
CZECH TECHNICAL UNIVERSITY IN PRAGUE
Faculty of Electrotechnical Engineering

Department of Control Engineering

Benchmark of Real-Time Java
implementations

Diploma Thesis

Bc. Michal Janoušek

Vedoucí práce: Ing. Michal Sojka, Ph.D.

January 2012

About this document
This document has been generated with RenderX XEP.
					Visit http://www.renderx.com/ to learn more about
					RenderX family of software solutions for digital
					typography.

Abstract
Diploma thesis is concerned with programming real-time systems. It is focusing on
use of Java programming language in real-time systems. The base part is reprogramming
algorithm for Monte-Carlo localization (MCL) of robots from C language to Java. The
main goal is to create methodology for comparison of different implementations of RT
Java. The part of thesis is development of benchmark application, which is based on
MCL algorithm and its outputs are used for the comparison.

In the next part is described analysis of application requirements and reasons for
use of individual technologies. Description of realization of benchmark development,
its single parts and design of web interface for comparison of results and publication
as open source project is described too.

Thesis contains final benchmark application andmentions the possibilities of further
development.

Abstrakt
Diplomová práce se zabývá programováním systémů realného času. Zaměřuje se na
využití jazyka Java v systémech reálného času. Základem je přeprogramování algoritmu
pro Monte-Carlo lokalizaci (MCL) robotů z jazyku C do Javy. Cílem je vytvoření met-
odologie pro porovnání jednotlivých implementací RT Javy. Součástí práce je vývoj
benchmarkové aplikace jejíž základem je MCL algoritmus.

V další části je popsána na analýzu požadavků na aplikaci a důvody pro použití
jednotlivých technologií. Součástí je také popis realizace vývoje aplikace, jednotlivých
částí, popis webového rozhraní pro porovnávání výsledků a zveřejnění jako open
source projektu.

Práce obsahuje výslednou benchmarkovou aplikaci a zmiňuje se o možnostech
budoucího vývoje.

Acknowledgment
I would like to thankmy advisorMr. Ing.Michal Sojka, Ph.D., who had enough patience
and made possible to create this work. I would to thank Tomáš Kalibera, Ph.D., who
has experiences with RTSJ and provided me help. I can not leave out my parents, i
would like to thank them for their support.

Declaration
I hereby declare that following thesis ismy ownwork and I used only sources (literature,
projects, SW etc.) quoted in enclosed reference list.

In Prague, January 1, 2012 Bc. Michal Janoušek

.

Zadání

Table of Contents
1. Introduction .. 1
2. Real-Time Systems Programming ... 3

2.1. Classification of Real-Time Systems .. 4
2.1.1. Non Real-Time System ... 4
2.1.2. Soft Real-Time System .. 5
2.1.3. Hard Real-Time System .. 6
2.1.4. Classification of Scheduling Problems ... 7

2.2. Real-Time Specification for Java (RTSJ) .. 7
2.2.1. Scheduling .. 9
2.2.2. Memory Management and Models .. 11
2.2.3. Real-Time Garbage Collection ... 13
2.2.4. Real-Time Threads and Handlers ... 14

3. Benchmark Description and Metrics .. 18
3.1. Robot Position Localization .. 18

3.1.1. Monte-Carlo Localization ... 19
3.1.2. Robot Playground ... 21

3.2. Benchmark Description ... 23
3.2.1. Skipping of Jobs ... 25
3.2.2. Termination of Jobs ... 25
3.2.3. Format of Input Data .. 25

3.3. Metrics .. 26
3.3.1. Deadline Miss (missCount) .. 26
3.3.2. Latency .. 27
3.3.3. Jitter ... 27
3.3.4. Average Error of Estimated Position .. 27
3.3.5. .. 27

4. jMCLBench Application ... 28
4.1. Technology .. 28

4.1.1. Integrated Development Environment .. 29
4.1.2. Version Control System .. 29
4.1.3. Types of JVM .. 29
4.1.4. Work with Charts .. 30
4.1.5. Presentation Layer ... 32
4.1.6. Real-time OS ... 32

4.2. Description and Subprojects ... 35
4.2.1. Algorithm Rewriting ... 36
4.2.2. Projects Structure ... 37
4.2.3. Repository Structure ... 37
4.2.4. Plain Java Versions .. 38
4.2.5. RTSJ Versions ... 39
4.2.6. Building Benchmark ... 41

4.3. Benchmark output .. 41
4.3.1. Folder Structure ... 42
4.3.2. Graphs ... 43

i

4.4. Presentation and Testing ... 47
4.4.1. Web layer .. 47
4.4.2. Testing ... 48

5. JVM Evaluation .. 50
5.1. aicas - JamaicaVM (Jamaica) ... 50

5.1.1. Deviation and MissCount .. 50
5.1.2. Task Latency and Release Jitter ... 51

5.2. IBMWebSphere Real Time for RT Linux (IBM) ... 52
5.2.1. Deviation and MissCount .. 53
5.2.2. Task Latency and Release Jitter ... 54

5.3. Sun Java Real-Time System 2.2 (Oracle) ... 55
5.3.1. Tests on Generic Kernel .. 55
5.3.2. Tests on RT Kernel ... 57

5.4. Comparison of JVM .. 59
5.4.1. Pure Hard Real-time JVM .. 59
5.4.2. Comparison of All JVM .. 60

6. Conclusion .. 62
Literature .. 64
A. Contents of CD ... 66

ii

Table of Contents

List of Figures
2.1. Non Real-time system .. 5
2.2. Soft Real-time system ... 6
2.3. Hard Real-time system .. 7
2.4. The class diagram of Schedulable objects from [5] .. 10
2.5. The class diagram of MemoryArea objects from [5] ... 12
2.6. The class diagram of AsyncEvent objects from [5] .. 16
3.1. Robot playground .. 21
3.2. Description of parameters from [12] .. 23
3.3. Occurrence of events .. 25
4.1. Example of chart generated using JFreeChart ... 31
4.2. Histogram verifying Gaussian distribution. ... 31
4.3. Example of chart generated by gnuplot .. 32
4.4. Example of XY points graph ... 44
4.5. Example of XY lines graph .. 45
4.6. Example of comparison graph .. 46
4.7. Example of histogram with errors ... 47
4.8. Screenshot of web application for comparison .. 48
5.1. Histogram for skipping of tasks test .. 50
5.2. Histogram for termination of tasks test .. 51
5.3. Histogram of average task latency and release jitter for SkipTest 52
5.4. Histogram of average task latency and release jitter for TermTest 52
5.5. Histogram for skipping of tasks test .. 53
5.6. Histogram of average task latency and release jitter for SkipTest 54
5.7. Graph of task processing distribution of 2000 particles ... 54
5.8. Histogram for skipping of tasks test .. 55
5.9. Histogram for termination of tasks test .. 56
5.10. Graph of task processing distribution of 100 particles ... 56
5.11. Graph of task processing distribution of 2000 particles 57
5.12. Histogram for skipping of tasks test .. 57
5.13. Histogram for termination of tasks test .. 58
5.14. Histogram for skipping of tasks test .. 58
5.15. Histogram for termination of tasks test .. 59
5.16. Histogram of average missCount .. 59
5.17. Histogram of average missCount .. 60
5.18. Histogram of average release jitter .. 60
5.19. Histogram of average task latency ... 61

i

List of Examples
3.1. Line of odometry data example ... 26
3.2. Line of laser data example .. 26

i

Chapter 1

Introduction

In this time control engineering and real-time systems are very interesting parts of
computer science. There is big space for research and development in this area. The
number of devices with embedded microprocessor is increasing rapidly. This devices
are managing different tasks in our live and have to be programmed properly. They
are more or less real-time oriented, which does not necessarily mean, that they have
to be programmed like real-time systems. But for some applications the usage of real-
time programing is essential, so the programmers should have to do their job with this
in mind. Programming applications for real time systems has its own specifics and all
of programming languages are not usable for this purpose.

For real-time applications are usually used C based languages such as Real-Time
POSIX programming language and there are some specialized languages such as ADA
95. Some program developers are trying to use Java, because Java is very popular and
widely used language. Java programmers believe, that is possible to use their beloved
language to program everything.

Java has a lot of advantages for programmers. Applications are typically compiled
to bytecode (class file) that can run on any Java Virtual Machine (JVM) regardless of
computer architecture. Java is a general-purpose, concurrent, object-oriented language
that is specifically designed to have as few implementation dependencies as possible.
It is intended to let application developers use the "write once, run anywhere"(WORA)
principle. Java is currently one of the most popular programming languages in use,
and is widely used from application software to web applications. [1] JVMs are desig-
nated for high throughput, because Java is widely used for web applications develop-
ment and throughput is very important requirement in usage on the web. But there
are another JVM implementations focused on different parameters. For example there
is Dalvik JVM from Google used in Google's Android operating system (OS) for em-
bedded devices (smartphones, tablets, etc.). So programmerswant to use Java, because
it is well-known language and they want to use what they like and know, nevertheless
its not fully suitable for all purposes.

There is conflict between the speed of Java programs and timing requirements in
real-time systems. Standard edition of Java (Java SE) is not fully capable to satisfy re-
quirements of soft or hard real time systems. So there is a specification of Java called
Real-Time Specification for Java (RTSJ), which extends standard Java with package
javax.realtime. There is not only one implementation of RTSJ, so it is possible to compare
different implementations of big companies like IBM or Oracle (Sun Microsystems).

1

Applications include embedded systems (thermostats, controllers), robotics, industry
and science. Embedded systems are my study specialization, so it is one of the reasons
why choose this topic. When I will have to program such system it will be good to
know something about real-time programming. So I wanted to know what real-time
Java means and how to use it. This led me to the writing of this thesis. When I was
finding the subject of this work, I knew, that it should be something connected with
Java. Of course I could not forget about embedded system, and that is why i chose this
topic.

Hard real-time applications had to be run on systems,which are optimized for real-
time. This type of OS is called real-time operating system (RTOS).

In this workwasmy goal to develop the benchmark application as free open source
software, which can be used by everyone, who is interested in this area. It should
provide the comparison between different JVM and show us some information about
performance of RTSJ implementations. I am trying to introduce the developing of this
benchmark application and explain why I do something or not. But not only this
benchmark will be product of this work. Very important is the interpretation of
benchmark outputs. Interpretation is a part of this thesis and the outputs can be found
on the web pages of this project. On this pages are the graphs and measured data for
simpler comparison. I tried to use only free and open source applications and software
in thiswork. SomeReal-Time JVMs are not free of charge, because real time applications
are lucrative business for companies. There are implementations with limited time of
usage or you can get some with academic license, after proving that you are using it
for research. So I do not have to pay for tested implementations.

Benchmark application developed in this thesis is based onMonteCarlo Localization
(MCL) algorithm. The real-time models part in this application is in the receiving data
from sensors. When a sensor receive data specific event occurs, which is processed by
the application. Data are used to predict and update the position of a robot, which
moves on a defined playground. For good results of applications in real-time systems
is important the utilization of sensor data on time (before the next event occurs). MCL
algorithm is not so dependant on precise timings. It works well with some deadline
misses, but we can use this model for comparison in benchmark.

This thesis brings a view on different implementations of real-time Java virtual
machines and trying to compare their performance. The results could be used for
finding out how good is real-time Javas performance in general opposite to others real-
time languages.

The remainder of this thesis is organized as follows: in the next section is introduced
real-time systems programming. In Section 3 is described the benchmark and used
metrics. Then, in Section 4, is described the implementation of benchmark. In Section
5 are discussed the results of benchmark outputs and evaluation of JVM implementa-
tions. Finally the conclusion is given in Chapter 6.

2

1. Introduction

Chapter 2

Real-Time Systems Programming

Programing for real-time systems is connected with real-time computing (RTC) and is
often misunderstood by many people. They think, that Real-time programing is max-
imization of application performance or minimization of response time and latency.
Real-time application is equal to fast application for them. There is connection between
performance and Real-time programing, but it is not the major part. Real-time applic-
ations are usually fast, because they have to satisfy Real-time constraints. So there is
the reason for this opinion, but slower application can still satisfy the constraints too.
Speed of applications is one of the prerequisites for successful use in real-time system,
but an application in real-time systems does not need to be resource consuming. The
most important requirement is predictability.

The predictability means predictable behavior of application. Simple example is
executing database query multiple times. It will take a different amount of time to ex-
ecute. The execution time depends on various factors. These factors are current system
load, size of available memory, number of connected users to the database, speed of
I/O operations, load of Internet connection if it is remote database etc. The response
time is not deterministic, so it is not a real-time operation.

Above it is mentioned the latency, it means time between two events in real-time,
which triggers action. When such event occurs, the response begins after first event
and have to complete before next event occurs.

Requirements of real-time systems are logical and temporal:

• Logical correctness
We get correct results of computing tasks. For example: 1+1 = 2

• Temporal correctness
We get results in time.

