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Abstrakt

Tato prace zkoumd vhodnost nastroje
symbolické exekuce KLEE pro verifikaci
real-time bezpecnostné kritickych sys-
tému. Real-time bezpecnostné kritické
systémy jsou ty, u kterych selhani miize
vést ke ztraté lidskych zivott anebo ke
skodam na zivotnim prosttedi.

V této praci modifikuji dva real-time
bezpecnostné kritické systémy, abych
je mohl otestovat s KLEE a posoudit,
jak komplikovand jejich modifikace byla
a zda mé smysl zacit pouzivat KLEE
k verifikaci real-time bezpec¢nostné kri-
tickych systémt. Dosel jsem k zévéru,
ze KLEE muze byt cenny néstroj pro
verifikaci real-time bezpecnostné kritic-
kych systému, ale dany systém musi byt
navrzen s ohledem na KLEE.

Klicova slova: Symbolickd exekuce,
KLEE, automatické testovani, bezpec-
nostné kriticky software, automobilovy
pramysl

Preklad titulu: Vyuziti symbolické
exekuce pro testovani real-time bezpec-
nostné kritického softwaru

/ Abstract

This thesis investigates fitness of sym-
bolic execution tool KLEE for verifica-
tion of real-time safety-critical systems.
Real-time safety-critical systems are
those systems, whose malfunction might
result in loss of life and/or environmen-
tal damage.

In this thesis I modify two pieces of
real-time safety-critical software to
test them with KLEE and to evaluate
how complex the modification was and
whether using KLEE for verification
of real-time safety-critical systems is
viable going forward. I conclude that
KLEE can be a valuable tool for veri-
fying real-time safety-critical software,
but the software has to be designed
with KLEE in mind.

Keywords: Symbolic execution, KLEE,
automatic testing, security-critical sys-
tems, automotive domain
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Chapter ].
Introduction

Safety-related software is software whose failure might result in death, injuries and
substantial property damage. Every day more and more people rely on such software.
It is characterized by being thoroughly tested and reliable, but as the Internet of Things
is becoming pervasive, safety cannot be achieved without considering security, as was
shown by the recent example of being able to locate and unlock Tesla Model S electric
car by hacking a trivially brute-forceable security code [1].

Because security used to be thought of as completely orthogonal to safety-related soft-
ware, traditionally used tools for verification of safety-related software are ill-prepared
to expose security vulnerabilities. Therefore we decided to try a verification method ori-
ented towards finding bugs in general and evaluate its fitness for testing safety-related
software in particular.

The verification method we decided to use is symbolic execution, using KLEE [2] as
our executor. Symbolic execution seemed as a good fit for our needs as it is generally
sound and its main drawback, exponential runtime complexity in number of executed
branches, is mitigated by the fact that safety-related software contains a relatively low
number of paths through its code. And while no tool can prevent security vulnerabilities
caused by naive authentication scheme, automatic testing can find security vulnerabil-
ities caused by implementation bugs which can allow an attacker to bypass security
measures that are in place.

This thesis investigates KLEE’s fitness for purpose of testing safety-related software,
documents its results on two selected pieces of safety-related software, eMotor and
MaCAN library, and evaluates whether symbolic execution tools should be used for
testing safety-related software in the future.

The rest of this work is organized as follows. Second chapter, Background and Related
Technologies, introduces basic information about undefined behaviour, safety-related
software, symbolic execution and existing tools using it, the tool I am using in this
thesis and the two pieces of safety-related software we will use to evaluate KLEE’s
fitness for purpose. Third chapter, Toolchain and case study preparation, covers work
done on KLEE, eMotor software and the MaCAN library in the course of writing my
thesis. Fourth chapter, Evaluation, covers our findings, such as the number of bugs
found using KLEE, their severity, time spent on finding them and whether KLEE will
be a useful tool for testing real-time safety-related software going forward. The final
chapter, Conclusion, recapitulates our findings and recommendations.



Chapter 2
Background and related technologies

Standard C [3] places no constraints upon the result of program invoking undefined
behaviour (UB), and this is often interpreted by compilers as allowance to generate
arbitrary output for such program. It also defines many causes of undefined behaviour,
such as'

m Dereferencing uninitialized pointer

m Dereferencing a NULL pointer

s Dereferencing pointer to no longer valid object (i.e. freed object)

m Creating pointers outside of allocated memory

s Converting pointers to objects of incompatible types (e.g. converting float* to intx*)

m Signed integer overflow (unsigned overflow is well defined)

s Shifting values by more than its size (i.e. int64_t i = 1 << 70)

s Evaluating arithmetic expression that would be mathematically undefined (e.g. di-
vision by zero)

Modern compilers use undefined behaviour to perform optimizations and code in Fig-
ure 2.1 will be transformed into code in Figure 2.2 by such compiler. The reasoning
is that since a program cannot contain undefined behaviour, and the function derefer-
ences ptr, it cannot be null or the function would invoke undefined behaviour. This
allows the compiler to remove the conditional branch and error checking, which is seen
as worthwhile optimization.

int foo(int* ptr){
int temp = *ptr;
if (!ptr){
return ERR;
}

Figure 2.1. Example of undefined behaviour invoking code.

int foo(int* ptr){
int temp = *ptr;

Figure 2.2. Code after compiler transformation.

! Taken from ISO C99 Appendix J.2 [3]



2.1 Safety-critical software and security

The willingness of compilers to exploit undefined behaviour in code has already been
documented as causing security bugs in real world [4], but defined behaviour can lead
to bugs as well. A common example is unsigned overflow, which is well defined, but
often is not accounted for and breaks program’s logic.

While static analysis can find some of these potential defects (e.g. dereferencing unini-
tialized pointers and incompatible pointer conversions), it is not sound and gives both
false positives and false negatives. Static analysis is also unable to find integer over-
flows, as these are inherently dynamic and the only viable way to detect them is with
tools performing runtime checking.

I 2.1 Safety-critical software and security

Safety-critical systems are those systems whose malfunction and/or failure might result
in death (or grievous injury) of people, severe damage to and/or loss of equipment and
environmental damage. These systems are increasingly often implemented in software,
as opposed to hardware, or as mechanic, pneumatic, hydraulic, ..., systems and new
methods of software defect prevention are needed.

There are various ways to decrease the number and frequency of software malfunctions,
such as specific development methodologies (e.g. MISRA C!, and JSF-AV C++ coding
standards?) which aim to provide safer subset of the language, thus decreasing possible
space for defects and set requirements for testing rigour. Similarly, since compilation is
another potential source of software defects, there are formally provable compilers [5].

In general, safety-critical systems often have hard real-time requirements and are re-
quired to have their responses fully defined for all possible inputs. This means that
software contained within must always respond under a fixed time-limit and have to
fully define its failure modes, even if the response is just turning off motor and engaging
emergency breaks.

I 2.2 Symbolic execution

The term symbolic execution has been coined in year 1976 by James C. King in article
Symbolic execution and program testing [6]. Since then symbolic execution has been
implemented by various tools for various languages, from x86 assembly [7], LLVM’s
intermediate representation (IR) (from C/C++) [2, 8] to higher level languages such as
the .NET framework [9].

