

1
100

10000

Co
un

t

Timer

Odometry end-to-end latency

0 1 2 3
Time [ms]

0
1

10
100

1000
10000

Co
un

t

Source jitter
End-to-end latency

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 22 / 24

Evaluation

Complex autonomous driving case study
Simulation of Automated Lane-Keeping System (ALKS)

CARLA simulator Rust/C++ API &
ROS topics

Test vehicle
FlexRay bus

CARLA FlexRay
adapter (R2R)

Automated
Lane-Keeping
System – ALKS

(R2R)

FlexRay
visualizer

(R2R)

odom.

rviz (C++)

FlexRay bridge
(C++)

odom.

FlexRay
ROS messages

odometry end-to-end latency

Odometry source jitter

0 1 2 3
Duration [ms]

0
1

10
100

1000
10000

Co
un

t

Source jitter

ALKS callbacks

1
100

10000

Co
un

t

Odometry

0 5 10 15 20
Duration [ms]

1
100

10000

Co
un

t

Timer

Odometry end-to-end latency

0 1 2 3
Time [ms]

0
1

10
100

1000
10000

Co
un

t

Source jitter
End-to-end latency

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 22 / 24

Evaluation

Complex autonomous driving case study
Simulation of Automated Lane-Keeping System (ALKS)

CARLA simulator Rust/C++ API &
ROS topics

Test vehicle
FlexRay bus

CARLA FlexRay
adapter (R2R)

Automated
Lane-Keeping
System – ALKS

(R2R)

FlexRay
visualizer

(R2R)

odom.

rviz (C++)

FlexRay bridge
(C++)

odom.

FlexRay
ROS messages

odometry end-to-end latency

Odometry source jitter

0 1 2 3
Duration [ms]

0
1

10
100

1000
10000

Co
un

t

Source jitter

ALKS callbacks

1
100

10000
Co

un
t

Odometry

0 5 10 15 20
Duration [ms]

1
100

10000

Co
un

t

Timer

Odometry end-to-end latency

0 1 2 3
Time [ms]

0
1

10
100

1000
10000

Co
un

t

Source jitter
End-to-end latency

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 22 / 24

Evaluation

Complex autonomous driving case study
Simulation of Automated Lane-Keeping System (ALKS)

CARLA simulator Rust/C++ API &
ROS topics

Test vehicle
FlexRay bus

CARLA FlexRay
adapter (R2R)

Automated
Lane-Keeping
System – ALKS

(R2R)

FlexRay
visualizer

(R2R)

odom.

rviz (C++)

FlexRay bridge
(C++)

odom.

FlexRay
ROS messages

odometry end-to-end latency

Odometry source jitter

0 1 2 3
Duration [ms]

0
1

10
100

1000
10000

Co
un

t

Source jitter

ALKS callbacks

1
100

10000
Co

un
t

Odometry

0 5 10 15 20
Duration [ms]

1
100

10000

Co
un

t

Timer

Odometry end-to-end latency

0 1 2 3
Time [ms]

0
1

10
100

1000
10000

Co
un

t

Source jitter
End-to-end latency

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 22 / 24

Evaluation

Videos

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 23 / 24

Conclusion

Conclusion

I We analyzed scheduling policies of Rust asynchronous runtimes
I Proposed structure of Rust R2R applications that can provide

deterministic timing, comparable to C++ ROS applications
I Examples and benchmarks available →
I Evaluated on two case studies

Questions?

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 24 / 24

https://gitlab.ciirc.cvut.cz/skoudmar1/ros-r2r-analysis

Conclusion

Conclusion

I We analyzed scheduling policies of Rust asynchronous runtimes
I Proposed structure of Rust R2R applications that can provide

deterministic timing, comparable to C++ ROS applications
I Examples and benchmarks available →
I Evaluated on two case studies

Questions?

M. Škoudlil et al. A first look at ROS 2 applications written in asynchronous Rust ECRTS’25 24 / 24

https://gitlab.ciirc.cvut.cz/skoudmar1/ros-r2r-analysis

	Introduction
	ROS & Rust details
	Proposed R2R application structure
	Evaluation
	Conclusion