The use of real-time applications is not only in embedded systems, but also in tele-
communications and financial sector. Almost every control system have to satisfy soft
or hard and relative or absolute deadlines.

3

2.1. Classification of Real-Time Systems
The classification of real-time systems is simplified description of different systems
types. It is very important part for fully understanding the different behavior of systems.
And it is crucial for learning how to write programs for it. Typical characteristics of
almost all real-time systems [6]:

• event driven, reactive

• multi thread programing

• big problems after critical failure (dangerous or very expensive)

• fault-tolerance

• long lasting operation time, without external interventions

• predictable behavior

The logical correctness is obvious, so the classification depends on time correctness.
Systems are classified according their capability to satisfy time constraints. In real-time
terminology is more time constraints. The most important one is called deadline.
Deadline is time, when job has to end.

• Relative Deadline
amount of time, in which system has to respond to request

• Absolute Deadline
precise time when the task must be completed

Additional important terms in real-time terminology are task, job, release time and
response time. Task is a set of jobs, which serves for single function of system. Job is a
instance of a task. Release time is opposite to deadline, a time when job is ready for exe-
cution, but it does not mean, that the job has to be executed exactly in this time. Job
can be executed later, after release time.Response time is response time of job execution.
It is the difference between the time when the job is completed and release time.

Jobs provide temporal results, which values is depending on deadline satisfaction.
There are 2main classes of real-time systems: soft real-time systems and hard real-time
systems. Simple comparison of this 2 classes provides following table [6]:

2.1.1. Non Real-Time System
There is question what is the main difference between normal system and real-time
system. We can say, that there are no important deadlines in a non real-time system.
The deadlines of this system can be missed. But on the other hand, there are deadlines
such days, when something has to be done. For example system have to send inform-
ation email for users each month. Deadline is month, but there is not a problem to
satisfy this constraint. So non real-time systems solves problems, which timings are

4

2. Real-Time Systems Programming

obvious, and there is not any problem to provide desired functions. Real-time systems
have extreme timing requirements and its satisfying is very difficult.

In the figure below is the dependency chart of value of computation on time. The
value of computation is nearly constant in time, its not dependant on the deadline. In
non real-time systems computations do not loose their significance unlike in real-time
systems. But the more current computation is of course better, depending on concrete
computation.

Figure 2.1. Non Real-time system

Examples for application of these systems are batch processing,web services (there
can be timeouts) etc.

2.1.2. Soft Real-Time System
A soft real-time system is defined by soft deadline. Soft deadline is requested time of
completion. The word soft means, that sometimes the deadline does not need to be
satisfied. There ismore approaches how to decide,what deadlinemisses are acceptable.
First is percentual. For example 90% of jobs have to satisfy the deadline constraint. The
second is the dependency of job value on time.

Ondependency chartwe can see, that before the deadline is the value of computation
constant. The value is decreasing fast after deadline, but its still acceptable.

5

2. Real-Time Systems Programming

Figure 2.2. Soft Real-time system

Examples for application of these real-time systems aremultimedia applications,rout-
ing in networks, automated trading systems etc.

2.1.3. Hard Real-Time System
Hard real-time system is a system,where all deadlines are strict. Deadline of hard real-
time system is called hard deadline and its time of completion have to be necessarily
complied. If any of the deadlines are not met, the behavior of system is wrong. This
behavior can often have bad consequences.

Part of hard real-time systems is classified as safety-critical systems. These systems
are directly connected to the safety of people and things. Failures of these system can
cause big money loses or life threatening.

The hard deadline term can be use as firm deadline. This is described on the chart
below. The function of usability or the value of computation go to the zero, when the
firm deadline is reached. Firm deadlines are often used in soft real-time systems.

6

2. Real-Time Systems Programming

Figure 2.3. Hard Real-time system

Examples for application of these real-time system are control systems in planes,
power plants, motion control, anti-lock brake system etc.

2.1.4. Classification of Scheduling Problems
Real-time applications are very sensitive to the exact time scheduling,which is actually
the most important part of JVM implementations. Because of this, the development of
real-time applications is often used terminology for classifying scheduling problems.

The main term in the classification of scheduling problems is job, which represents
a process that must be done to meet a specific goal. The job consists of a number of
smaller tasks. Task is the smallest unit of the work which uses different resources. Jobs
are often repeatedly executed and because of that the timings of particular tasks are
very important. Tasks are divided according to how often they performed. Existing
task types follow:

• Periodic: Tasks that run on a fixed schedule, such as reading a sensor everyone mil-
lisecond

• Sporadic: Tasks that do not run on a fixed schedule but that have a maximum fre-
quency

• Aperiodic: tasks whose frequency and timing cannot be predicted

2.2. Real-Time Specification for Java (RTSJ)
As it was discussed in chapter 1 Java SE or enterprise edition(EE) can be used for wide
spectrum of applications, which performance depends on concrete optimization of
JVM for concrete application. This Javas versatility and the WORA principle causes,
that Java is not capable of fulfilling the basic requirements for usage in real-time envir-

7

2. Real-Time Systems Programming

onment. Running code within virtual machine(VM), using garbage collection and
other things makes running applications unpredictable. Predictability is crucial for
satisfying deadlines and precise timings,which are critical parts in real-time application.
So the main problem of Java is unpredictability. Sources of unpredictability in applic-
ation written in Java SE [3] :

• Operating-system scheduling
The JVM creates threads which are scheduled by the OS. It causes time delay,

when OS must react to an action of JVM. So the JVM is dependent on capabilities of
OS. OSmust fulfill scheduling and latency guarantees demands, through providing
a robust priority-based scheduler, program defined low-level interrupts and high
resolution timer.

• Priority inversion
Priority inversion is awell knownproblem in applicationswith different priorities

of threads. There are three threads with high, medium and low priority. Using lock
on shared resource between two threads running on high and low priority can cause
it. The low-priority thread is holding a lock at the moment when the higher-priority
thread needs it. The medium-priority thread is started. The medium-priority thread
did not use the shared resource and preempts the low-priority thread so it is sched-
uled first. Then themedium-priority runs till end. The high-priority threads priority
is downgraded to the same priority of the low-priority thread and the medium-pri-
ority thread ran before the high-priority thread. This can cause deadline misses of
high-priority threads, which are the most important for the application.

• Class loading, initialization, compilation
The Java language has lazy initialization of required classes. The initialization of

a required class occurs when an application first uses it. Instantiations of objects
through constructors, which can contain some user code, causes jitter and a variance
in latency. Classes can be lazily loaded, which means they can be stored on disk or
somewhere on the network. This can cause delays when a class is referenced firs
time. Methods are compiled to native code only when they are frequently executed
and if it is faster in whole to compile them and use them compiled. But when class
is compiled it still be the subject of re-optimization in future. In normal application
is the use of just-in-time (JIT) Hotspot compiler one of Java benefits, but in real-time
view brings problems.

• Garbage collection/collector (GC)
GC is major source of unpredictability in all programming languages, which use

it. The main problem is the "pausing the world". Application threads are stopped
andGC frees thememory. Pauses have bad use time constraints. Because of it system
cannot comply with needed requirements. There are more implementations of GC
and they are better and better, but in thematter of real-time application it is not good
enough. It is true, that exist real-time GCs suitable for some applications but not for
all. When GC preempts all the application threads ‒ a deadline miss can occur.

• Application itself

8

2. Real-Time Systems Programming

The source of unpredictability could be wrong written application. Programmer
have to be careful to use third party libraries, which may not meet the real-time re-
quirements. There is a problemwith thread priorities. Java has thread priorities, but
the guarantees of JVM are too weak, so they are not used so much. Threads compete
for resources, which can cause unpredictable behaviour of an application. In Java
applications we almost know, how long will a operation last, but when it is longer
than expected it can cause waiting of other tasks. This behaviour brings greater de-
mands on programmers. They have to do additional testing and tunning to achieve
good results.

• Other system activities
In systems are other high-priority tasks than the real-time applications. There

could be more real-time applications and hardware interrupts. This influences the
predictability and timing precision in our application.

Java have to deal with these performance problems. There are more possibilities of
avoiding these problems and RTSJ offers some solutions. RTSJ contains specification
of API and VM, which is aware of above sources of unpredictability. Specified in the
[7] :

The programming environment must provide abstractions necessary to allow de-
velopers to correctly reason about the temporal behavior of application logic. It is not
necessarily fast, small, or exclusively for industrial control; it is all about the predictab-
ility of the execution of application logic with respect to time.

RTSJ is designed to support both hard and soft real-time applications. Among its
major features are: scheduling properties suitable for real-time applications with pro-
visions for periodic and sporadic tasks, support for deadlines and CPU time budgets,
and tools to let tasks avoid garbage collection delays.

2.2.1. Scheduling
The basic requirement for thread scheduling in realt-time JVM is real-time scheduler
implementation. The specification itself does not contain concrete algorithm, which
will be used for scheduling. There is only two requirements on default scheduler ‒ it
has to be priority-based scheduler and it must support at least 28 unique priorities.
The scheduler may not be part of the JVM implementation when the OS scheduler
satisfy required needs.

RTSJ brings new model of application development with real-time requirements.
In Java SE the smallest unit of scheduling is java.lang.Thread. RTSJ is going further
with this abstraction. All instances of schedulable entities in RTSJ scheduling framework
implements javax.realtime.Schedulable interface. This interface extends
java.lang.Runnable interface. Thank to this abstraction is possible to ensure expected
behavior and determined requirements of schedulable objects with respect to time. It
is possible through set of characteristic, which can be set to schedulable objects such
as release time, period and priority. Big advantage of this abstraction is, that the objects,
which are allowed to be controlled by scheduler are not only threads.

9

2. Real-Time Systems Programming

2.2.1.1. Schedulable objects

All implementations of RTSJ must include four classes, which implements the
Schdeulable interface:

• RealTimeThread (RTT)

• NoHeapRealtimeThre (NHRTT)

• AsyncEventHandler (AEH)

• BoundAsyncEventHandler (BAEH)

The relations between classes are described in following figure.

Figure 2.4. The class diagram of Schedulable objects from [5]

Schedulable objects have set of parameters serving for achieving desired behavior,
which are used by scheduler:

• Priority parameters
These parameters set the schedulable objects priority.

• Importance parameters
When system is overloaded and there are two threadswith samepriority, import-

ance parameters are used as second metric to distinguish which thread is more im-
portant.

• Release parameters
These parameters are used for defining the type of schedulable object according

to task types. They contain of start time, release cost and handlers formisseddeadlines

10

2. Real-Time Systems Programming

and cost overruns. They use relative or absolute High-ResolutionTime object for
setting the time parameters. Cost is used in feasibility analysis, which may not be
implemented.

• Periodic parameters

• Aperiodic parameters

• Sporadic parameters

2.2.1.2. Real-Time Scheduler

In the scheduling framework is scheduler represented by abstract class javax.real-
time.Scheduler. Subclasses of this class contain concrete implementation of scheduling
algorithm. The required priority-based scheduler object for all RTSJ JVM implementa-
tions is PriorityScheduler. This object is singleton and reference can by obtained by
calling static instance method. Besides of scheduling controll the scheduler provides
informations about possible range of priority values, priority of a concrete thread.
Scheduler has methods for calculating and recalculating the feasibility of actual
schedule. This allows adding new Schedulable objects into running application system.
Scheduler performs feasibility checks while adding new object to schedule and can
trigger asynchronous event.

2.2.2. Memory Management and Models
Because GC is an important part of Java language but can not be used unchanged in
real-time system. There are more approaches for GC and every type is suitable for
concrete usage. This leads to dividing the memory into areas with different behavior.
RTSJ specifies four classes which extends theMemoryArea abstract class. RTSJ defines
two special memory regions.

11

2. Real-Time Systems Programming

Figure 2.5. The class diagram of MemoryArea objects from [5]

2.2.2.1. Heap

Heap is referenced as a singleton and represents free memory, which is used for dy-
namic allocation and automatic reclamation. Real-time VM heap is just like standard
VMs heap. It means that is garbage-collected and pauses can occur. Real-time JVM
may not include implementation of GC acorrding to RTSJ. But there are requirements
for the way of implementation of included GC. It is for better predictability of howGC
impacts the application. Heap can be used by both java.lang.Thread (JLT) and RTT
threads.

2.2.2.2. Scoped Memory

Scopedmemory (SM) is memory created during development. Programmer can set its
starting size and optionallymaximal size. Setting themaximal size of SM is a protection
against consuming all free memory by one thread. Schedulable objects which can run
within SM are only RTT and NHRTT threads. SM object accepts Runnable class as
constructor parameter, which is executed within this memory. The purpose of SM is
for allocation of objects with know lifetime, especially for objects created and used only
in one period of task processing. GC do not affect SM. The memory is reclaimed when
no references to SM exists. This operation is quick and bounded in terms of time.