The contents of rest of this section are heavily based on the KLEE paper [2] and the
S2E paper [7]. Symbolic execution is a testing technique where program is run through
an interpreter, which allows for inputs to be symbolic, as opposed to concrete. While
run under interpreter, symbolic data (either input or variables) are not actual data, but
rather a set of boolean formulae that have been placed upon them by conditions along
the currently executing path. This allows the interpreter to go through all possible
paths in a program, without having to generate all possible inputs. This is achieved
by keeping track of all conditions leading to any given path and using a SAT solver to

! http://www.misra.org.uk/MISRAHome/WhatisMISRA/tabid/66/Default.aspx
2 http://www.stroustrup.com/JSF-AV-rules.pdf
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int is_odd(int n){
if (n % 2) {
return 1;
} else {
return O;

}

Figure 2.3. Example function for symbolic execution.

A) determine whether any given path can be taken and B) generate a sample solution
(concretization of symbolic data) that will lead to any given path. As an example,
consider the function in Figure 2.3.

It has 232 possible concrete inputs, but as can be easily seen, has only two paths through.
Symbolic testing allows us to find both paths without having to explore all 232 inputs.
If we mark the input as symbolic and use KLEE to test this function, it outputs both
paths and gives concretized values that give full coverage as can be seen in Figure 2.4.

KLEE: done: total instructions = 29
KLEE: done: completed paths = 2

KLEE: done: generated tests = 2
args : [’is_odd.o’]

num objects: 1

object 0: name: ’n’

object 0: size: 4
object 0: data: O

args : [’is_odd.o’]
num objects: 1
object 0: name: ’n’

object 0: size: 4
object 0: data: 1
Figure 2.4. Abbreviated KLEE’s output for the example.

Unlike with fuzzing, time required for symbolic execution of any given program doesn’t
increase exponentially with size of input, but rather increases with amount of branches
(possible paths) through the program. This allows use of symbolic testing on much
larger programs than just using random inputs.

On the other hand, certain kinds of conditional branching are more or less unsolvable.
Consider comparing cryptographic hash of a symbolic value against predetermined re-
sult. To be able to give proceed, a symbolic tool would have to reverse a cryptographic
hash which is generally regarded as impossible without brute-force testing the input
space, and in specific cases might be impossible completely. Other problematic con-
structs are unbounded loops (i.e. those waiting for a hardware response) and infinite
loops, which prevent symbolic execution from terminating.

Various solutions to increase path coverage exist, including parallelizing independent
paths [8], usage of heuristics to guide search [2, 8, 10, 11], usage of annotations [10] and
selective symbolic execution [7].



AW =

2.3 KLEE

B 2.2.1 Existing tools

There are other tools for performing symbolic execution, many of which are based on
KLEE [7,8, 10, 11], but we picked KLEE because it is a general purpose tool and would
be easiest to extend for our needs in the future.

Cloud9' is a symbolic executor that can scale over clusters of machines, and a cloud
service for testing software [8]. It’s innovation is dynamic partitioning of search space
while having a shared-nothing architecture. It is also capable of executing C++ code.

S2E? is a platform for analysing large scale programs in vivo. It accomplishes this by
using selective symbolic execution a technique that automatically minimalises amount
of symbolically executed code within a binary. Together with relaxed execution consis-
tency, this allows S2E to analyse code as run in its real environment [7].

SymDrive? is a tool for testing Linux and FreeBSD drivers without hardware [10]. Tt
uses static-analysis to automatically find driver entry points and loops, together with
source to source transformation, which often allows it to test a driver without requiring
any modifications by its author and if it cannot create modified driver automatically
(that is, it cannot perform necessary transformations for testing), it alerts the developer
as to what changes are required [10].

Kite* is a KLEE based tool that prunes its search space whenever a path is proven to
be infeasible. It is based on recent improvements of Conflict-Driven Clause Learning
(CDCL) Boolean Satisfiability Problem (SAT) solvers and uses markedly different ex-
ploration strategy from other tools, in that it looks for paths which allow it to “learn”
the most, that is, prune the search space the most [11].

B 23 KLEE

KLEE is a symbolic execution tool primarily geared towards performing high-coverage
tests on programs, originally created by Cadar et al. [2]. It is built on the LLVM com-
piler infrastructure, using its Clang front-end to convert C code to LLVM intermediate
representation (IR), which it then works on.

Officially KLEE still has LLVM-2.9 and LLVM-GCC as its dependencies, which are
currently almost 4 years outdated. Since then there was significant amount of work
done to allow KLEE to work with newer version of the LLVM toolchain and Clang
instead of LLVM-GCC, but the only officially supported toolchain is LLVM-2.9 and
LLVM-GCC. The officially supported version of Simple Theorem Prover (STP) SAT
solver is extremely outdated as well. Later chapter covers what did I have to do to be
able to use it for testing.

KLEE can find and show paths that lead to any of

= Assertion violation
m Access outside of allocated memory (including null pointer dereference and double
free)

http://cloud9.epfl.ch/

http://s2e.epfl.ch/
http://research.cs.wisc.edu/sonar/projects/symdrive/
http://www.cs.ubc.ca/labs/isd/Projects/Kite/
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= Division by zero
m Integer overshift (shifting an integer by more than its size)
= Call to abort ()

and recently was also extended to handle integer overflow checking, as detailed in later
section.

B 2.3.1 Principle of operation

Text in this subsection is based on the KLEE paper [2].

KLEE takes a file of LLVM IR as its input and works directly on the LLVM IR.
LLVM IR is a low-level programming language resembling strongly typed assembly for
a very abstracted machine. It uses infinite set of registers, supports floating point,
variable width integers, exception handling, atomicity and threads, but also explicit
calling conventions. There are two (three) standard forms of LLVM IR, human-readable
assembly, serialized bitcode (and C++ objects). KLEE is capable of interpreting most of
LLVM IR, but it does not support symbolic floating point, threads, longjmp, embedded
assembly code and some intrinsics. All memory allocations also have to have concrete
size.

At the core of KLEE testing is an interpreter loop, selecting a currently open state.
KLEE’s state consists of the current values of registers, stack and heap objects as
represented by expression trees built from LLVM IR operations. The interpreter then
executes current LLVM IR instruction according to the current state. If the instruction
does not branch, its execution is straightforward, but if the executed instruction is
a conditional branch instruction, KLEE uses a SAT solver to determine whether the
condition is provably true or false given current state and constraints created along
the path taken to reach it, in which case KLEE takes the appropriate path. If the
conditional branch cannot be proved to be either, KLEE creates two new states with
added constraints from the branch. These two states are then added to priority queue
of all open states.

Branches can also be created implicitly, by potentially dangerous operations. Every
division, pointer dereference and similar instructions create an implicit branch that
checks for possibility of error. For example, division instruction creates a branch check-
ing whether the divisor can be equal to zero, and if it can, it terminates the state and
generates test case leading to to it.

This interpreter loop and state expansion continue while there are open states in its
priority queue or while a user defined timeout has not expired.

B 2.3.2 KLEE integer overflow checking

When 1 started working with KLEE, it was unable to detect integer overflow. We
decided to add support for checking integer overflow, but at the same time Dariz Luca
had implemented it as well and since his work has been mainlined [12], T will talk about
his implementation.

