
Bachelor thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Systems and Control

Jailhouse hypervisor

Maxim Baryshnikov

Supervisor: Ing. Michal Sojka, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Systems and Control
May 2016

ii

Acknowledgements
I would first like to thank my thesis ad-
visor Ing. Michal Sojka, Ph.D., for his
assistance and dedicated involvement in
every step throughout the process. With-
out his great mentorship this paper would
have never been accomplished. I would
also like to thank my family and friends
for their moral support and help and spe-
cially thank to my friend Andrey Alber-
stein who borrowed me his own PC for
some experiments related to this work.

Declaration
I hereby declare that I have completed
this thesis with the topic "Jailhouse hy-
pervisor" independently and that I have
included a full list of used references.

Prague, May _, 2016

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, _. května 2016

iii

Abstract
This bachelor thesis is dedicated to Jail-
house, Linux-based partitioning hypervi-
sor, which provides the software solution
for asymmetric multiprocessing (AMP).
This thesis describes the main concepts
and operation principles of this hyper-
visor, contributes the implementation of
the simple demo application (interacting
with High Precision Event Timer) and
shows how a small operating system (L4
Fiasco.OC) was ported inside the parti-
tion of this hypervisor. Another part of
this work is an evaluation of shared mem-
ory hierarchy influence on real-time prop-
erties of software running under Jailhouse.
Benchmarks were implemented and ap-
plied in Jailhouse partitions to investi-
gate how significant that influence will be.
Tests showed (for two CPUs interacted
with each other) the approximately 220%
slowdown of memory accesses bandwidth
in the worst case. This is the result of
partitions’ competition about L3 cache
which is shared among the CPU cores.

Keywords: Jailhosue, hypervisor,
asymmetric multiprocesing, Fiasco.OC,
shared memory hierarchy, benchmark,
degree project

Supervisor: Ing. Michal Sojka, Ph.D.

Abstrakt
Tato bakalářská práce se povídá o
Jailhouse hypervisoru, což je softwarový
prostředek pro realizaci asymetrického
multiprocesingu. V práci se popisuje zá-
kladní koncepty a operační principy to-
hoto hypervisoru. Ukazuje se tady jak se
dá naimplementovávat jednoduchou apli-
kaci, což má za úkol využivat High Preci-
sion Event Timer. Dal, do prostředí hyper-
visoru byl portovan malý operační systém
(L4 Fiasco.OC), a proběhlo to úspěšně.
Naposled, byl determinovan vliv sdílené
paměťové hierarchie na běh programů (tj.
jejích vlastnosti týkající se práci v reálném
čase) v buňce hypervizoru. Pro tento účel
byly navrhnuty a spouštěny benchmarky,
a ty ukázali, že při výužití dvou jáder
z různými běžicí programy dochazelo se
ke zpomalením testujemých procesů kvůli
konkurenci za sdílené paměťové zdroje. A
to až o 220% v nejhorším případě.

Klíčová slova: Jailhouse, hypervisor,
asymetrický multiprocessing, Fiasco.OC,
sdilená paměťová hierarche, benchmark,
závěrečnná práce

iv

Contents
Project Specification 1
1 Introduction 3
2 Jailhouse hypervisor 5
2.1 Concepts . 5
2.2 Operation . 7
2.2.1 Hardware requirements 7
2.2.2 Cell configuration 8
2.2.3 Enabling Jailhouse 11
2.2.4 Cell initialization and start
process . 12

2.3 Inmate demos 14
2.3.1 APIC demo 16
2.3.2 HPET demo. 19

3 L4 Fiasco.OC launch 21
3.1 Overview . 21
3.1.1 Fiasco bootstrapping process 22

3.2 Port Fiasco into cell 23
3.2.1 Cell and host system
configuration 23

3.2.2 Bootstrap modification 24
3.2.3 Modifications in Fiasco kernel 28

4 Benchmarks 33
4.1 Goal . 33
4.2 Implementation 34
4.3 Results . 36
5 Conclusion 39
A Bibliography 41

v

Figures
2.1 The Jailhouse architecture
overview. Source: [Jan15] 6

2.2 The High Precision Event Timer
architecture overview. Source: [hpe] 19

3.1 Basic Structure of an L4Re based
system. Source:[l4-] 22

4.1 Results of measurements from the
Fiasco (non-root cell) perspective. 38

4.2 Results of measurements from the
Linux (root cell) perspective. 38

Tables

vi

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

BACHELOR PROJECT ASSIGNMENT

Student: Maxim Baryshnikov

Study programme: Cybernetics and Robotics
Specialisation: Systems and Control

Title of Bachelor Project: Jailhouse hypervisor

Guidelines:

1. Make yourself familiar with Jailhouse hypervisor and its safety-related use cases.2.
Develop simple applications that will run inside Jailhouse cells (virtual machines) both on bare
hardware and with a small operating system such as Erika, RTEMS or L4 Fiasco.OC.3. Use
various benchmarks to evaluate the influence of shared memory hierarchy (caches, DRAM)
on real-time properties of software running in different cells.4. Document your results.

Bibliography/Sources:

[1] Valentine Sinitsyn, "Understanding the Jailhouse hypervisor",
https://lwn.net/Articles/578295/[2] Heechul Yun; Gang Yao; Pellizzoni, R.; Caccamo, M.; Lui
Sha, "Memory Bandwidth Management for Efficient Performance Isolation in Multi-Core
Platforms," in Computers, IEEE Transactions on , vol.65, no.2, pp.562-576, Feb. 1 2016 doi:
10.1109/TC.2015.2425889[3] P. Burgio, A. Marongiu, P. Valente, and M. Bertogna, A memory-
centric approach to enable timing-predictability within embedded many-core accelerators

Bachelor Project Supervisor: Ing. Michal Sojka, Ph.D.