12

2. Real-Time Systems Programming

2.2.2.3. Immortal Memory

Immortal memory is according to its name created at the startup of JVM and objects
in it exist for the life of whole JVM. Allocation and reclamation of memory is almost
the same as in C based languages (using malloc() and free()). So it means that, IM uses
static allocation and it is not influenced byGC.Objects allocated in IM can be referenced
from anywhere of real-time application, and they can reference objects anywhere except
the objects residing in SM. Schedulable objects can runwithin IM. The reason for usage
of IM is to do allocation ahead of time avoiding dynamic allocation.Managing immortal
memory requires greater care than managing memory allocated from the standard
heap, because if immortal objects are leaked by the application, they could not be re-
claimed.

2.2.2.4. Physical Memory

RTSJ has resources for low-level physical memory usage. Most real-time applications
do not need this function. This type ofmemory is used for directmemory access (DMA)
and for communication with external devices and IO operations. It makes sense to use
it only in specific cases. Types of representation are LTMemory and VTMemory -
memories with linear time of allocation and variable time of allocation, which extends
SM. They have extension for physical types ‒ LTPhysicalMemory and VTPhysic-
alMemory.

2.2.3. Real-Time Garbage Collection
Real-time garbage collection(RTGC)may not be the part of RT JVM. RTGCnever blocks
critical high-priority threads and works concurrently and incrementally. It does not
guarantee deterministic behaviour of all threads. RTGC used in Sun Real-time system
is implemented to provide hard-realtime behavior for critical high priority threads.
These threads are never preempted by RTGC. For other threads with decreasing prior-
ities is achieved soft real-time and non real-time behaviour. The garbage collection is
optimizing itself at runtime. Basically is GCusing auto tunning for better performance.
Tunning parameters can be set manually before the start of JVM. Parameters specifica-
tion depends on concrete RTGC implementation.

Example of parameters used by Oracle (Sun) RTS Java implementation. RTGCNor-
malPriority - set the value of GC threads priority. Threads with higher priority are not
preempted by GC. NormalMinFreeBytes - set the value of minimal available free
memory threshold, after which GC begins its work. RTGCNormalWorkers - sets the
number of parallel threads, which do the garbage collection. This ensures enough re-
sources for critical and higher priority threads of application. This is an advantage es-
pecially on multi-processor systems when a small subset of processors count is set as
the number of RTGC threads. Similar parameters are defined for another modes of
RTGC.

RTGC has function modes according to the size of allocated memory. This RTGC
is used in Sun Real-time system.

13

2. Real-Time Systems Programming

• Normal Mode ‒ startup memory threshold - RTGC runs on normal priority, only
non real-time threads are blocked

• Boosted Mode ‒ boosted memory threshold - RTGC runs on boosted priority, non
real-time threads and normal priority real-time threads are blocked

• Determined Mode ‒ GC occurs when memory reaches critical low threshold. All
threads except high priority RTT and NHRT are blocked.

For further reading and information about GC and tuning is in materials about
concrete JVM implementations or read [4][5]

There are more command line parameters for real-time JVM not only for RTGC,
but they are defined by the real-time JVM itself. With this can be tuned the behaviour
of threads, asynchronous control,memory management, interpreter and compilation.

2.2.4. Real-Time Threads and Handlers
In RTSJ the 4 main classes (RTT, NHRTT, AEH, BAEH) are subjects of scheduling and
implements the Schedulable interface. It means, that they havemore precise scheduling
parameters than standard Java SE classes. This classes are the most important ones for
developing real-time applications with RTSJ. Standard JLT threads can be still used,
but the real-time task are executed within real-time threads a handlers. Some basic
explanations of their function is needed for good understanding of benchmark imple-
mentation. The main principles do not much differ from JAVA SE, but especially the
use of scheduling, release and next RTSJ parameters does using this classes a littlemore
complicated. So they should be mentioned for better understanding of benchmark
implementation.

Besides the threads supports the RTSJ events handling, it is not used only to deal
with asynchronous events but for periodic events too. Schedulable objects are using
event handlers for deadlinemiss handling. It is very important for hard real-time system
to take appropriate action if a deadline miss occurs. The results of code execution
within a handler or thread are the same. There is not a definition when is better to use
thread or handler. Both has support for periodic operations throughPeriodicParamateres
for Threads and timers for event handlers.

2.2.4.1. RealTimeThread and NoHeapRealtimeThread Class

Class definition from RTSJ JavaDoc [4]: “Class RealtimeThread extends Thread and
adds access to real-time services such as asynchronous transfer of control, non-heap
memory, and advanced scheduler services.”

Both classes can take as constructor parameter Runnable logic class or developer
can create own classes extending these thread classes. There is no difference in code
execution. RTT andNHRTT threads are the right placewhere to run critical application
code. The RTT thread is almost same as JLT thread. The NHRTT has in its name, that
it can not access the heap. This Schdedulable classes can take as parameters previously
discussed scheduling parameters(priority, types of threads), memory paramet-
ers(memory within the thread runs), Both of classes have these semantics

14

2. Real-Time Systems Programming

• Dispatching ‒ priority-based dispatching, according to Schedulable interface

• GC ‒ The relation between RTT and collector is strictly based on their priorities.
Collector has its own priority and preempts all the RTT with lower priority threads
and all JLT threads. NHRTT is

• Synchronization ‒ is basically same as JAVA SE, the priority inversion problem is
solved by implementing priority inheritance

• Periodicity ‒ for thread and its periodic behaviour is implemented method wait-
ForNextPeriod(), which ensures that task is released precisely on the next`s period
time, regardless on variable processing time of task

• Interruption ‒ asynchronous transfer of control is used through the usage of Asyn-
chronouslyInterruptedException (AIE) and Interruptible interface

Mentioned semantics could be discussed in more detail, but this is not a textbook
of programming in RTSJ. Important functions will be explained when they are used
in benchmark implementation. Start to using RTT is very simple, because it was one
of the reason of using RTSJ for programming real-time applications. I describe simple
usage of threads without defining all parameters.

/* Code example of simple instantiation of RTT thread and starting */

RealTimeThred rtt = new RealTimeThread() {
public void run {
//logic
}

};
rtt.start();

Themain difference from the view of developer is in the setting thememorywithin
must the NHRTT run. There is more possibilities than to specify the MemoryArea in
constructor, but it can be found in referenced literature.

/* Code example of simple instantiation of NHRTT thread within Immortal memory and starting */

NoHeapRealTimeThred nhrtt = new NoHeapRealTimeThread(null, ImmortalMemory.instance()) {
public void run {
//logic
}

};
nhrtt.start();

More examples, samples of code and design patterns can be found in [8] and [5]

15

2. Real-Time Systems Programming

2.2.4.2. AsyncEventHandler and BoundAsyncEventHandler

The base element of asynchronous event handling is the abstract class AsyncEvent(AE),
which itself represents occurrence of important system event. Concrete instance of AE
can be associatedwith AEH and vice versa. AEH executes codewhen the fire() method
of associatedAE instance is called. The AEHhas support for time events, which allows
AEH execute periodic tasks. This support is accomplished through the usage of timers.
RTSJ contains PeriodicTimer object, which periodically calls the AE fire() method. It is
more obvious from the class diagram of AsyncEvent. The PeriodocTimer itself extends
AsyncEvent and calls periodically the fire() method on itself. It is important tomention,
that there is only one internal thread, which handles timer expiration events. This can
cause release delay, when two events has same release time, because the releases are
serialized.

Figure 2.6. The class diagram of AsyncEvent objects from [5]

Class definition from RTSJ [4]: “An asynchronous event handler encapsulates code
that is released after an instance of AsyncEvent to which it is attached occurs. It is
guaranteed that multiple releases of an event handler will be serialized. It is also
guaranteed that (unless the handler explicitly chooses otherwise) for each release of
the handler, there will be one execution of the handleAsyncEvent() method....”

AsyncEventHandler can use RTT threads orNHRT for execution of logic contained
in object, which implements Runnable class. AEH can be extended in the samemanner
like real-time threads. Then is the logic part of handler itself. There is nothing such
NHRTT. Constructor of AEH accepts boolean parameter which defines usage of heap.

16

2. Real-Time Systems Programming

/* Simple code example of AsyncEventHandler usage */

public class Logic implements Runnable {
public void run {
//some execution code
}
}

AsyncEvent event = new AsyncEvent();
Runnable logic = new Logic();

AsyncEventHandler handler = new AsyncEventHandler(logic):

event.addHandler(handler);//register handler to listen on this event

event.fire();//do logic in registered handlers

The difference between AEH and BAEH is not obvious from the name of BAEH or
from looking into code. Real-time application often must process a lot of different
events by different handlers and is not possible to connect all this logic with concrete
running RTT threads. The RTSJ contains requirement, that it must be capable of having
a big amount of handlers ready for processing events. This is accomplished thanks to
dynamic assigning of RTT threads to fired events. RTT threads are in pool and they
are assigned when the fire of event occurs. The BAEH is permanently bound to dedic-
ated RTT threadwhich is created and handle all fired associated events - this behaviour
does not suffer from latency and jitter opposite to AEH. But usage of BAEH is same as
for AEH. The source code sample would differ only in usage of BoundAsyncEvetHan-
lder class. Because of that i do not show code example for BAEH.

17

2. Real-Time Systems Programming

Chapter 3

Benchmark Description and Metrics

Benchmark in the terms of computer science is a set of tests used to compare hardware
and/or software performance. Tests consists of different measurements. In tests are
measured appropriate metrics, which are important indicators of how good tested
system is. The purpose for running tests is to obtain valid data for comparison. Results
of the tests are mostly measured data of different metrics. Then are resulting data
represented by charts for more simple interpretation. For comparison of benchmark
results is crucial to know exactly what is test designed, it means that the results of
benchmark are dependant on the environment, where the benchmark is running. (OS,
Hardware configuration)

The motivation for creation of a benchmark was the lack of information about per-
formance of different real-time JVM implementations. Real-time Java is used only by
small group of developers for science purposes or by companies to develop closed
source systems especially in financial sector. JVM implementations are often not easily
obtainable, which is one of the reasons for small amount of real-time JVMbenchmarks.
Vendors provides some information about their products, but it is not usable for direct
comparison. It is caused by small spread of real-time Java usage. Selling real-time JVM
is good business so the benchmarks are mostly a subject of business, too. There are
some free and open source RTSJ benchmarks but the count is very low. Examples of
other benchmarks are CDx - RTSJ Benchmark, jPapaBench, Sumaradu, Scheduler Test
and other.

Benchmark developed in this thesis is a software benchmark. The important thing
about software benchmarks is the possibility for changing the difficulty of particular
tests and compare the results with each other. The behaviour of JVM implementation
is specified by RTSJ, but it does not mean, that they are totally identical. Although
benchmark the virtual machines, they are still software running on underlying OS.
Generously benchmarking is very difficult task, especially when good metrics are not
known. Determination of usable metrics is the most important part when writing
benchmark application.

3.1. Robot Position Localization
Every benchmark has a set of tests, which measure needed metrics. These tests have
to be based on someusage of tested software. So the first stepwas to choose an example
application and adjust it for an implementation in RTSJ. My advisor is a leader of an

18

Eurobot team from Czech Technical University named Flamingos. This had led him
to choose an application from the environment of robot competitions. He wanted to
know if it is possible to use real-time Java for real-time computing on a robot. The
benchmark consists of only small part of robot control - localization. The robot have
to know his position on the playground tomove successfully and perform competitive
tasks.

This part of program used for robot localization is originally written in C language.
The localization of the robot is based on Monte-Carlo (MCL) Localization algorithm,
which will be shortly described.

My first task was to rewrite the C code to Java code. The C algorithm source codes
are included in the jmclbench repository.

3.1.1. Monte-Carlo Localization
MCL is a type of robot position localization method for solving localization problems.
MCL is often used for localization of the mobile robots such as in this case. The localiz-
ation algorithm used by this method is relative simple for implementation. Another
advantages of this method are the usability in wide range of localization problems and
good performance. Thanks to this MCL is very popular and used especially by de-
velopers specialized in robotics.

Robot position localizationmethod is used to estimate the actual position of a robot
in a given time-step. Two main parts are global position estimation and local position
tracking. Global position estimation is ability to determine the robot position on a
given map. Local position tracking is estimating the robot position from the motion of
robot over time. The next estimated position is somewhere in the likelihood of the
current estimated position.