This capability relies on Clang’s support for Undefined Behavior Sanitizer (also known
as “ubsan”)!, which in turn is based on work by Regehr et al. on integer overflow
checking [13]. KLEE implements overflow checking by performing arithmetic operations

! http://blog.regehr.org/archives/905
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as-if done on double sized types and then checking upper half of the result. If it is not
empty, the operation must have overflown.

KLEE can check for overflow of both signed and unsigned integral types, but the checks
have to be turned on and/or off during tested program’s compilation. This is caused
by KLEE’s reliance on Clang’s intrinsics.

B 2.3.3 Example of KLEE usage

This subsection explains basic usage of KLEE. We will go through running KLEE on two
toy single file programs, sum.c and memcpyassert.c, whose listings are in Figure 2.5
and Figure 2.6 respectively. We will use Clang-3.3 as our LLVM IR compiler.

#include "klee/klee.h"

int read_int(){
int res;
klee_make_symbolic(&res, sizeof(res), "summand");
return res;

}

int main(){
int total = 0;
for (int i = 0; i < 5; ++i){
total += read_int();
+

return O;

Figure 2.5. sum.c listing

#include "klee/klee.h"
#include <string.h>
#include <assert.h>

int read_int(){
int res;

klee_make_symbolic(&res, sizeof(res), "some int");
return res;

}
int main(){
int a, b;
a = read_int();
memcpy (&b, &a, sizeof(b));

assert(b !'= 0);

return O;

Figure 2.6. memcpyassert.c listing
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clang -emit-1llvm -c -g -fsanitize=integer <name>.c

Figure 2.7. Compilation command line

klee <name>.o
Figure 2.8. How to run KLEE

Because KLEE runs on LLVM bitcode files, the first step is to run Clang on the source
file as seen in Figure 2.7. The result of this step is a .o file containing LLVM bitcode,
which can be now run by KLEE as seen in Figure 2.8.

The output of running KLEE on sum.o can be seen in Figure 2.9 and in Figure 2.10
for memcpyassert.o. As they show, both of these toy programs contain possible bugs.
For sum.c it is a possible signed! integer overflow, which is undefined behaviour and
memcpyassert.o contains possible assertion violation.

KLEE: output directory is "/.../thesis-setup-stable/examples/klee-out-0"
KLEE: ERROR: /.../thesis-setup-stable/examples/sum.c:12: overflow on
unsigned addition

KLEE: NOTE: now ignoring this error at this location

KLEE: done: total instructions = 218
KLEE: done: completed paths = 5
KLEE: done: generated tests = 2

Figure 2.9. KLEE results for sum.c

KLEE: output directory is "/.../thesis-setup-stable/examples/klee-out-1"
KLEE: ERROR: /.../thesis-setup-stable/examples/memcpyassert.c:12:
ASSERTION FAIL: b != 0

KLEE: NOTE: now ignoring this error at this location

KLEE: done: total instructions = 62
KLEE: done: completed paths = 2
KLEE: done: generated tests = 2

Figure 2.10. KLEE results for memcpyassert.c

For every run KLEE creates a new folder with several files, as can be seen in Figure 2.11.
In addition to files created for the execution itself, assembly.11, info, messages.txt,
run.stats, run.istats and warnings.txt, KLEE has created sample inputs for every
distinct path through the sample programs and for every error found (test<n>.ktest)
and if the path generated an error, two more files: test<n>.pc with condition guarding
the error and test<n>.<err> with details about the error (what kind, where in the
source code, call stack).

The test<n>.ktest files are in a binary format, so KLEE comes with an utility to read
them, ktest-tool. If used it writes out human readable list of symbolic variables and

! Yes, signed. KLEE’s overflow reporting currently contains a bug and reports every overflow as unsigned.
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assembly.ll run.istats test000001.overflow.err warnings.txt
info run.stats test000001.pc
messages.txt test000001.ktest test000002.ktest

Figure 2.11. list of files in KLEE’s results directory

/.../klee-last$ ktest-tool --write-ints test000001.ktest
ktest file : ’test000001.ktest’

args : [’sum.o’]

num objects: 2

object 0: name: ’summand’
object 0: size: 4

object 0: data: 1073741824
object 1: name: ’summand’
object 1: size: 4

object 1: data: 1073741824

Figure 2.12. Sample listing of ktest-tool output

/.../examples$ klee-stats klee-last

| Path | Instrs| Time(s)| ICov(%)| BCov(%)| ICount| TSolver (%)

Figure 2.13. Sample listing of klee-stats output.

their concrete values that would lead program execution through to its corresponding
path. For an example, see Figure 2.12.

KLEE also writes out runtime statistics, including branch coverage, LLVM IR instruc-
tion coverage, total time spent running, and so on. Figure 2.13 shows an example of
usage and output.

I 2.4 Real-Time safety-critical applications

This section covers the two pieces of real-time safety-critical software we decided to
use to evaluate KLEE’s fitness for testing real-time safety-critical software. We chose
eMotor because at the time we had a joint project with Infineon and MaCAN library
because the Industrial Informatics Group created it.

B 2.4.1 eMotor

The eMotor driver is Infineon Technologies’ proprietary electric motor control software
module for AUTomotive Open System ARchitecture (AUTOSAR!), standardized soft-
ware architecture for automotive domain. It has an interrupt driven design (the entire
control algorithm is executed inside the interrupt handler) and is designed to run on 32-
bit Tricore TC1798 microcontroller. It requires proprietary IDE, compiler, assembler
and linker to be compiled.

! http://www.autosar.org/
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B 242 MaCAN

Controller Area Network (CAN) bus is standard communication bus for vehicles, de-
signed by Bosch [14]. The CAN protocol is message based and there are two different
message formats, standard frame format and extended frame format. Because it was
usually assumed that attackers do not have access to the network inside vehicle, CAN
was designed for deterministic real-time communication, reliability and robustness and
no consideration was given to security. However modern vehicles often have at least one
remotely accessible interfaces and thus there is now a need to have message security as
part of the communication protocol.

The MaCAN protocol contains both a key exchange protocol and a means of message
authentication, giving a measure of message security and has an advantage in that it
builds upon the CAN bus and is backwards compatible with already existing deploy-
ments of CAN. Because of these backward compatibility constraints, such as only 8
byte payload in a single CAN frame, MaCAN protocol cannot use more than 32 bits for
its Message Authentication codes and thus the cryptographic security is weaker than
would be recommended in other domains. However, this is mitigated by other factors,
such as short lived keys and the relative slowness of CAN network limiting rate at which
an attacker can make guesses. [15]

The MaCAN library! implements the MaCAN protocol for Linux, Infineon Tricore
TC1798 and STM32 architectures [16]. It was designed to be cross-platform by only
having single, platform-independent dependency, cryptographic library Nettle? and by
separating platform dependent code from bulk of the library.

My investigation was done on a snapshot of the MaCAN library taken at commit
1dac9fed8b9777d32e0c28b2b826b8ac36f146a5 with added modification to allow testing
with KLEE. I will talk about these in the following chapter.

! https://github.com/CTU-IIG/macan
2 http://www.lysator.liu.se/ nisse/nettle/
3 https://github.com/horenmar/macan/commit/1dac9fed8b9777d32e0c28b2b826b8ac36f146a5
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Chapter 3
Toolchain and case study preparation

This chapter covers changes done to KLEE, eMotor and MaCAN to allow testing these
two libraries using KLEE. It will also cover problems I ran into along the way, touching
upon some “personal” experience gained during this thesis.