Estimating the current state of robot, given knowledge about the initial state and
all measurements up to the current time. The state vector contains the position and
orientation of the robot. This estimation problem is an instance of the Bayesian filtering
problem.In the Bayesian approach, this probability density function is taken to represent
all the knowledge we possess about the state of the robot, and from it we can estimate
the current position. [9]

Basic principle of the robot localization methods is recursively solving two main
subproblems. This two subproblems correspond to twomain phases of robot localization
algorithms:

• predict phase: In the first phasewe use amotionmodel to predict the current position
of the robot in the form of a predictive probability function, taking only motion into
account. We assume that the current state is only dependent on the previous state
([13]) and a known control input and that the motion model is specified as a condi-
tional density.

• update phase: In the second phase we use a measurement model to incorporate in-
formation from the sensors to obtain the probability.We assume that themeasurement
is conditionally independent of earlier measurements, and that the measurement
model is given in terms of a likelihood . This term expresses the likelihood that the

19

3. Benchmark Description and Metrics

robot is at location of position given that measurement was observed. The density
over probability of position is obtained using Bayes theorem.

The knowledge of previous robot state is provided as density of probability of
previous estimated position.[9]

MCL is sampling-based method in which is the density represented by set of
samples(particles) that are randomly drawn from it. Representation as particles allows
the usage of the particle filter. In each time-step is generated set of particles from
density of probability.

1. The creation of new set of particles is based on the previous estimated position(pre-
vious set of particles). The motion model is applied to each particle by sampling
from the density. A new set of particles is obtained.

2. According to measurement are weighted each particles. The particles which are
closer to measurement has greater weight.

3. The particles are resampled. Higher probability particles are selected which results
in creation of new set of particles.

These parts of algorithm are repeated recursively for each time-step.
Pieces of Informations needed for updating the position are provided by the sensors.

Each sensor update changes the probability of correctness for each particle. This is
performed using statistical model of the sensors and Bayes theorem. Similarly, every
motion the robot undergoes is applied in a statistical sense to the hypothetical config-
urations based on a statistical motion model.

Domain of possible inputs is defined by the robot playground and its parameters
are described later in this chapter. In thismethod a large number of hypothetical current
configurations(positions of a robot) are represented as set of particles. Initially are these
particles randomly scattered in configuration space(robot playground). Set of particles
is generated according to domain distribution or the starting position is known.

The complexity of calculation depends on the count of particles as well as the pre-
cision of estimation.With rising count of particles rises the time of computation aswell.
This is very important for benchmark, when we can choose a set of particle count for
testing.

The main advantages of MCL according to [10]:

1. In contrast to existing Kalman filtering based techniques, it is able to representmulti-
modal distributions and thus can globally localize a robot.

2. It drastically reduces the amount of memory required compared to grid-based
Markov localization and can integrate measurements at a considerably higher fre-
quency.

3. It is more accurate than Markov localization with a fixed cell size, as the state rep-
resented in the samples is not discretized.

4. It is much easier to implement.

20

3. Benchmark Description and Metrics

In the view of benchmark development are important the point 4, which do this
method suitable for use in a benchmark application. Easy implementation means
easier understanding for users of benchmark.

3.1.2. Robot Playground
The Robot's playground is a rectangular area 3 meters long and 2 meters wide. On the
figure below are the letters W and H. These letters corresponds to W ‒ width and H ‒
height but it is only for the purposes of mapping robot position into concrete configur-
ations. The position of robot is mapped on the playground by defining Cartesian co-
ordinates. Left side of rectangle represents the y axis and bottom side of rectangle
represents the x axis. Units on axes are in meters. X axis is limited from above by 3 and
y axis is limited from above by 2, which corresponds with the rectangles parameters.
The origin is located on intersection of the axes in the left bottom corner of rectangle
and has coordinates [0,0]. This characterizes the first part of state space input domain.

Figure 3.1. Robot playground

The robot can move forward only in one direction like a car so it has to turn right
or left. It causes the need of knowing orientation of the robot. The orientation is defined
as an angle in radians from the x axis. A value of 0 corresponds to the direction the
robot motion perpendicular to the right side of the playground. The angle value is the
second part of state space domain. The position of robot is characterized by the coordin-
ates(x,y) and the angle. So we will work with three-dimensional state vector x = [x,y,θ]
These data represents the members of particle set used by MCL.

Robot uses for localization one laser beacon and sensing the reflections of this lasers
beam. This beacon is placed on top of the robot.

21

3. Benchmark Description and Metrics

• Laser reflection sensing
The robot detects only the reflections from three beacons located on the play-

ground. The position of beacons is drawn on figure above(S1,S2,S3). This sensor does
3 rounds per second.

• Odometry sensing
The robot has sensors, which canmeasure rotation of the wheels. Measured data

representsmaximal traveled distance. Deviationsmay arisewhen robotswheels slip
or robot moves over uneven terrain.

Position of the robot is calculated using data from the laser sensor. Positions of the
beacons are known in advance. This allows to estimate robot's position and rotation
from the set of particles. The robot records the angle of the laser when receiving the
reflection from individual beacons. It is not known fromwhich beacon is the reflection.
From position of the concrete particle are calculated the angles between robot and all
beacons. After this is calculated the weight of particle by comparison of the calculated
angle with measured angle. From the difference between angles is generated part of
weight using probability distribution function(Gaussian) according to angles similarity.
This is done for each beacon and the parts of weight are summed. Then the particle
with best weight is selected as estimated position. After this is the set of particles res-
ampled. It means that the particles with low weights are thrown away and they are
replaced by particles with higher weight.

22

3. Benchmark Description and Metrics

Figure 3.2. Description of parameters from [12]

3.2. Benchmark Description
As mentioned in the previous chapters, benchmarks are usually composed of several
different tests. Because the benchmark's main purpose is to compare the performance
of the real-time JVMs, testing methods are chosen in this context. MCL, as such, does
not allow much modification, which have a direct impact on the real-time behaviour.
This is mainly due to the calculations that are not dependent on time. The purpose of
benchmark is not to tune and optimize the MCL algorithm for use on real-time JVM
implementations.

Every JVM implementation have to run the same code on same machine and same
OS, so the conditions are same. Theway of creating the benchmarkusingMCLalgorithm
is based on its requirements. The area for benchmark development is above between
the phases ofMCL algorithm. Receiving data from sensors is themain partwhere could
be benchmarking done. The benchmark have to deal with the control of algorithm and
control of data receiving. And the benchmark have to provide simulation of events
which represents the incoming data from sensors.

The most important features for choosing MCL algorithm are:

• lot of allocation and deallocation of memory

23

3. Benchmark Description and Metrics

• resources shared between threads

• real-time requirements

The data used for localization are meaningful only when they are measured. The
time is not used in thismethod's computation. But it is obvious that the correct sequence
of data processing is critical for successful functioning of localization and as well as
the time is one of the most important parts, which can be used in benchmark.

The robot consists of estimated position and set of particles. This set is changed by
each run of algorithm. So in this is a lot of allocation and deallocation of memory.

In terms of real-time programming is one iteration of a localization algorithm rep-
resented as set of different task. This localization of robot is divided into 2 tasks. Each
task covers part of theMCL according to the phase described in previous section. These
tasks have to share the robots data. This creates the requirement for separated inde-
pendent threads which represents tasks.

Tasks according to phases of algorithm:

• predict task
This task performs predictive part of the algorithm. It uses data retrieved by the

odomoetry sensors. These data represent increments to the individual parameters
of the robot position. Increments are added to the estimated position without noise
and to all the particles with random noise to represents sampling from probability
distribution. This task should be executed every time robot retrieves data from the
sensors. Data are retrieved every 50 milliseconds. This means that it is a recurring
task with fixed period. Next part of this task is recording the estimated position and
processing times.

• update task
This task performs update and resample part of the algorithm. To update task

are used data measured by the laser sensor. These data include rotation angle and
time. The measured angle is used to estimate new position of robot. After this is set
of particles processed by resample method. Time of receipt of data is dependent on
the current position of the robot. This means that this task is recurring, too, but not
have defined period. Next part of this task is recording the estimated position and
processing times.

In the terms of real-time programing the predict task is a periodic task and the up-
date task is an aperiodic task. Task have to be performed when an event occurs.

In this application, an event is represented as data is received from the sensor. Fol-
lowingfigure showsdiagramwith possible occurrences of events and time of processing.

24

3. Benchmark Description and Metrics

Figure 3.3. Occurrence of events

The tasks are not independent because they are performed over the same set of
samples. It is possible that it happens a newdata should be processedwhen the previous
task has not been completed yet. This can happen both at a different types to the same
types of tasks. With this application must somehow cope. Various approaches to
solving this problem are to use different policies. In the application are referred to as
tests.

3.2.1. Skipping of Jobs
One way to solve the problem of overlapping events is skipping. When it comes to the
fact that the event is received if not completed the previous task. The application have
to decide what do with this new event. Whenever a new event is received application
logic have to verify whether there is still some tasks running. If a task is still being
processed, the new event is simply ignored. Otherwise when no task is running the
event is processed as usual.

3.2.2. Termination of Jobs
Termination of events solves the same problem as skipping of events. But if a task is
still being processed, the new event is not ignored. Currently processed task is termin-
ated. And the new event is processed just as if the termination not occurred.

3.2.3. Format of Input Data
For the development of the benchmark application has to be known in advance the
course of a robot's movement around playground.Without this data can not be proven
the correct function of the localization. The real robot's position can be used for better
understanding and evaluating the different JVM implementations. Data for benchmark
was provided by modified simulation of real robot's movement. The simulation was
the subject of this paper [10] and method used in benchmark comes out of it.

25

3. Benchmark Description and Metrics

The data are provided in simple text files.

• Odometry data [time x-increment y-increment angle-increment] In first column is time
when the increments of parameters are in following columns.

4.0000000000000000e+00 2.9508011417671016e-02 1.8086984431529840e-05 -
1.2259031562840694e-03

Example 3.1. Line of odometry data example

• Laser data [time angle] First column is time of receiving laser reflection and second
column is the angle between the robot heading and the reflection from beacon.

3.0873606372492779e-01 5.8195376981787801e+00

Example 3.2. Line of laser data example

• Real position data [time x-position y-position angle]
Real position data are formated same as the odometry data and file looks similar.

The difference is, that the values are not additions but actual values of robot para-
meters.

3.3. Metrics
Metrics are the most important part of the application in terms of interpretation of
benchmark results. Definingmetricswas not easy due to the fact that have to be verified
the relevance and validity of metrics in the context of real-time applications. It is then
possible to interpret themeasured data in different ways to calculate them into various
other metrics.

Thanks to experiencewith the development of various applications and knowledge
in the field of computer science was possible to predict what metrics might be useful.
Because for real-time applications is the most important constraint satisfaction on the
precise timing, are interesting metrics the latency and delay. Another important indic-
ator to compare various implementations is the number of unfinished tasks. The MCL
localization itself provides the simulation of the robot motion from which is obtained
the trajectory. The results of simulations can be compared among themselves. The
trajectory consists of a set of points that must be adjusted for easier and exact compar-
ison. Other metrics are represented by results of statistical processing of different
simulation results.

3.3.1. Deadline Miss (missCount)
Processing tasks in the context of the benchmark have a predetermined relative deadline.
For the Duration of the task processing depends on complexity of computation. The
complexity is defined by the number of particles. It is not precisely known howmuch

26

3. Benchmark Description and Metrics

time task processing will take. Restrictions on the completion of tasks is determined
by the arrival of another event. The deadline for task is different for each type of task.

The relative deadline for predict task and is 50 milliseconds which is the fixed
period of odometry sensor reading. As mentioned before, the robots laser turn at 3
rounds per second. The maximal and minimal angles between beacons are reached
when the robots position is on position [0,0]. The maximal angle is between beacons
S1 and S2 and the value is 270°. The minimal angle is between beacons S2 and S3 and
value is approximately 35°. The maximal relative deadline for laser is 250 milliseconds
and the minimal relative deadline is 32,407 ms.

At the beginning of one test run is deadline miss count equal to zero. When is a
task terminated or skipped the count is incremented by one. The comparison of deadline
misses provides good view of the JVM implementations performance and it is one of
the most important metrics.

3.3.2. Latency
It is possible to measure the duration of the task processing. The time when the task
started to be performed is recorded. Then the time when is job processed is recorded.
The difference between these two times is the duration of the task. Each of the two
types of tasks has a different duration. Tasks are processed repeatedly, so there is a
large amount of data. From these data, can be calculated the average duration of a task,
which is also an interesting indicator. The processing time is smaller, themore efficient
implementation of the JVM.

3.3.3. Jitter
The simple definition of jitter is irregular time variation of period signal properties,
such as small, unpredictable delays in scheduling. In the context of benchmark devel-
opment it is delay of dispatching the task. The precise time when the task have to start
is known. The real start of the task is measured and compared to he required start. The
difference between real and required start time is the value of jitter. Ideally, both times
would be the same and value of jitter would be zero.

3.3.4. Average Error of Estimated Position
The simulation is possible by using previously known position of the robot trajectory.
There are precise data about real robot position in given time corresponding with the
times of odometer sensor reading. From these data we can determine the deviation of
the coordinates and angle from the real position.
In each step, which is adjusted estimated robot position is available set of particles.
From the set is selected new position of the robot and this selection is based on probab-
ility function.

27

3. Benchmark Description and Metrics

Chapter 4

jMCLBench Application

Designing and programing an application is very complex process. This process is di-
vided into some steps and each step needs different approach. Usually, analysis of the
problem comes first, but I had to learn something about real-time environment and
real-time programing. I described it briefly before. After analysis comes implementation.
It is very hard to write all parts of the application at once. So I have to write simpler
versions of application and proceed slowly to final version. Of course, it is important
to test and optimize single parts of the code for better performance and application
robustness. Whole implementation is set of iterations of adding new functions, testing
and debugging.

The application consists of different parts. I have tomention building the application,
because I want to distribute application for public. In this case the development is a
little bit easier because there is no need for any graphics user interface (GUI). On the
other hand, a very important part is the data visualisation, which is not very easy to
implement. The application can be ran in the integrated development environment or
in a built state from console. The most important part is the representation of the data.
It is implemented by using graphs.

4.1. Technology
An integral part of software development are supporting programs. Each programmer
has a favorite tool to use as well as I. When developing applications, very important
is the choice of programming language. The subject of this work implies the use of the
Java. Developing of applications in the Java language is not very complicated. I person-
ally have much experience with Java programing, so I have favourite tools. It does not
mean, that this tools are the only right ones. I prefer open source software. As my OS
am I using GNU/Linux, the Ubuntu distribution. I do not have much experience with
real-time programming or using real-time Java.

For realization of single parts, I will try to mention more programs, which can be
used in similar way. There is a lot of software for doing same things. The choice of
used software depends on the knowledge, experience and preference of the concrete
program developer. Following section briefly describe technology that I used.

28

4.1.1. Integrated Development Environment
There is a lot of possibilities how to develop new applications. Important things for
developer are integrated development environments (IDE). It is possible towritewhole
application in notepad-like application in shell terminal, but it is not so comfortable. I
personally used free open source EclipseHelios. Eclipse is one of themost popular IDE
for developing Java applications. Like any IDE provides support for project manage-
ment, controlling the code and debugging. Using plug-ins provide support for version-
ing systems. Other possibilities are the NetBeans or the IntelliJ IDEA.

4.1.2. Version Control System
One of the goals of this work is to publish benchmark application as an open source
project. In open source development is very important the project management. First
requirement of free open source project is the access to the source codes. Then everyone
can see how the applicationsworks.Ondependency on licence type of concrete software,
can be source codes or its parts used by developers in other projects. If someone is in-
terested in similar subject, it can easily participate in development of this open source
project, because he has everything, what he needs for it.

On the big and complex projects are there a lot of people working. Each of them
working on different part of project, or small groups work on same parts. Everyone
do changes in the source codes and there always has to be a function version of applic-
ation. So for this purpose exist version control systems and versioning. Versioning is
a way of storing history of all changes made to ordinary digital information. There is
an evidence of changes implemented in single versions during the stages of open source
project development. It is possible to version all types of files and data. The information
about changes contains who, where and how modify which lines of codes. This full
view of precise data state makes possible to return to an old version of application,
when the new version contains errors.

The version systemsdo not storewhole state of version, but they store the differences
between single revisions. Tools like the diff is used for comparison. Information value
is similar but the size of data is small.

Me andmy advisor had decided to use git for jMCLBench development. We prefer
remote communication so it was very important to use any version system. We can
use the repository for publication of jMCLBench. I am familiar with CVS and SVN, but
is exciting to try some new type - distributed version system. Source codes of application
are not very complicated, but it is comfortable to have unlimited access to up-to-date
source codes. We can share the results of benchmark using it. Some information about
using git [15]

4.1.3. Types of JVM
The purpose of the benchmark is tomeasure the performance of particular JVM imple-
mentation. First I had to get some real-time implementation of the JVM. Implementation
of real-time JVM are often paid, but for research purposes or for testing versions are
provided under evaluation license or academic license.

29

4. jMCLBench Application

The first option considered was the implementation provided by Java originator,
Sun Microsystems. Now there can not be downloaded on the website stated that the
evaluation program was terminated. Oracle focuses more on the JRockit JVM. Real-
time version can be downloaded from http://www.oracle.com/technetwork/middle-
ware/jrockit/downloads/index.html?ssSourceSiteId=ocomen, but this version is not
used.

Another major player in providing real-time implementations of Java and Java
support in general is IBM.Available for use is the hard and soft real-time version. Hard
real-time version must run on the RTOS, while soft real-time version can run on
standard operating systems. I could not find a link to download a free version that I
used. Now, IBM offers WebSphere Real Time version 3 of its JVM, I used the version
2. It seems that it's only in the paid version.

The third implementation is tested JamaicaVM, which is proprietary but is easily
available in limited release. This implementation I used longer than the time limit.
Communication with the company aicas was smooth and my license was extended.
Of course I had to use a standard implementation of Java for implementing the initial
version.

List of used JVM implementations:

• Sun Java Real-Time System 2.2 (Oracle) - http://www.oracle.com/technet-
work/java/javase/tech/rts-142899.html

• IBMWebSphere Real Time for Linux version 2 SR 3 (soft)

• IBMWebSphere Real Time for RT Linux version 2 SR 3 (hard)

• aicas - JamaicaVM http://www.aicas.com/jamaica.html

• Oracle Java SE (build 1.6.0_26-b03)

4.1.4. Work with Charts
Running the robot simulation produces large amounts of data. They aremostly numer-
ical data. Interpretation of these data would be very difficult. Comparison of different
implementations of the JVM would be almost impossible because values are located
in different files and there are many of them. The solution is to display the resulting
data in graphs.

Because I like to use very things connected with Java, I tried to find a suitable Java
possibility for creating graphs. In the early days of development I have chosen
JFreeChart. http://www.jfree.org/jfreechart/. Note that JFreeChart is a class library for
use by developers, not an end user application. It provides support for many different
types of graphs. Graphs can be exported into files as images (PNG, JPEG) as well as
vector graphics (PDF, EPS, SVG). Another advantage is the use of a swing component
for interactive viewing in an application, but which when used in the benchmark is
not needed.

30

4. jMCLBench Application

Figure 4.1. Example of chart generated using JFreeChart

Figure 4.2. Histogram verifying Gaussian distribution.

On the recommendation of my advisor I chose as the main tool used to generate
graphs the gnuplot. Gnuplot is command-line driven graphing utility supporting almost
all platforms. Originally developed for interactive charting but supports export to a
large number of output formats, including formats for printing and layout as the LaTeX.
Gnuplot is distributed freely but source codes are copyrighted. Further information
about gnuplot can be obtained from the this site: http://www.gnuplot.info/1.

1 ???

31

4. jMCLBench Application

???
???

Figure 4.3. Example of chart generated by gnuplot

I got a recommendation for the use of R language for creating graphs. R is a free
software environment for statistical computing and graphics. It runs on almost any
operating system. But given that I did not know this programming language, so I did
not use it. In addition, I had learned toworkwith gnuplot.Maybe Iwill use it sometime
in the future.

4.1.5. Presentation Layer
The benchmark generates large number of diagrams, so is needed someway to compare
the graphs of each other. Gnuplot provides the possibility to export multiple graphs
into a single image. But this is only the possibility of static comparisons. Development
of another software application used for comparison of graphswould be unnecessarily
complex. I had to devise a simpler solution.

Each has a web browser, so I decided to use the power of WWW for the charts
comparison. So technologies that I used for presentation layer are HTML and CSS. In
order to do the comparison dynamically i used the scripting language PHP.

4.1.6. Real-time OS
RTOS is an operating system that guarantees certain capability within a specified time
constraint. There are many of RTOS systems. Some of them are open source and even
free of charge. Of course there are proprietary and payed solutions from different
vendors. Support of different platforms is very variable. I chose RTLinux, because it

32

4. jMCLBench Application

is easily obtainable. There are more RTOS systems in use [2] some examples with
supported platforms:

• RTLinux
DECAlpha, ARM,AVR32, Blackfin, ETRAXCRIS, FR-V, H8/300, Itanium,M32R,

m68k, Microblaze, MIPS, MN103, OpenRISC, PA-RISC, PowerPC, s390, S+core, Su-
perH, SPARC, TILE64, Unicore32, x86, Xtensa

• Windows CE
x86, MIPS, ARM, SuperH

• VxWorks
ARM, IA32, MIPS, PowerPC, SH-4, StrongARM, xScale

• QNX
IA32, MIPS, PowerPC, SH-4, ARM, StrongARM, XScale

The choice of OS used depend partly on the real-time requirements and partly on
my preferences.In introduction I mentioned some RTOS, which are usable for running
real-time application. Writing the source code does not have special demands on used
OS. I personally use GNU/Linux as my main OS, specifically the Ubuntu 11.04 (natty
narwhal) distribution. Running hard real-time implementation of the JVM is subject
to the use of RTOS.

For normal work, of course, like most people I do not use RTOS. Before starting
work on this thesis I do not have any experience with using RTOS. The GNU/Linux is
easily turned into RTOS by installing the real-time linux kernel. Before I tried to compile
a custom kernel, but for the older 32-bit version of Ubuntu. I am currently using 64-bit
OS version, so I tried to compile a real-time kernel for it. I spent quite a lot of the time
but I was not successful. Using information from the forums on the use of real-time
kernel in Ubuntu I found that there is a precompiled package that is ready to be in-
stalled. I managed to run the real-time kernel on the 32-bit version of Ubuntu
10.04(Lucid Lynx).

Installation of real-time kernel in itself is not enough to run a hard real-time imple-
mentation of JVM. It was necessary to adjust the required dependencies, and even the
dirty way by creating symbolic links to other versions of libraries. Specifically, linking
particular concern libcap.so.1 library. Due to demands on OS scheduling capabilities
has hard-real time implementations of JVM embedded tests of system. I have to solve
unresolved dependencies. Real-time distribution which is often used to run real-time
applications, OS RHEL from Red Hat. There is a rpm package that contains a script
named rtcheck. Ubuntu does no contain this script and the packaging system does not
contain it, too. Some guidance for the use of JVM implementations described as a
solution to create a program that returns 0, which is the correct indication of the test.
I downloaded a rpm package that contained rtcheck. Then I compiled it and tried to
ensure that all conditions of the test are met. Example of rtcheck output follows:

RTCheck 0.7-4 - Linux Real-Time Environment Checker

33

4. jMCLBench Application

RTCheck Initialization: > Locking all memory: ok
Setting up real-time scheduling: ok

System Tests:
Looking up boot_id (20e0572a-8007-4639-829d-abb3882b7ff7): ok
Checking for out-of-tree RT extensions: failed
Kernel was not built with CONFIG_PREEMPT_RT=y
Checking for robust (PI) mutex support: ok
Testing for acceptable hrtimer resolution (<=100us): ok
Reporting 60us
Testing for acceptable clock resolution (<=200us): ok
Reporting 1ns
Caching results in /var/cache/rtcheck: ok

User Permission Tests:
Trying to lock memory: ok
...

It was necessary to adjust the limits for allocating memory. This can be done by
changing the value in the configuration file limits.conf.Must be set: * - memlock unlimited.
Current settings can be tested using ulimit-l.

Another test for proving real-time capabilities of used system is cyclictest. Cyclictest
is designed specifically to locate and identify latencies in a real-time system [17] The
description of use is located on the web [16]. Results of cyclictest for 10000 iterations,
10000 us interval, priority of threads 80, smp ‒ symetric multi-processing uses
cloc_nanosleep and number of threads is same as max_cpus:

janousekm@Ample-Michal:~/cyclictest/rt-tests$ sudo ./cyclictest --smp -p 80 -i 10000 -l 10000
/dev/cpu_dma_latency set to 0us
policy: fifo: loadavg: 0.13 0.16 0.09 1/358 7165

T: 0 (7164) P:80 I:10000 C: 10000 Min: 6 Act: 15 Avg: 16 Max: 30
T: 1 (7165) P:80 I:10500 C: 9523 Min: 7 Act: 16 Avg: 15 Max: 120
janousekm@Ample-Michal:~/cyclictest/rt-tests$ sudo ./cyclictest --smp -p 80 -i 10000 -l 10000
/dev/cpu_dma_latency set to 0us
policy: fifo: loadavg: 0.30 0.21 0.11 1/355 7178

T: 0 (7168) P:80 I:10000 C: 10000 Min: 6 Act: 15 Avg: 15 Max: 549
T: 1 (7169) P:80 I:10500 C: 9524 Min: 6 Act: 15 Avg: 15 Max: 287
janousekm@Ample-Michal:~/cyclictest/rt-tests$ sudo ./cyclictest --smp -p 80 -i 10000 -l 10000
/dev/cpu_dma_latency set to 0us
policy: fifo: loadavg: 0.05 0.14 0.09 1/354 7181

T: 0 (7180) P:80 I:10000 C: 10000 Min: 6 Act: 15 Avg: 15 Max: 283
T: 1 (7181) P:80 I:10500 C: 9524 Min: 6 Act: 15 Avg: 15 Max: 29
janousekm@Ample-Michal:~/cyclictest/rt-tests$ sudo ./cyclictest --smp -p 80 -i 10000 -l 10000

34

4. jMCLBench Application

/dev/cpu_dma_latency set to 0us
policy: fifo: loadavg: 0.04 0.12 0.09 1/354 7186
@
T: 0 (7185) P:80 I:10000 C: 10000 Min: 6 Act: 15 Avg: 15 Max: 28
T: 1 (7186) P:80 I:10500 C: 9524 Min: 7 Act: 14 Avg: 15 Max: 27

The most important part of the results is in the last column. The maximal latency
achieved during the test. The values are in microseconds. These values are sufficient,
because the latency of the tasks in th benchmark is in units of milliseconds.