Virtually all my work is also available online, in a GitHub repository!.

B 3.1 KLEE preparation

Because KLEE’s overflow checking relies on Clang’s Undefined Behavior Sanitizer, I had
to find a way of compiling and linking together binary from multiple source files using
Clang. Because the bitcode linking facilities in LLVM have been deleted between the
2.9 (officially supported by KLEE) version and 3.3 (first version with ubsan support)
version, I used the Whole program LLVM? (WLLVM) utility created by Tristan Ravitch.

WLLVM works by using a compiler capable of emitting both normal object files and
the LLVM bitcode, generating both and saving bitcode into normal object file. During
linking the bitcode sections are also linked together and the final bitcode program can
then be extracted from resulting binary [17] and run in KLEE.

Furthermore, to enable integer overflow checking I had to change how WLLVM calls
Clang, which means that whether WLLVM compiles code with overflow checking en-
abled or disabled is hardcoded into the utility itself. The patch itself is from the KLEE
mailing list [18].

I 3.2 eMotor modifications

Because eMotor’s hardware-dependent code is weakly abstracted, modifying eMotor
to support symbolic execution has shown itself to be hard and very time consuming.
Because of time issues and the fact that the project for which we worked on eMotor
has ended, I talked to my supervisor and we decided to give up on testing eMotor.

B 3.3 MaCAN modifications

As mentioned before, MaCAN'’s architecture has decoupled architecture specific code
from the general library code. This allowed me to initially make no changes to the
library part of MaCAN code, shimming hardware dependencies to return symbolic
values when run under KLEE.

! https://github.com/horenmar/thesis-setup-stable
2 https://github.com/travitch/whole-program-1lvm
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3. Toolchain and case study preparation

However, the MaCAN library inner working is deeply reliant on cryptography and
validating cryptography using symbolic execution is intractable. Because of this I ended
up having to bypass parts of the code, compromising completeness of testing coverage
to be able to analyse the rest of MaCAN library codebase.

More specifically, in addition to adding KLEE as a platform to the MaCAN project
and adding the necessary platform-specific scaffolding, I only had to perform small
modifications to the original library source in the form of conditional compilation and

create a dummy MaCAN node application, to create a valid execution entry point for
KLEE.

build/klee/Makefile.omk il <
build/klee/clear_early.sh 12 +
build/klee/config.target 11 +
build/klee/macan 1+
build/klee/nettle 1+
build/klee/node/Makefile.omk 4 +
build/klee/node/node.c 138 ++++

|

|

|

|

|

|

|
build/klee/run_klee.sh |
macan/include/Makefile.omk |
macan/include/klee.h |
macan/src/Makefile.omk |
macan/src/cryptlib.c |
|

|

|

|

|

© - N W o
+ + o+ + o+

macan/src/klee/klee_cryptlib.c 39 ++
macan/src/klee/klee_macan.c 41 ++
macan/src/klee/macan_ev.c 102 +++
macan/src/klee/macan_ev.h 82 +++
macan/src/macan.c 6 +-

Figure 3.1. Statistics of my work on MaCAN library.

Figure 3.1 shows overall statistics of changes during my work in the MaCAN repository,
minus boilerplate files of MaCAN’s build system. Figure 3.3 shows dummy event loop
used to invoke the MaCAN library, Figure 3.6 shows my implementation of MaCAN’s
platform hardware specific functionality and Figure 3.4 shows my implementation of
MaCAN’s platform specific cryptographic functionality.

void

can_rx_cb(macan_ev_loop *loop, macan_ev_can *w, int revents){
(void)loop; (void)revents; /* suppress warnings */
struct macan_ctx *ctx = w->data;
struct can_frame cf;

while (macan_read(ctx, &cf))
macan_process_frame(ctx, &cf);

Figure 3.2. Listing of CAN receive callback.

As can be seen in Figure 3.3, the testing harness consists of a loop called three times,
where it each time goes through all registered timers (which for the test program means
calling the “housekeeping” timer, that is responsible for renewing expired keys) and
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then calls the MaCAN library entry point for received messages, can_rx_cb. As seen
in Figure 3.2, this callback loops while there are current messages and as Figure 3.6
shows, 10 messages can be read in a row. This means that every path through the
program found by KLEE has read 30 messages.

Figure 3.5 shows patch that was needed in the general MaCAN implementation of
cryptlib.c (I also removed static linkage from function serving as entry point for
CAN frames in macan.c).

All my modifications are publicly available as a fork of the original project! as well as
on the DVD accompanying this thesis (see Appendix C for more detail).

bool
macan_ev_run(macan_ev_loop *loop){
for (int i = 0; i < 3; ++i){
uint64_t now = read_time();

for (macan_ev_timer *t = loop->timers; t; t = t->next) {
if (now >= t->expire_us) {
t->cb(loop, t, MACAN_EV_TIMER);
t->expire_us = now + t->repeat_us;

}
can_rx_cb(NULL /*ignored*/, loop->cans, O /*ignored*/);

}

return true;

Figure 3.3. Listing of KLEE’s event loop for testing.

void macan_aes_cmac(const struct macan_key *key, size_t length,
uint8_t *dst, uint8_t *src){
(void)key, (void)length, (void)dst, (void)src;
memset (dst, 0, 16);
}

void macan_aes_encrypt(const struct macan_key *key, size_t len,
uint8_t *dst, const uint8_t *src){
(void)key, (void)src;
klee_make_symbolic(dst, len, "aes encryption");

}

void macan_aes_decrypt(const struct macan_key *key, size_t len,
uint8_t *dst, const uint8_t *src){
(void)key, (void)src;
klee_make_symbolic(dst, len, "aes decryption");

Figure 3.4. Overview of MaCAN’s KLEE target implementation. cryptlib.c

! https://github.com/horenmar/macan/tree/klee
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void macan_unwrap_key(const struct macan_key *key, size_t srclen,
uint8_t *dst, uint8_t *src) {
+#ifdef WITH_KLEE

+ klee_make_symbolic(dst+16, 7, "aes unwrap modification");
+#else
macan_aes_unwrap(key, srclen, dst, src, src);
+#endif
+

Figure 3.5. Necessary patch against cryptlib.c.

uint64_t read_time(void){
uint64_t time;
klee_make_symbolic(&time, sizeof(time), "time");
return time;

}

bool gen_rand_data(void* dest, size_t len){
memset (dest, 0, len);
return true;

}

bool macan_read(struct macan_ctx* ctx, struct can_framex cf){
(void) ctx;
klee_make_symbolic(cf, sizeof(struct can_frame),
"incoming can frame");
static int counter = 0;

counter++;
counter %= 10;
return counter != 0;

}

void macan_target_init(struct macan_ctx* ctx){
(void) ctx;

}

//Not currently part of testing.

bool macan_send(struct macan_ctx* ctx, const struct can_framex cf){
(void)ctx, (void)cf;
return true;

Figure 3.6. Overview of MaCAN’s KLEE target implementation. macan.c

Figure 3.7 shows messages sent in the MaCAN network when it first establishes itself.
Because CAN messages received by the node are symbolic in our testing, we are only
interested in messages the node receives (they are marked with >> in the figure). There
are 16 messages that we need to receive to simulate a node startup, and all messages
afterwards are a payload.