The used kernel name from the use of command uname -a : 2.6.31-11-rt #154-Ubuntu
SMPPREEMPTRTWed Jun 9 12:28:53UTC 2010 i686GNU/Linux. The notebookwhich
was used for development and benchmarking is lenovo Thinkpad R500. The hardware
configuration is as follows

• 2 x Intel Core 2 Duo CPU (P8700 @ 2.53 GHz)

• 4 GiB RAM - 2.9 GiB avaliable because of 32-bit architecture of system

4.2. Description and Subprojects
Agood practice to develop complex applications is a division of the project into smaller
subprojects, so the application was split into multiple parts. At the beginning there
were only algorithm source codewritten in C programming language and files contain-
ing data needed for simulation. I had to study the functioning of the MCL localization
and source code written in C programming language. Then I started working on the
first version, which ran only in Java SE. It made no sense to engage in the development
of real-time features did not work until the localization algorithm.

Plain Java version only served to test the correct functionality of theMCL rewritten
in Java programming language. Even back then but had to be solved a problem retriev-
ing the source data for the simulation and generate output data for comparison.Another
version of the project have used the RTSJ. The problem is that if a newer version of a
program developed so that it overwrites the old version directly in the same project,
it is possible to quickly obtain results to compare the two versions. History of develop-
ment is indeed stored in the versioning system and can be undone at any time, but
development is very impractical. In addition, using different versions of classes con-
tained in the Java development kit (JDK) can cause conflicts. It would be impractical
to maintain real-time classes in the same project as classes written in plain Java.

Themain logic ofMCL along loading input and generating output datawere placed
in a separate project. Other projects include the implementation of event processing
and individual tests. All versions are not used to generate results that are included in
the final comparison. Gradual expansion of the project can be easily seen in the history
of the git repository.

35

4. jMCLBench Application

4.2.1. Algorithm Rewriting
I had some experience in using the C programming language, but mainly from school
projects related to hardware, where it was necessary to use it. With the help of my ad-
visor I ran C version for testing and I could start programming the first Java version.
Rewriting is generally very boring but it is easy tomakemistakes that are hard to detect.

First I had to design a basic directory structure of the project and the distribution
of packages. The structure does not differ from the standard Java SE project but contains
other directories with the necessary parts of the benchmark. Source package I called
as in custom Java. First goes the country, then the company or developer's name and
the name of project. This results into: cz.janousekm.jmclbench. This package contains
two sub packages. One of them the Io contains classes for support of input and output
data. Second package calledmcl contains classes representing the MCL logic.

The C files and the other files related to simulation are placed in the repository
folder named c. This part is managed by the advisor of my work. Logic of MCL al-
gorithm written in C programming language was divided into multiple files. It was
not easy forme to navigate through these files, but I understand how they are intercon-
nected, and I chose names to represent different parts in Java. The main class is the
cz.janousekm.jmclbench.mcl.RobotIface which describes the main methods of the
MCL. The robot consists of the estimated current position, the necessary constants re-
quired for calculations, fields containing individual particles, their weight and other
variables.

Another important extracted parts were the representation of input data types. It
was necessary tomodel the lasermeasurement, the date fromodometry and the position
of robot. In the data types packages are contained following object classes: Measure-
ment,RobotPosition andLaserState.Coordinates and angles are placed in double and
time is represented as a long representing the millisecond. For the benchmarking pur-
poses is there integer value called index which is used for counting deadline misses.
They are simple objectswhich encapsulates primitive data types.Measurement is used
for representation of incoming data from the laser sensor. RobotPosition is used for
the representation of robot's position. The RobotPosition is used for the additions re-
ceived by odometry sensor, too. LaserState is used for the representation of the particles.

Important constants for the description of the playground were grouped into the
one class. The name of the class is PlayGround and contains the height and width of
the playground and the position of reflection beacons. Class contains a public inner
class to represent the position of the beaconwith two double values, which correspond
to coordinates on the playground.

Writing the Java code was not so time-consuming but it was worse with tuning and
debugging. Java version did not work correctly on the first attempt so it had to contain
errors. Find an error in nondeterministic algorithm is not easy especially because of
the use of random number generator. Together with my advisor, we divided the al-
gorithm into smaller parts, which we tested separately to verify that it returns the
correct results. A mistake in the wrong evaluation of the likelihood of the individual
parts, was removed.

36

4. jMCLBench Application

4.2.2. Projects Structure
The development was divided into multiple projects. To understand the proper func-
tioning of the benchmark is important to understandwhat different sub-projects contain.
Brief description of the Java projects contained in the distribution:

• GraphsGenerator - independent project for generating gnuplot graphs from output
data

• jmclbench - main logic of MCL and shared classes

• jmclbench-pj - projects containing plain Java versions

• jmclbench-rtsj - projects containing RTSJ versions

The content andpurpose of individual projectwill be described below. Someprojects
have been already mentioned and does not make sense to discuss them again. All files
can be found in the electronic annex to this thesis.

4.2.3. Repository Structure
The repository contains not only the Java project directories. Are there also other dir-
ectories containing parts needed for proper use benchmark. The whole structure is as
follows:

• c C programming language codes and simulation data

• GraphsGenerator Java projects for generating graphs

• jmclbench Project contains the main logic.

• jmclbench-pj-v1 Version one of benchmark logic in plain Java.

• jmclbench-pj-v2 Version two of benchmark in plain Java.

• jmclbench-rtsj-v1 Use of aperiodic and periodic RTT thread.

• jmclbench-rtsj-v2 Use of Test thread as periodic Task a event handler for laser event.

• jmclbench-rtsj-v3Testing interruptible capabilities of asynchronous thread termination
and control transmission.

• jmclbench-rtsj-v4 Using handlers for task processing.

• jmclbench-rtsj-v5 Test of using another memory models.

• jmclbench-rtsj-final Java project containing final version used for generating
presented results.

37

4. jMCLBench Application

• www - files used for web presentation

Important are only directories jmbclbench, jmclbench-rtsj-final, GraphsGenerator,
and www. Other directories include the development versions, which may not be
functional.

4.2.4. Plain Java Versions
The first version transcribed from the C run only in one thread and not address the
problems with the coming of events at the same time or coming events even when the
previous process. It represented an ideal state which is actually an infinitely fast com-
puting unit and has unlimited time to do needed computations for each event. If such
amachine existed, it would alwaysmet all deadlines and using real-time programming
and real-time implementations of the JVM would be unnecessary.

Retrieving data was provided by DataReader class from package
cz.janousekm.jmclbench.io. The class constructor receives three String parameters
which are the paths of files containing the data required for the simulation. These are
laser data odometry data and data of the real position of the robot on the field. Data is
loaded into memory and the access of them is possible via getters of the object. This is
the final version of the class, but I used implementation which reads data from file by
line but it could cause some I/O latency. So data is loaded directly to the memory.

The next step was to write multi-threaded version of the algorithm. For each type
of processing task was used a single thread. The release of threads to start process an
event was driven by using semaphores. Java.util.concurrent package contains Sema-
phore classwhich is used. Each thread has his own semaphore andwaits for the release
using the semaphore's method acquire(). In following example is the use of semaphore
:

/* Example of Semaphore usage */
while (run) {

try{
semaphore.acquire();
synchronized(robot){
robot.laserUpdate(meas);
robot.laserResample();

}

semaphore.release();

Threads have inside infinite while loops, which depends on boolean value. When
threads have to end the boolean value is set to false and when they are released using
semaphores the loop ends and as well as whole thread. Loops are interrupted from
the control thread by setting the run boolean of the thread. Control threads are in ap-
plication named as test and are represented by the Test classes. The tests are objects
which handle the control of tasks and measure some of the metrics. Test implements

38

4. jMCLBench Application

different approaches of event processingwhich is described in third chapter. The names
of the test classes are SkipTest and TerminationTest. The name of termination class
was shorten to TermTest in RTSJ implementations.

Tasks in plain versions are represented directly by Thread classes. The names of
classes are UpdateThread and PredictThread. Names match the encapsulated parts of
MCL. Part of the task is to record the state of the robot after performing theMCLupdate
or predict depending on the task. It has to be done because it is needed for comparison.
This data could be written into files or stored in memory.

In the plain versionswas the processing of the results part of the tests, whichmeans
that the taskwere a little bit more demanding on computation time.Whichwas subject
to change in RTSJ versions.

The two plain Java projects were used for better and faster comparison of tests
results. They are now same it differs only in used implementation of Robot class,which
was tunned to avoid instantiation in the MCL methods for use in Immortal memory.
The work with plain Java version is generously faster, so i used it for development of
new features and tuning of themain logic residing in jmclbench project which contains
only plain Java classes.

4.2.5. RTSJ Versions
RTSJ offersmore options for solving the time-dependent processing of individual tasks.
It is possible to use the RTT or AEH class for implementation of tasks. Basic usage of
these classes is previously described in the chapter 2.

The main project contains more subprojects of versions written for RTSJ as well as
Java SE. Particular versions are used for testing different functions of real-time Java
because RTSJ offers more options for implementing same things. I have tested the use
of periodic and aperiodic RTT and the use of AEH and BAEH classes. I tried to use
non-standard memory models but I do not have any success with it.

The final version is using for the event processing BAEH class. Usage of BAEH class
is same as the usage of AEH class because the BAEH extends AEH. Implementation
of BAEHclass differs fromAEH in events handling. BAEHcreates one dedicated thread
for handling events bounded to this handler. The overhead is in bounding one thread
for use for only one task, but the advantage is smaller lateness of dispatching. Thank
to use of EventHandler are the events handled sequentially in the right order according
to FIFO(first-in-first-out) principle. So BAEH allows faster dispatching of incoming
events and because of that is appropriate for use in this case. In addition event handler
are usable in another implementations of real-time Java as Safety-Critical Java which
I would test in the future.

Subproject contains 4 implementation of tasks. They are located in
cz.janousekm.jmclbench.rtsj.handlers.taskspackage. Reason for somuch implement-
ations is the problem with task termination. Because of the handlers do all the work
with taskmanagement and encapsulate the event processing it is very difficult to inter-
rupt threads bounded to them. RTSJ provides mechanism for Asynchronous Thread
Termination (ATT) and Asynchronous Transfer of Control (ATC).

ATT is achieved by the use of the javax.realtime.Interruptible interface which is
connected with AsynchronouslyInterruptedException(AIE). Interruptible has run()

39

4. jMCLBench Application

method which throws AIE. Within this method can be executed code which can be
asynchronously interrupted by calling the AIE fire() method. The object which imple-
ments Interruptible interface have to be associated the instance of AIE. The instance of
AIE can be shared within more threads. When the fire() method is called and there is
a RTT executing his interruptible run method associated with this AIE, the execution
of run method is interrupted. Interruptible interface provide interruptAction method
which serves for handling the interruptions. Tasks used in TermTest implement Inter-
ruptible interface and uses interruptible runmethod. If thread is interrupted it is equal
to termination of task.

Tasks are represented as classes which implements the Runnable interface. They
contain only references to shared objects and variables and the run method. Run
method consists of calling robot's method and writing measured data to the memory.
Sharing the Robot object between handler could case the conflicts in access to Robot's
data. Only one thread can work with in a given time. Integrity of the Robot object's
data is secured by use synchronized keyword. The calling of Robot objects method is
encapsulated as critical section using the synchronized block. The robot methods are
called atomically.

The problem is to find out if a task is running because the thread is encapsulated
by event handler. If a new event arrives it has to be decided what to do. It can happen
that another task is still processing then the behaviour depends on the type of test. But
both tests need to know if a task is processed. The solution of this problem is the use
of a class from java.util.concurrent.locks package, concretelyReentrantLock. This class
has methods tryLock() and isLocked(). Before starting of execution the task is tried
state of the lock. If is the lock locked it indicates that task is running. Thanks to isLock()
is found out that a task is processed and tryLock() method founds out the state of lock
and when it is unlocked the method locks it.

The control thread handles the dispatching of event a it is implemented as RTT.
Both types of test extends the Test class. Test class contains the declaration and initial-
ization of variables, which are same for both types of test. And it has method for pro-
cessing the results after simulation. The priority of Test has to be higher than the Tasks
priority value.

The tasks are executed within the TaskHandler class which extends BAEH. Con-
structor of TaskHandler accepts as parameter an integer value which is subtracted
from the default value of priority. The default value of priority is obtained from
Scheduler as maxpriority. Next important parameter is instance of Runnable. Used
instances are Tasks.

Simulation of events is implemented as iteration through the events data. The times
of arrival of event are compared to each other. There two arrays of events corresponding
to the laser and odometry. They are sorted according to time. The earlier event is dis-
patched first. The logic of Test finds out the time of next event and then compares it
the next event of the second type of event. Then the tread is suspended by using sleep()
method. Sleepmethod in the RTSJ implementation accepts instance ofHighResolution-
Time class, so the thread can be suspended to precise absolute time. When the thread
is awaken then fires the prepared event and then prepares new event and goes to sleep
to the time of next event. Data for concrete are in classes shared between control thread
and the handlers.

40

4. jMCLBench Application

The final version of the benchmark is located in project named jmclbench-rtsj-final

4.2.6. Building Benchmark
For compiling the Java programs are mainly used apache ant or maven. Personally, I
have experiencewith both programs. Usingmaven is a bit complicated but the advant-
age is the extensive management of dependencies. Management of large projects with
many dependencies would be very difficult without maven. Maven has in addition to
the program building and management more features such as support for creating
documentation and reporting. Ant is very simple because it is used mainly to compile
and to assemble programs.

The benchmark has not many dependencies but consists of several projects, so it is
more suitable for Ant use. Using Ant consists of the targets and tasks that are defined
in the XMLfile. The file resides in jmclbench project directory and its name is build.xml.
Ant can be simple executed from console:

janousekm@Ample-Michal:~/jmclbench/jmclbench$ ant

janousekm@Ample-Michal:~/jmclbench/jmclbench$ ant rtvFinal -Djavac.path=<path to java>

Default value of java.path is set to /usr/lib/jvm/java-6-sun/bin/javac. Standard target
builds version in plain Java. The result of building is a jar file containing the classes in
byte code. Jar file is built and packed into ./build/jar and default name is jMCLBench.jar.

Assembling and building the benchmark will link jmclbench and another project
with the name which specifies the implementation of test behavior. In dist folder are
copied the source code files from the packages of the linked projects according to selec-
ted version. The name of the packages are same for all jmclbench projects. They are
also copied the libraries from the lib directory. It is used only one external library
containing the command-line parser. In Eclipse is to each project linked the jmclbench
project containing the logic. So plain and real-time versions contain logic from the
perspective of the IDE.

Such appropriately building allows using different compilers for compilation. For
testing different JVMs is important know the paths. When you want to use real-time
functions of real-time JVMs you have to build soft or hard real-time version. You have
to use RT Linux kernel for the real-time version. Non real-time version can be ran on
all the types of JVMs.

A more detailed description of how to build is located in a text file ReadMe.txt in
the jmclbench project directory.

4.3. Benchmark output
In the benchmark is the generation of results separated from the simulation. Benchmark
can write temporary results into files but it can cause possible I/O delay and had bad
impact on the results. So the temporary results are only saved into memory, then they
are processed. The graph generation was included in jmlclbench subproject.

41

4. jMCLBench Application

Generated results are saved into files. The generation of data is provided by using
countOutputData() method in Test class. The temporary measured data are used for
calculating the metrics into file named data.txt. For calculation is used the Math class
which implements needed mathematical methods. The file contains these data:

• deviationXY - combined average deviation of position(coordinates x and y) inmetres

• deviationX - average deviation of coordinate x in metres

• deviatonY - average deviation of coordinate y in metres

• deviatonAngle - average deviation of angle in radians

• deadline-missCount - the amount of occurred misses

• averageReleaseJitter - average value of the difference between required and real start
time

• averageTaskTime - average time for processing of one task

and This is provided by The location of files depends on the type of test. Generated
into files according to

The information about time are saved into object ofDataLine class. This class con-
tains integer value representing the index of event and two longs which represents the
time. The position of robot is written to array in memory and then processed.

4.3.1. Folder Structure
Results are generated by following rules:

,/resulst/jvm/covariance/particlescount/typeoftest/numberoftest/

jvm : name of tested JVM
covariance: indication of counting the covariance
particlescount: the count of used particles
typeoftest: used test (TermTest, SkipTest)
numberoftest: the number of same test in a row

The files with measured data are located in "numberoftest" folder. The names of
the files are laserData.txt, odoData.txt, position.txt and positionDeviation.txt. Files
containing the times of event processing are laserData.txt and odoData.txt. In position.txt
the data about position are stored and in positionDeviation are stored values of xy
deviation. If covariance benchmark counts covariance data they are stored in covari-
ance.txt.

42

4. jMCLBench Application

4.3.2. Graphs
Generation of graphs is separated into its own subproject named GraphsGenerator.
Themain generation of the graphs is in the GraphsGenerator class. This utility searches
the folders structure using depth first search (DFS) and generate graphs. The data files
are mostly in the roots of directory tree. Position of files in the folders determines the
descriptions of graphs.

The utility can be built using ant as well as benchmark. The usage is very simple.
The only parameter is absolute path to the folder which contains results.

For each graph is generated text file with extension "gp". This file contains gnuplot
commands for generating of corresponding graph. The graph is generated by calling
gnuplot from Java with generated file as parameter. Some of the graphs especially
histograms need another processing of the results before plotting. This is provided by
classeswhichwork similarly as theGraphsGenerator in themanner of DFS and aggreg-
ates the data from results. Then create a gnuplot files on higher levels in the directory
tree. Types of generated graphs are

• XY lines graph

• XY points graph

• histogram

• histogram with error values

I used GraphsGenerator from IDE, but it can be build using ant. If the GraphsGen-
erator is executed from command line the path to the folder with results have to be
specified. Graphs are generated to the location of their source files.

Examples of graph generated using GraphsGenerator

43

4. jMCLBench Application

Figure 4.4. Example of XY points graph

Graph represents the distribution of task latency according to index. The index
corresponds to the time-steps of simulation. For odometry task is the time-step 50 ms.
For laser task is time-step variable. From this graph can

44

4. jMCLBench Application

Figure 4.5. Example of XY lines graph

Graph for comparison of 5 five runs of SkipTest. The count of particles is 400 and
tested JVM is oracle. This graph shows the deviation of estimated position from real
position. Testswere run several times for the given parameters. It is used for verification
of correct functioning of the algorithm and for comparison of differences between runs.
Because it is important to repeat same results in benchmark application. The usedMCL
algorithm is nondeterministic. The pseudo random generator is initialized by same
value for generation same sequences of randomnumberswhich itself does not guarantee
deterministic behavior. But the repeatability is better.

45

4. jMCLBench Application

Figure 4.6. Example of comparison graph

This graph shows two runs of SkipTest with different trajectory. The robot did have
to stay in the center of beacons. The cross represents the position in the middle of
beacons. The algorithm has not implemented staying so it moves around the real pos-
ition.

46

4. jMCLBench Application

Figure 4.7. Example of histogram with errors

Example of classical histogram used to display the dependence of missCount and
average position deviation on count of particles. For better comparison is missCount
value in tens.

4.4. Presentation and Testing
For better comparison of results and simpler testing was necessary to develop some
support scripts and documentation for users.

4.4.1. Web layer
The presentation layer is simple web page written in PHP. The website is used for
direct comparison of some generated graphs according to parameters used for simula-
tion. The graph images and data files are read from the results folder of jmclbench
subroject. But only the results are copied to a web server.

47

4. jMCLBench Application

Figure 4.8. Screenshot of web application for comparison

4.4.2. Testing
Successful development of applicationmeans a lot of time spent for testing a debugging.
In earlier versions are more simulations ran through one initialization of JVM, but in
the final version is for each test JVM initialized again. The purpose of this was better
management of the tests.

The basic usage of provided console application is described below;

usage: jmclbench [-c] [-h] [-j <arg>] [-laser <arg>] [-n <arg>] [-O <arg>]
[-odo <arg>] [-p <arg>] [-real <arg>] [-T]

-c count covariance
-h print this message
-j <arg> name of tested jvm
-laser <arg> file containing laser data
-n <arg> number of test
-O <arg> dir where to generate data
-odo <arg> file containing odometry data
-p <arg> count of particles
-real <arg> file containing real position data
-T test for termination of unfinished jobs

For more comfortable testing are used shell scripts for calling the tests. They are
located in ./script/test folder of jmclbnench subproject. The names of the script contains
names of tested versions. Example of shell script used for testing :

48

4. jMCLBench Application

ant

testnonrt() {
for i in 1 2 3 4 5
do
java -verbose:gc -jar build/jar/jMCLBench.jar -j sun-java -p $1 -n $i
done
}

for n in 500 1000 2000 3000 4000
do
testnonrt $n
done

exit 0

49

4. jMCLBench Application

Chapter 5

JVM Evaluation

In this chapter are presented and discussed the results of benchmark. Few graphs of
different tests are discussed for each tested JVM implementation. All the graphs can
not be included in this thesis and they are located on the appended CD with other
results. In particular, I chose graphs that display data from multiple measurements
and compare them as metrics. The benchmark was ran on RTOS which was not fully
loaded. The simulation ran without doing anything else on the OS. I used basic config-
uration of all JVM implementations. I only used switch for printing the info about GC
on the standard output. The switch is "-verbose:gc".

5.1. aicas - JamaicaVM (Jamaica)
Jamaica is hard real-time JVM implementation provided by aicas company. It can be
only ran on RTOS.

5.1.1. Deviation and MissCount

Figure 5.1. Histogram for skipping of tasks test

50

Figure 5.2. Histogram for termination of tasks test

This two graphs provide comparison of JamaicaVM performance in both tests. The
first graph shows the results for SkipTest and the second graph shows results for Ter-
mTest. Graph shows the dependence of missCount and combined standard deviation
for coordinates on count of particles. From the graphs it is evident that the JamaicaVM
achieves better results in the test of termination results. In the both types of the test
were the results for 1600 and 2000 particles very bad and the algorithm has stopped
working. In the second graph the difference between the results for 100 and 200 particles
was how was expected. That the missCount will increase with increasing count of
particles and deviation will decrease to some point where the count of particles will
be too big. The deviation for 400 particles is worse than for 800 particles. The precission
of the algorithm should be better for larger numbers of particles. ThemissCount increase
proportionately to the count of particles. In the test of skipping events the deviation
and missCount increase proportionately to the count of particles. In both of graphs is
the missCount very high. The error values are not too hight,

5.1.2. Task Latency and Release Jitter
This graph shows the average processing latency of task and average jitter. These values
are aggregated from more simulations. On the y axis is the time in milliseconds and
on the x axis are counts of particles.

51

5. JVM Evaluation

Figure 5.3. Histogram of average task latency and release jitter for SkipTest

Figure 5.4. Histogram of average task latency and release jitter for TermTest

These three graphs show the average length of task. We can see when was the
latency higher. The latency of both tasks increase proportionally to the count of particles.
For TermTest were the average latency lower because of the termination of processing.
In skipping test tasks ran without interruption. The release jitter of tasks is increasing
like the task time but slower.

5.2. IBMWebSphere Real Time for RT Linux (IBM)
Second tested hard real-time JVM implementation is from the IBM. It uses own GC
Metronome. The special configuration for this JVM is the mandatory use of this GC.v
The switch is "-Xgcpolicy:metronome".

52

5. JVM Evaluation

5.2.1. Deviation and MissCount

Figure 5.5. Histogram for skipping of tasks test

There are only results of skipping tasks because the real-time JVM cannot handle the
termination of tasks properly. Probably it si casue by the use of AsynchronouslyInter-
ruptedException, which could cause unexpected behavior of algorithm. The usage of
termination cause a deadlock. This deadlock breaks down the whole system because
of the high values of thread priority, The results of skipping task test are better than
for JamaicaVM, but the miss count increases slowly and the deviation was better for
all of the counts of particles in skipping test in comparison with JamaicaVM. For 200
particles is the deviation lower than for 100 particles. The missCount is constantly in-
creasing.