As T already mentioned, my test harness forces the MaCAN library to receive a total of
30 messages, meaning that our node receives enough messages to perform initial initial-
ization and then 14 messages extra. This means that our testing harness could exercise
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all paths through the MaCAN library, except those that make use of cryptographic
primitives or those that rely on specific node configuration (as the node configuration
for our test harness was concrete.)

.007 40029DCA42EE41EA crypt TS->KS (1->0): challenge fwd_id=S
.007 4003653631FB679F crypt TS->KS (1->0): challenge fwd_id=R
.007 00000000 time O
.007 4001FB8D4CB204DD crypt S->KS (2->0): challenge fwd_id=TS
.007 4003CBFC5E431EEB crypt S->KS (2->0): challenge fwd_id=R
.007 4001ED728E635600 crypt R->KS (3->0): challenge fwd_id=TS
.007 4002A90562E93EA7 crypt R->KS (3->0): challenge fwd_id=S
.007 81068C7BB634DCB8 crypt KS->TS (0->1): sess_key seq=0 len=6
.007 8116527F367675FE crypt KS->TS (0->1): sess_key seq=1 len=6
.007 8126F2E868371D44 crypt KS->TS (0->1): sess_key seq=2 len=6
.007 81365DA64E2999FE crypt KS->TS (0->1): sess_key seq=3 len=6
.007 814680FEB6BA8926 crypt KS->TS (0->1): sess_key seq=4 len=6
.007 815236F1B6BA8926 crypt KS->TS (0->1): sess_key seq=5 len=2
.007 0201 crypt KS->S (0->2): req challenge fwd_id=TS
.008 810633B3D3CDFC50 crypt KS->TS (0->1): sess_key seq=0 len=6
.008 8116C2AD9E7A9B20 crypt KS->TS (0->1): sess_key seq=1 len=6
.008 81262D798AF157C3 crypt KS->TS (0->1): sess_key seq=2 len=6
.008 8136EAD1B8033C06 crypt KS->TS (0->1): sess_key seq=3 len=6
.008 8146E89D3BC0985A crypt KS->TS (0->1): sess_key seq=4 len=6
.008 815229A33BC0985A crypt KS->TS (0->1): sess_key seq=5 len=2
>>0.008 0301 crypt KS->R (0->3): req challenge fwd_id=TS

0.009 4100F14494135731 crypt S->TS (2->1): challenge fwd_id=KS
>>0.010 0302 crypt KS->R (0->3): req challenge fwd_id=S

0.010 0000000077F739C5 authenticated time O

0.010 81040000BD50C3F9 crypt S->TS (2->1): ack group=[2]
>>0.010 83040000252D298E crypt S->R (2->3): ack group=[2]
>>0.011 83064C12C76D9612 crypt KS->R (0->3): sess_key seq=0 len=6
>>0.011 831695FAED34F1B6 crypt KS->R (0->3): sess_key seq=1 len=6
>>0.011 83268DEFEE67C20E crypt KS->R (0->3): sess_key seq=2 len=6
>>0.011 833628066B8A5CBI crypt KS->R (0->3): sess_key seq=3 len=6
>>0.011 83463C529952A7A9 crypt KS->R (0->3): sess_key seq=4 len=6
>>0.011 8352ABB29952A7A9 crypt KS->R (0->3): sess_key seq=5 len=2

0.011 41000CCO06A7A332 crypt R->TS (3->1): challenge fwd_id=KS
>>0.011 8306F18851EF18A6 crypt KS->R (0->3): sess_key seq=0 len=6
>>0.011 8316853B6B3D173A crypt KS->R (0->3): sess_key seq=1 len=6
>>0.011 8326B5867DB711E5 crypt KS->R (0->3): sess_key seq=2 len=6
>>0.011 833640EE35D796E6 crypt KS->R (0->3): sess_key seq=3 len=6
>>0.011 834652C89235C20A crypt KS->R (0->3): sess_key seq=4 len=6
>>0.011 83520BEC9235C20A crypt KS->R (0->3): sess_key seq=5 len=2

0.011 0000000054DOF079 authenticated time O
.011 81080000EFCI1FEAA crypt R->TS (3->1): ack group=[3]

0.011 820800008987F55D crypt R->S (3->2): ack group=[3]
>>0.011 830C00005F99C3D4 crypt S->R (2->3): ack group=[2 3]
0.011 C20000FE2B6430  crypt R->S (3->2): auth req + MAC signal=#0

presc=0

O O O O O O OO OO OO OOOO0O OO oo

o

Figure 3.7. List of initialization messages on MaCAN network.

15



Chapter 4
Evaluation

This chapter presents results I obtained by running KLEE on the MaCAN library to
evaluate its viability as testing tool of real-time safety-critical software. Because of the
already mentioned difficulties with modifying eMotor to run under KLEE, results from
testing eMotor are not included.

I 4.1 Findings

When I ran KLEE on the modified MaCAN library, KLEE has reported some potential
errors. After fixing Assertion and access violation caused by my misconfiguration of the
test client, I ran KLEE again in two configurations. One using the default heuristics
as its search strategy and one using DFS as its search strategy. Total numbers of bugs
found during both runs are in Table 4.1.

Type of bug Count

Assertion violation

Access outside of allocated memory
Division by zero

Integer overshift

Calls to abort

Integer overfow

co OO O O O

Table 4.1. Overview of bugs found.

As can be seen, the only reports were for integer overflows. The numbers for these are
further broken down in Table 4.2. All of them were found in arithmetic expressions
containing time. To determine whether the potential overflow in any given report is
dangerous or not, I used simple rules: any and all signed overflows invoke UB and as such
are always considered dangerous. For unsigned overflows, I used personal inspection
and assistance from my supervisor, Michal Sojkal.

Type of overflow Count
benign 5
causing bugs 2
causing undefined behaviour 1

Table 4.2. Overview of overflows found.

! Michal Sojka is one of the MaCAN library authors and current maintainer.
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4.1 Findings

uint64_t time;
int i;

time = macan_get_time(ctx);
for (i = -1; i <= 1; i++) {

*ftime = htole32((int)time + i);
macan_aes_cmac (skey, len, cmac, plain);

if (memcmp(cmac4d, cmac, 4) == 0) {
return 1;
}
}
Figure 4.1. Listing of the UB causing bug.
int delta_t;

uint32_t time = (uint32_t)macan_get_time(ctx);
for (delta t = -1; delta_t <= 1; delta_t++) {

*ftime = htole32(time + (uint32_t)delta_t);
+

Figure 4.2. Listing of the fix for UB causing bug in mainline MaCAN.

The one case of undefined-behaviour-causing overflow was in function checking au-
thenticity of received message. The programmer wanted to test whether the mes-
sage was authentic, assuming it was sent either slightly before “now” (that is, current
MaCAN time), now, or after now and wrote the code in Figure 4.1, where the expression
(int)time + i performed signed arithmetic that could easily overflow.

After I found this bug, it was fixed in mainline MaCAN library, by changing the code to
the one in Figure 4.2 [19]. The new version can still overflow (in fact it has to overflow
to work properly), but the new overflow is well defined from the language point of view
and is intended (and thus benign).

One of the two non-benign overflows was found in function that receives time from the
MaCAN network and attempts to adjust local time to keep it in sync. As can be seen in
Figure 4.3 it calculates time in microseconds and places the result into 64 bit unsigned
integer which is large enough, but the arithmetic itself is done with 32 bits of precision
and leads to erroneous results.

uint32_t time_ts;
uint64_t time_ts_us;

time_ts_us = time_ts * ctx->config->time_div;

Figure 4.3. Unsigned overflow causing bug.

This bug was also found independently by Michal Sojka when he was presenting MaCAN
at an exhibition and Figure 4.4 shows the fix already implemented in mainline. Casting
time_ts’s type to 64 bit unsigned integer leads to the multiplication being performed
with 64 bits of precision, which means that overflow can still potentially happen, but
only if the MaCAN network in question is online for more than 500000 years.
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4. Evaluation

uint32_t time_ts;
uint64_t time_ts_us;

time_ts_us = (uint64_t)time_ts * ctx->config->time_div;

Figure 4.4. The fix for unsigned overflow bug.

The other non-benign overflow is in the event-loop mechanism, in timer expiry track-
ing. It is currently dormant because MaCAN system time, stored in 64 bit unsigned
integer now, is platform specific and could theoretically overflow. All current plat-
form implementation start system time at 0, but if a future platform started sys-
tem time at different value, it could trigger the overflow in Figure 4.5 and the over-
flow could cause errors in the future, unless fixed. The bug lies in the expression
t->expire_us = now + t->repeat_us whose right-hand side can overflow and the
timer then will remain expired until MaCAN system time (now) overflows as well.

for (macan_ev_timer *t = loop->timers; t; t = t->next) {
if (now >= t->expire_us) {
t->cb(loop, t, MACAN_EV_TIMER);
t—->expire_us = now + t->repeat_us;

Figure 4.5. Dormant bug in the event loop.

The rest of the potential overflows KLEE found were classified as benign. This either
meant that they only occurred within 64 bit arithmetic and thus could happen only
theoretically, or they were intended. Figure 4.6 contains the flagged expressions.

return (read_time() + (uint64_t)ctx->time.offs) / ctx->config->time_div;

t->offs = (time_ts_us - read time());

t->offs (time_ts_us - t->nonauth_loc);
loc_us = now + t—>offs;
w->expire_us = read_time() + w->after_us;

Figure 4.6. Overview of benign overflows.

Table 4.3 shows an overview of bugs found, where were they found and their classifica-
tion. I added a “dormant” classification to label overflow that currently doesn’t cause
bugs, but under different hardware could.

I 4.2 Complexity, limitations, execution time

As trying to test eMotor has shown, modifying software so it can be tested can be
difficult if its hardware-dependent code is weakly abstracted. This limits the kinds of
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4.2 Complexity, limitations, execution time

File Line Classification
cryptlib.c 165 causing undefined behaviour
macan.c 409 benign
macan.c 468 causing bugs
macan.c 473 benign
macan.c 475 benign
macan.c 864 benign
macan_ev.c 68 benign
macan-_ev.c 94 dormant

Table 4.3. Overview of found overflows.

software that can be tested using KLEE, to those with well abstracted inputs, which
usually means software that was written to be cross-platform.

Another difficulty in using KLEE to test software is that the tested software requires
modifications by programmer, which means that the validity of results depends on
programmer. This has shown itself when I created a test program for the MaCAN
library. Due to an error, made while configuring the library in my test program, I ended
up with a false positive results and had to determine it was configuration error via
manual inspection.

Apart from relying on programmer to prepare the test program correctly, another po-
tential pitfall of using KLEE to test software is the time it needs to test a program.
The MaCAN test setup described previously has been running on modestly fast CPU!
for 5 days without finishing. This is caused by KLEE’s complexity being exponential
in both memory (because the number of possible path generally increases exponentially
with encountered conditional branches) and in CPU time (because it attempts to solve
SAT problem at every branching).

The memory complexity can be mitigated at the cost of further increasing runtime, by
running KLEE with search strategy set to either Depth First Search (DFS) or Iteratively
Deepening Depth First Search (IDDFS) (which is only experimentally supported), but
there is no way to reduce the CPU time complexity. Even though KLEE does not have
to finish testing a program completely to find bugs, safety critical software demands
complete verification (or at least as complete as possible).

Figure 4.7 shows runtime statistics from KLEE for test using the DFS search strategy,
where Instrs is number of executed LLVM IR instructions, Time is total time spent
running, ICov is percentage of total instructions covered during testing, BCov is percent-
age of branches covered, ICount is the total number of instructions in the bitcode file
and TSolver is percentage of time spent in the SAT solver. As the figure shows, KLEE
has achieved approx. 77% instruction coverage and approx. 60% branch coverage.

| Path | Instrs| Time(s)| ICov(%)| BCov(%)| ICount| TSolver (%) |

|klee-last|52135650]302651.30]| 77.61| 60.76 | 1697 | 99.39]|

Figure 4.7. KLEE’s runtime statistics.

L 2GHz AMD Opteron 6128
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4. Evaluation

I 4.3 KLEE fitness for purpose

Overall we found KLEE fit for purpose, but with reservation. It has helped to find
two previously unknown bugs in the MaCAN library and another one that has been
independently found and fixed after I forked MaCAN for testing.

Because most safety-critical programs are hardware dependent and their execution is
expected to never terminate, the software given to KLEE has to be modified and these
modifications can potentially obscure existing bugs. Assuming no bugs were obscured
by testing-enabling modifications, KLEE’s analysis is sound (does not provide false
negatives), which for safety-critical software is very valuable property.

The cost of KLEE’s analysis is exponential time and space complexity and specific
requirements on the design of tested software. This also means that for software that
resembles eMotor, having weakly abstracted hardware-dependent code, the high time
investment for testing said software with KLEE might not be worth it, depending on
how critical said software is.

For software that does not use all of KLEE’s capabilities, e.g. it does not use assertions,
but rather uses it to find undefined behaviour invoking code, there also exist tools that
sacrifice soundness of analysis for speed. An example of such tool is the STACK [20].
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Chapter 5
Conclusion

In this work I demonstrated how to use KLEE to test safety-critical software. I described
how to compile KLEE and what modifications were needed in the tested software.
Because of KLEE’s limitations and requirements, I could only proceed with testing of
the MaCAN library and had to abandon testing eMotor.

The results from testing the MaCAN library are mixed. After running the tests for
more than 5 days, KLEE had found three severe bugs. The first one was a signed
integer overflow in message time validation, second was an independently found and
fixed unsigned overflow bug in calculating current time and the third was a currently
dormant bug in manipulation with the MaCAN system time. However, the best run
of KLEE had only covered approx. 60% of all branches and 77% of all the LLVM
IR instructions in the test program. Because the progress of KLEE’s test coverage is
non-linear and can generally be expected to be logarithmic, I predict that even after
another 5 days KLEE would not have finished running the MaCAN test program.

Because of its results, KLEE will be added amongst tools used to continuously test the
MaCAN library.

Thus we conclude that KLEE can be a valuable tool for verification of real-time safety-
critical software, but the software has to be designed from the start with KLEE in mind.
This means liberal use of assertions, minimizing complexity of branches, having strongly
abstracted hardware-dependent code and documented parts that are intractable for
symbolic execution, such as cryptographic primitives.