53

5. JVM Evaluation

5.2.2. Task Latency and Release Jitter

Figure 5.6. Histogram of average task latency and release jitter for SkipTest

Figure 5.7. Graph of task processing distribution of 2000 particles

Second graph shows the processing length of task. Task are divided according to type
because the complexity of computation is for each task different. On the y axis is the
latency in milliseconds and on the x axis is index of processed task. On this graph is
showed the maximal task latency which is 30 milliseconds. This is very long time for
processing of one task. It is caused by the type of test, where the tasks are not interrupted
and run longer.

The results of task latency and release jitter are better than for JamaicaVM. For the
high count of particles are the times still better than for Jamaica. It means that the
Websphere real-time implementation is better in the terms of meeting deadlines and

54

5. JVM Evaluation

the task are processed faster. The times for 2000 particles are higher for only fewmilli-
seconds. The algorithm is still working for 2000 particles, but the precision is very low.

5.3. Sun Java Real-Time System 2.2 (Oracle)
Sun's version of JVM implementation has no requirements on the underlying system.
So it was possible to do the tests on the system without real-time kernel. I did the tests
on real-time kernel too. This section describes the benchmark for runs on both types
of kernels. The tests with larger numbers of particle launch GC. But the GC runs only
in normal, which means that the tasks can not be preempted by GC.

5.3.1. Tests on Generic Kernel
The benchmarks tests were performed in the same manner as on the systemwith real-
time kernel.

5.3.1.1. Deviation and MissCount

Figure 5.8. Histogram for skipping of tasks test

55

5. JVM Evaluation

Figure 5.9. Histogram for termination of tasks test

The deviation of position increases very slowly and the results are better for the termin-
ation test. The comparison of the estimated trajectories of robot is almost the same. The
graphs of five runs often looks, that there is only one curve. This is caused by running
the benchmark without doing other things on the system.

5.3.1.2. Task Latency

Figure 5.10. Graph of task processing distribution of 100 particles

56

5. JVM Evaluation

Figure 5.11. Graph of task processing distribution of 2000 particles

The latency of tasks is for 100 particles under 1 millisecond in the hundreds of micro-
seconds. And the latency for 2000 particles is much better than at previously tested
JVMs. I do not have the histograms of average task latency and average release jitter.
I have done it only for the tests on real-time kernel.

5.3.2. Tests on RT Kernel
Tests on the real-time kernel are not much different from the tests on generic kernel.
In general they are a little bit slower. The latencies are higher but not much so it is un-
necessarily to show the results of latencies on real-time kernel.

5.3.2.1. Deviation and MissCount

Figure 5.12. Histogram for skipping of tasks test

57

5. JVM Evaluation

Figure 5.13. Histogram for termination of tasks test

The results of the tests are not very different. The values of average deviation of position
and average missCount are lower. Termination of task has slightly better results. The
deviation is lower for 2000 particles than for 800. The results are same formore different
runs of benchmark. ThemissCount for 2000 particles is comparablewith themissCount
for the low values of particle count. The error value of showed metrics are low, which
means, that the results for different runs do not differ much.

Figure 5.14. Histogram for skipping of tasks test

58

5. JVM Evaluation

Figure 5.15. Histogram for termination of tasks test

The values of latency times and release jitter times are very low for both types of
tests. The values of tasks latencies are not larger than 8 milliseconds. Form TermTest
is the release jitter is in hundreds of microseconds.

5.4. Comparison of JVM
Themost important result is the graphwhich summarizes all the JVM implementations
in one graph. The average deviation is important parameter for testing the algorithm
but most important metrics is the missCount.

5.4.1. Pure Hard Real-time JVM

Figure 5.16. Histogram of average missCount

59

5. JVM Evaluation

In the comparison of missCount are much better the results of IBM implementation.
In proper hard real-time application should not be too much deadlines misses, which
can cause failure of whole system. Both implementations have very high values of
missCount for small number of particles.

5.4.2. Comparison of All JVM

Figure 5.17. Histogram of average missCount

Figure 5.18. Histogram of average release jitter

60

5. JVM Evaluation

Figure 5.19. Histogram of average task latency

Best results are achieved by the JVM implementation of Oracle which results are dia-
metrically different. Second is the IBMs implementation of hard real-time JVM, which
can handle the interruption of unfinished tasks, but has good latencies of task processing.
The Jamaica has the worst results in the measured metrics. Algorithm works only to
the 800 particles and the deviation of position was high.

61

5. JVM Evaluation

Chapter 6

Conclusion

I started working on this thesis when I did not have much experience and knowledge
of programming for real-time systems and real-time systems in general. This topic in-
terestedme and I tried to understand it duringwork on the development of benchmark.
At our college nobody using Java for programming of real-time systems. So that solving
of problems,which are connected with RTSJ and programming practices, was not so
easy.

I successfully rewrote the algorithm fromCprogramming language to Java language
and I demonstrated its functionality. I implemented the algorithm in several versions
and tried to optimize it according to real-time programming principles. Along with
my advisor, we have developed we have developed several metrics to find out which
(or whether) they are suitable for comparison of real-time JVM properties.

From the measured results I created various graphs. Part of the benchmark is a
project that is used to generate graphs automatically.

I wrote a web site providing the dynamic comparison of results which i used for
evaluation.

During the work I have tested the real-time implementations from IBM, Oracle
(Sun) and aicas. The performance on RTOS is worse than the performance on non real-
time system. The latency, jitter andmissCount of tasks is lesser for non real-time system.
This was expected because of the higher overhead of real-time implementations of
JVM. On the non real-time OS has benchmark better results but these results are not
guaranteed. On aworst case scenario if the system is very busy or overloaded the results
should be much worse than on RTOS.

The results of benchmarkdepends on the used algorithmand onmy implementation
of algorithm. In the comparison of JVM implementations has the best results Sun Java
Real-Time System 2.2. The second was IBM Websphere for RealTime, but it can not
handle the termination test. It could by caused bymy poor implementation. The worst
results has JamaicaVM from aicas because of high amount of missCount and average
deviation. The task times and jitter were longest from the three tested JVMs. All the
test was ran on RTOS which was not fully loaded. Only the benchmark ran along with
standard programs of Ubuntu Linux and Gnome.

The results of thiswork and all source codes are public available in the git repository.
The address is git@rtime.felk.cvut.cz:jmclbench.

Further development is necessary to provide another results. There is big space for
impromevents of the benchmark especially in use of different GC configurations and

62

doing the benchmark tests in fully loaded system. The benchmark should be expanded
by implementation of algorithm in Safety Critical Java.

63

6. Conclusion

Literature

[1] Programming Language Popularity (2011), <http://www.tiobe.com/index.php/con-
tent/paperinfo/tpci/index.html>

[2] Real-Time Operating Systems <http://en.wikibooks.org/wiki/Embedded_Sys-
tems/Real-Time_Operating_Systems>

[3] Brian Goetz, Robert Eckstein (2008), An Introduction to Real-Time Java Technology

[4] Gregory Bollella, Benjamin Brosgol, James Gosling, Peter Dibble, Steve Furr, Mark
Turnbull (2000), The Real-Time Specification for Java January 15 <ht-
tp://www.rtsj.org/specjavadoc/book_index.html>

[5] Eric J. Bruno, Greg Bollella (2009), Real-Time Java Programming: with Java RTS

[6] Kanaka Juvva (1998), The Real-Time Systems Carnegie Mellon University, <ht-
tp://www.ece.cmu.edu/~koopman/des_s99/real_time/>

[7] Greg Bollella, Kevin Russell (since 1998), JSR 1: Real-time Specification for Java
<http://jcp.org/en/jsr/detail?id=1>

[8] Mark Stoodley, Mike Fulton, Michael Dawson, Ryan Sciampacone, John Kacur
(2007), Cycle of articles about Real-time Java programming - Real-time Java,
Part 1: Using Java code to program real-time systems <http://www.ibm.com/de-
veloperworks/java/library/j-rtj1/index.html>

[9] Frank Dellaert, Dieter Fox, Wolfram Burgard, Sebastian Thrun (1999), Monte Carlo
Localization for Mobile Robots <www.ri.cmu.edu/pub_files/pub1/del-
laert_frank_1999_2/dellaert_frank_1999_2.pdf>

[10] Dieter Fox,WolframBurgard, FrankDellaert, Sebastian Thrun (1999),Monte Carlo
Localization: Efficient Position Estimation for Mobile Robots, in Proc. of the
Sixteenth National Conference on Artificial Intelligence (AAAI'99)

[11] Sebastian Thrun, Dieter Fox ,WolframBurgard , and FrankDellaert (2001), Robust
Monte Carlo Localization for Mobile Robots <http://robots.stanford.edu/pa-
pers/thrun.robust-mcl.pdf>

[12] Andrei Stanculescu (2009), Evaluation of the Monte Carlo Localization algorithm
<rtime.felk.cvut.cz/dragons/repos/papers/Monte_Carlo_Localization.pdf>

[13] Wolfram Burgard (1998), Markov Localization, A Probabilistic Framework for
Mobile Robot Localization and Navigation <http://www.cs.washing-
ton.edu/homes/fox/diss/diss.html>

[14] Maria Isabel Ribeiro, Pedro Lima (2002), Markov Localization <ht-
tp://users.isr.ist.utl.pt/~mir/cadeiras/robmovel/Markov-Localization.pdf>

64

[15] Scott Chacon (2009), Pro Git <http://progit.org/book/>

[16] HOWTO: Realtime-Preempt Kernel <https://www.osadl.org/Realtime-Preempt-
Kernel.kernel-rt.0.html#externaltestingtool>

[17] Cyclictest <https://rt.wiki.kernel.org/articles/c/y/c/Cyclictest.html>

65

Literatura

Appendix A

Contents of CD

CD appended to this work contains following folders:

• janoumi8-2012-dip.pdf - Electronic form of this thesis in pdf format.

• project jMCLBench subprojects - All classes and source codes, sites, configfiles, results
and pictures

• results - history of measured data with generated graphs

• c - source codes of MCL localization algorithm and data for benchmark

• www - codes used for web comparison

66

	Benchmark of Real-Time Java implementations
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Real-Time Systems Programming
	2.1. Classification of Real-Time Systems
	2.1.1. Non Real-Time System
	2.1.2. Soft Real-Time System
	2.1.3. Hard Real-Time System
	2.1.4. Classification of Scheduling Problems

	2.2. Real-Time Specification for Java (RTSJ)
	2.2.1. Scheduling
	2.2.1.1. Schedulable objects
	2.2.1.2. Real-Time Scheduler

	2.2.2. Memory Management and Models
	2.2.2.1. Heap
	2.2.2.2. Scoped Memory
	2.2.2.3. Immortal Memory
	2.2.2.4. Physical Memory

	2.2.3. Real-Time Garbage Collection
	2.2.4. Real-Time Threads and Handlers
	2.2.4.1. RealTimeThread and NoHeapRealtimeThread Class
	2.2.4.2. AsyncEventHandler and BoundAsyncEventHandler

	Chapter 3. Benchmark Description and Metrics
	3.1. Robot Position Localization
	3.1.1. Monte-Carlo Localization
	3.1.2. Robot Playground

	3.2. Benchmark Description
	3.2.1. Skipping of Jobs
	3.2.2. Termination of Jobs
	3.2.3. Format of Input Data

	3.3. Metrics
	3.3.1. Deadline Miss (missCount)
	3.3.2. Latency
	3.3.3. Jitter
	3.3.4. Average Error of Estimated Position
	3.3.5.

	Chapter 4. jMCLBench Application
	4.1. Technology
	4.1.1. Integrated Development Environment
	4.1.2. Version Control System
	4.1.3. Types of JVM
	4.1.4. Work with Charts
	4.1.5. Presentation Layer
	4.1.6. Real-time OS

	4.2. Description and Subprojects
	4.2.1. Algorithm Rewriting
	4.2.2. Projects Structure
	4.2.3. Repository Structure
	4.2.4. Plain Java Versions
	4.2.5. RTSJ Versions
	4.2.6. Building Benchmark

	4.3. Benchmark output
	4.3.1. Folder Structure
	4.3.2. Graphs

	4.4. Presentation and Testing
	4.4.1. Web layer
	4.4.2. Testing

	Chapter 5. JVM Evaluation
	5.1. aicas - JamaicaVM (Jamaica)
	5.1.1. Deviation and MissCount
	5.1.2. Task Latency and Release Jitter

	5.2. IBM WebSphere Real Time for RT Linux (IBM)
	5.2.1. Deviation and MissCount
	5.2.2. Task Latency and Release Jitter

	5.3. Sun Java Real-Time System 2.2 (Oracle)
	5.3.1. Tests on Generic Kernel
	5.3.1.1. Deviation and MissCount
	5.3.1.2. Task Latency

	5.3.2. Tests on RT Kernel
	5.3.2.1. Deviation and MissCount

	5.4. Comparison of JVM
	5.4.1. Pure Hard Real-time JVM
	5.4.2. Comparison of All JVM

	Chapter 6. Conclusion
	Literature
	Appendix A. Contents of CD