In closing, I think there is a niche for a symbolic execution tools targeted specifically
towards real-time safety-critical software systems, niche that has not yet been filled with
an already existing symbolic execution tool. It could provide a more comprehensive
set of checks (e.g. no currently existing tool checks against aliasing violations) and
have specific annotations to help with managing runtime complexity (e.g. to guide the
symbolic execution tool towards failure paths).

21






References

[1] Nitesh Dhanjani. Cursory Evaluation of the Tesla Model S: We Can’t Protect Our
Cars Like We Protect Our Workstations. Nitesh Dhanjani’s blog.
http://www.dhanjani.com/blog/2014/03/curosry-evaluation-of-the-tesla-model
-s-we-cant-protect-our-cars-like-we-protect-our-workstations.html.

[2] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and Auto-
matic Generation of High-Coverage Tests for Complex Systems Programs. In: Pro-
ceedings of the 8th USENIX Symposium on Operating Systems Design and Imple-
mentation. Hollywood, CA: USENIX, 2008. ISBN 978-1-931971-65-2.

[3] JTC 1/SC 22/WG 14. ISO/IEC 9899:1999: Programming languages — C. .

[4] CVE of Linux kernel vulnerability caused by GCC’s optimization of UB invoking
code. MITRE Corporation’s CVE system.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1897.

[5] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume Melquiond. A
Formally-Verified C Compiler Supporting Floating-Point Arithmetic. In: ARITH,
21st IEEFE International Symposium on Computer Arithmetic. Austin, TX, USA:
IEEE Computer Society Press, 2013. 107-115. ISBN 978-1-4673-5644-2.
http://hal.inria.fr/hal-00743090.

[6] James C King. Symbolic execution and program testing. Communications of the
ACM. 1976, Volume 19 (Issue 7), 385 - 394.

[7] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: A Platform
for In-Vivo Multi-Path Analysis of Software Systems. In: Proceedings of the 16th
International Conference on Architectural Support for Programming Languages
and Operating Systems. California, USA: ACM New York, 2011. ISBN 978-1-4503-
0266-1.

[8] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and George Can-
dea. Cloud9: A Software Testing Service. ACM SIGOPS Operating Systems Re-
view. 2010, Volume 43 (Issue 4), 5 - 10.

[9] Brett Daniel, Tihomir Gvero, and Darko Marinov. On Test Repair Using Symbolic
Ezxecution. In: ISSTA 2010: 2010 International Symposium on Software Testing
and Analysis. Trento, Italy: ACM New York, 2010. 207—218. ISBN 978-1-60558-
823-0.

[10] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift. SymDrive: Testing
Drivers without Devices. In: Proceedings of the 10th USENIX Symposium on Oper-
ating Systems Design and Implementation. San Diego: USENIX, 2012. ISBN 978-
1-931971-96-6.

[11] Celina G. Val. Conflict-Driven Symbolic Ezecution: How to Learn to Get Better.
Master’s Thesis, University of British Columbia. 2014.

[12] Merging commit. KLEE’s github page.
https://github.com/klee/klee/commit/a743d7072d9ccf11f96e3df45f25ad07dab6ad9d6. |

23


http://www.dhanjani.com/blog/2014/03/curosry-evaluation-of-the-tesla-model-s-we-cant-protect-our-cars-like-we-protect-our-workstations.html
http://www.dhanjani.com/blog/2014/03/curosry-evaluation-of-the-tesla-model-s-we-cant-protect-our-cars-like-we-protect-our-workstations.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1897
http://hal.inria.fr/hal-00743090
https://github.com/klee/klee/commit/a743d7072d9ccf11f96e3df45f25ad07da6ad9d6

References

[13] Will Dietz, Li Peng, John Regehr, and Vikram Adve. Understanding Integer Over-
flow in C/C++. In: Proceedings of the 34th International Conference on Soft-
ware Engineering. Zurich, Switzerland: IEEE Press Piscataway, NJ, USA, 2012.
ISBN 978-1-4673-1067-3.

[14] Uwe Kiencke, Siegfired Dais, and Martin Litschel. Automotive Serial Controller
Area Network. . SAE.

[15] Oliver Hartkopp, Cornel Reuber, and Roland Schilling. MaCAN - Message Au-
thenticated CAN. In: ESCAR 2012. Berlin, Germany: 2012.

[16] Ondiej Kulaty. Message authentication for CAN bus and AUTOSAR software ar-
chitecture. Master’s Thesis, Czech Technical University in Prague. 2015.

[17] Tristan Ravitch. How WLLVM works. WLLVM’s github page.
https://github.com/travitch/whole-program-1lvm/#introduction.

[18] Dingbao Xie. Email in klee-dev mailing list. klee-dev mailing list archive.
http://mailman.ic.ac.uk/pipermail/klee-dev/2015-March/001010.html.

[19] Michal Sojka. MaCAN library UB fixz. MaCAN library’s github page.
https://github.com/CTU-IIG/macan/commit/38dd6a22cb1808ca3fd6386a498967932092d520.

[20] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.
Towards Optimization-Safe Systems: Analyzing the Impact of Undefined Behav-
tor. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles. Farmington, PA, USA: ACM New York, 2013. 260-275. ISBN 978-1-
4503-2388-8.

24


https://github.com/travitch/whole-program-llvm/#introduction
http://mailman.ic.ac.uk/pipermail/klee-dev/2015-March/001010.html
https://github.com/CTU-IIG/macan/commit/38dd6a22cb1808ca3fd6386a498967932092d520

Appendix A
Specification

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Martin Hofenovsky
Study programme: Open Informatics
Specialisation: Computer and Information Science

Title of Bachelor Project: The Use of Symbolic Execution for Testing of Real-Time
Safety-Related Software

Guidelines:

1. Familiarise yourself with "symbolic execution" and the LLVM framework-based tool KLEE.

2. Explore possibilities of using KLEE for verification of safety-critical, real-time applications
and analyse what guarantees using KLEE gives us.

3. Using KLEE, first analyse a simple library for motor control and then a complex software
module provided by Infineon company for controlling electrical motors in cars.

4. Analyse the results and propose generalised methodology for verification of safety-critical,
real-time applications.

5. Document the results thoroughly.

Bibliography/Sources:

[1] Cristian Cadar, Daniel Dunbar, Dawson Engler: KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs - USENIX
Symposium on Operating Systems Design and Implementation (OSDI 2008).

[2] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift SymDrive: Testing Drivers
without Devices. — USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2012).

Bachelor Project Supervisor: Ing. Michal Sojka, Ph.D.

Valid until: the end of the summer semester of academic year 2014/2015

L.S.

doc. Dr. Ing. Jan Kybic prof. Ing. Pavel Ripka, CSc.
Head of Department Dean

Prague, January 10, 2014

25



A Specification

Ceské vysoké uéeni technické v Praze
Fakulta elektrotechnicka

Katedra kybernetiky

ZADANIi BAKALARSKE PRACE

Student: Martin Hofenovsky
Studijni program:  Oteviena informatika (bakalarsky)
Obor: Informatika a pocitacové védy

Nazev tématu: Vyuziti symbolické exekuce pro testovani real-time, bezpe¢nostné
kritického softwaru

Pokyny pro vypracovani:

1. Seznamte se s technikou "symbolické exekuce" a nastrojem KLEE zaloZzenym na
frameworku LLVM.

2. Prozkoumejte moznosti pouziti nastroje KLEE pro bezpeénostné kritické real-time aplikace
a analyzujte jaké zaruky nam jeho pouziti dava.

3. Analyzujte nastrojem KLEE nejprve jednoduchou knihovnu pro fizeni motoru a poté
komplexni softwarovy modul pro Fizeni elektrickych motord v automobilech vyvinuty firmou
Infineon.

4. Analyzujte vysledky a zkuste navrhnout obecnou metodologii pro verifikaci real-time
bezpecnostné kritickych aplikaci.

5. Vysledky peclivé zdokumentujte.

Seznam odborné literatury:

[1] Cristian Cadar, Daniel Dunbar, Dawson Engler: KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs - USENIX
Symposium on Operating Systems Design and Implementation (OSDI 2008).

[2] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift SymDrive: Testing Drivers
without Devices. — USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2012).

Vedouci bakalarské prace: Ing. Michal Sojka, Ph.D.

Platnost zadani: do konce letniho semestru 2014/2015

L.S.

doc. Dr. Ing. Jan Kybic prof. Ing. Pavel Ripka, CSc.
vedouci katedry dékan

V Praze dne 10. 1. 2014

26



Appendix
Glossary

AUTOSAR ]

AUTOSAR MCAL =
CAN =
CDCL =

Clang [
compiler-rt [
CVE ]

GitHub =
glibc m

IDDFS =

KLEE (]

LLVM (]

LLVM bitcode ]
LLVM IR =
MaCAN ]
MISRA ]
SAT =

STP =
S2E =
UB =

ubsan =

uClibe =
WLLVM n

B

AUTomotive Open System ARchitecture — standardized open
automotive software architecture

MicroController Abstraction Layer

Controller Area Network

Conflict Driven Clause Learning

LLVM’s C, C++ and Objective-C frontend

LLVM’s library for low-level, target-specific runtime componentsjj

Common Vulnerabilities and Exposures — A reference of
publicly known information security vulnerabilities

Free hosting for Git repositories

GNU C library — Most used C standard library implementation
on Linux

Iterative Deepening Depth First Search — A Depth First Search
with increasing depth limit

Symbolic virtual machine built on top of the LLVM compiler
infrastructure

Formerly Low Level Virtual Machine, but the acronym is
considered obsolete and not used anymore

A binary stream encoding of LLVM IR

LLVM’s Intermediate Representation

Message authenticated CAN

Motor Industry Software Reliability Association

Abbreviation of Boolean Satisfiability Problem — Determining
whether given boolean formula can be satisfied

Simple Theorem Solver — constraint solver
Selective Symbolic Execution

Undefined Behaviour — A behaviour for which the C standard
gives no guarantees

Undefined Behaviour Sanitizer — A runtime instrumentation
library for detection of undefined behavior in C and C++

C standard library implementation aimed at embedded Linux

Whole program LLVM, python based utility script over LLVM
used as drop-in replacement for compiler

27






Appendix C
Contents of enclosed CD

The CD enclosed with this thesis contains digital copy of thesis itself in the thesis-pdf
folder, all code needed to repeat my tests, together with patches I made while working
my thesis, is in the thesis-setup folder and all raw results from KLEE runs I used to
make the final report in the thesis-data folder.

The thesis-pdf folder contains:

m TEX document to recreate this thesis
s TEX dependencies for said document
m Cited papers in .pdf format

for obvious reasons, resources cited from the web are not included

The thesis-setup folder contains:

s LLVM-3.3, Clang and compiler-rt tarballs

m MaCAN-diff a diff of all changes I made to MaCAN

= thesis-setup-stable folder with the rest of dependencies

s KLEE, STP, WLLVM and MaCAN, checked out at version used in this thesis
m HOW_TO_INSTALL and HOW_TO_USE files — exactly what it says

eMotor is not there because of its proprietary nature and the NDA I had to sign to
work with it.

The thesis-data folder contains:
m readme.txt file to explain the folder organization
m A folder for each KLEE run used in the thesis

m Calltrace for each KLEE run
m All files created by KLEE during a run
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Appendix D
Test details

This appendix contains list of all flags given to KLEE when testing the MaCAN library,
an overview of results and statistics of all runs.

I used three independent instances of KLEE to test the MaCAN library. I shall refer
to them as covnew, dfs10 and dfs15. Abbreviated contents of their respective info
files are in Figure D.1, Figure D.2 and Figure D.3 respectively.

klee --optimize --max-memory=0 --check-div-zero --check-overshift \
—-search=dfs --search=dfs --search=dfs --search=nurs:covnew
Started: 2015-05-14 15:43:38

Figure D.1. Contents of info file for covnew.

klee --optimize --max-memory=0 --search=dfs --check-overshift \
--check-div-zero
Started: 2015-05-14 15:49:56

Figure D.2. Contents of info file for dfs10.

klee --only-output-states-covering-new --optimize --search=dfs \
--max-memory=0 --check-div-zero --check-overshift
Started: 2015-05-15 23:26:36

Figure D.3. Contents of info file for dfs15.

The difference between dfs and covnew is that KLEE is allowed to use its own heuristics
for guiding the search in the covnew invocation. The difference between dfs10 and
dfs15 is whether the MaCAN hardware implementation for KLEE serves 10 received
messages in row, or 15.

Type Potential problems found
10dfs 8
15dfs o
COVNEW 3

Table D.1. Overview of KLEE runs results.
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D Test details

| Path | Instrs | Time(s)| ICov(%)| BCov(%)| ICount| TSolver(%) |

|15dfs | 45476441416400.30]| 75.37]| 57.85| 1697 | 99.93|
[10dfs |52135650]302651.30] 77.61| 60.76| 1697 | 99.39]|
|covnew | 4834942| 51827.84| 54.10]| 38.66| 1697 | 99.59|

Figure D.4. Runtime statistics across used tests.

Table D.1 shows an overview of KLEE runs and number of potential bugs they reported,
and Figure D.4 shows their runtime statistics.

Interestingly, even though covnew and 15dfs have been started only 6 minutes apart
and stopped inside couple of minutes of each other as well, for the covnew run KLEE
reports that it has ran for only about tenth of the time 15dfs has ran for. The exact
reason for this is unknown, but I speculate that it is because the covnew’s memory
consumption quickly ballooned up to approx. 3.2 GBs and then it hit a KLEE bug with
memory consumption. This is supported by two facts. First, an empirical observation:
When trying to run KLEE with given command line options again, it quickly hit 3.2
GBs of memory consumption and then its memory consumption doesn’t change for
hours. Secondly, there are currently known bugs in KLEE’s memory management and
it might be related. This is supported by fact that while using the DFS search strategy,
KLEE’s memory consumption is a lot smaller and KLEE executes normally.

Taking these facts into account, together with overview in Table D.1 and test results
from Chapter 4, I have to recommend using KLEE command line invocation from
Figure D.5.

klee --only-output-states-covering-new --optimize --search=dfs \
--max-memory=0 --check-div-zero --check-overshift <bitcode file>

Figure D.5. KLEE command line invocation.
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