Valid until the summer semester 2016/2017

L.S.

prof. Ing. Michael Šebek, DrSc.

Head of Department

prof. Ing. Pavel Ripka, CSc.

Dean

Prague, February 9, 2016

2

Chapter 1
Introduction

Nowadays multi-core systems are getting cheaper and more available for ev-
eryone. They became very attractive for usage in real-time systems because of
high computational power. However, in most cases such systems are used for
parallel execution of one task. An alternative way of application of multi-core
systems is running independent tasks on each core. This solution may reduce
the final price of hardware resources without affecting performance.

Such operating mode introduces several problems. The CPUs are not
completely independent because they share caches, interconnect and memory
bus. Code which is running on one core could interfere the code executing
on other cores through shared hardware resources. Jailhouse, Linux-based
partitioning hypervisor, which is described in this thesis, provides the software
solution for asymmetric multiprocessing realization and attempts to solve
mentioned issues.

The aim of this thesis is to study the Jailhouse hypervisor. Firstly, the
concepts and operation principles will be described. I will investigate basic
application which comes with Jailhouse as a standard demo and propose an
additional one. Then, I will launch the small operating system L4 Fiasco.OC
inside the hypervisor partition. Finally, I will run benchmarks using the
ported Fiasco.OC to evaluate the influence of shared memory hierarchy on
real-time properties of software running in different cells. The thesis will be
finalized by discussing the achieved results.

3

4

Chapter 2
Jailhouse hypervisor

Jailhouse is Linux-based partitioning hypervisor which can run bare-bone
applications or adopted operating systems in its partitions and provides sub-
stantial isolation between them. The project was started by Jan Kiszka, lead
developer, as an internal research in Siemens, AG. Then, he decided to open
sources in 2013. Jailhouse is still quite young (currently at version 0.5) and
is under active development. It is available for ARM and x86 architectures.
Project home located at https://github.com/siemens/jailhouse.

It is not yet another huge featured and general purpose virtualization solu-
tion such as XEN or KVM. Jailhouse is primarily focused on safety-related
use-cases (industrial processes, aerospace, medicine, etc.) and supposed to
be real-time capable right out of the box. So, its operation field is quite special.

This work relates to x86 version only. New features are being added very
often, so e.g. cache partitioning support or command line passing options are
not mentioned here.

The following sections describe basic concepts (2.1), operation related
theory and practical notes about how Jailhouse might be configured and
launched (2.2) and some demonstration examples (2.3).

2.1 Concepts

The main feature of this particular hypervisor is that, instead of sharing
multi-core processor resources symmetrically between guests, the Jailhouse
launches each guest with his resources set (cores, peripheral, memory). That
concept called asymmetric multiprocessing. Best description of this property
was given by Vitaliy Sinitsyn, one of active Jailhouse contributors:

“ ...Jailhouse enables asymmetric multiprocessing (AMP) on top of an
existing Linux setup and splits the system into isolated partitions called
"cells.” Each cell runs one guest and has a set of assigned resources (CPUs,
memory regions, PCI devices) that it fully controls. The hypervisor’s job is
to manage cells and maintain their isolation from each other.”[Val14a]

5

https://github.com/siemens/jailhouse

2. Jailhouse hypervisor..................................

Figure 2.1: The Jailhouse architecture overview. Source: [Jan15]

However, who needs the hypervisor which has for a task only to isolate
things? Well, suppose we have a multi-core system, and we want to use one
core for a hard real-time task (e.g. program which controls some critical
industrial process), other core for some user interaction (GUI, non-real-time
application) and the rest CPUs could collect statistics from sensors. It is
evident that GUI application must not influence the first core work. And this
is the hypervisor job to prevent such interactions.

As was already mentioned, Jailhouse’s target domain is safety-critical in-
dustrial applications. Such applications are often required to be certified
by an independent authority according to numerous safety standards. The
goal of the certification is to gain confidence that the system is reliable
enough to perform its intended function safely. Safety standards classify
safety functions into several levels (often called Safety Integrity Levels) ac-
cording to the needed degree of reliability, giving more strict requirements
on systems with higher criticality. It is a key to keeping the complexity
of higher-criticality systems low to make their verification and certification
possible. Complex systems are hard (i.e. expensive) or impossible to certify.
This is the reason why Jailhouse is the very minimalistic hypervisor, contain-
ing only the functionality which is needed for proper isolation of guest systems.

The Jailhouse was developed to fit these mentioned requirements. It uses
virtualization techniques to create strong isolation between guests, and this
is its only task. It does not emulate any devices for them for example. Jail-
house does one-to-one resource assignment to separate resources between
partitions.[Jan15] That means: if one partition has access to some I/O port,
PCI device or any other resource when other partition have not. All these
makes the performance of the Jailhouse very close as if tasks run on bare

6

...................................... 2.2. Operation

hardware.

Strong isolation is the reason where the roots of terminology came from.
Jailhouse developers usually use the “cell” term to describe the partition
where an “inmate” - guest executable binary is located. A cell with Linux
that bootstraps Jailhouse and from where other cells could be managed called
“root cell”. I also will use that terminology in this thesis.

The diagram in Fig. 2.1 might shed some light on the Jailhouse architecture.
Surely, none of the cells have got access to a device that does not belong to
them, because hypervisor prevents it. Thus, real-time applications are not
influenced by whatever is going on in other partitions. However, hypervisor
is managed from Linux user-space by accessing to the jailhouse device driver
which is able only to issue a hypercalls to the hypervisor. It is important
to notice that Jailhouse is not a part of a kernel (as KVM, or VirtualBox),
it runs at the lowest level. Kernel module is used there only to deliver the
hypervisor binary to the reserved memory in kernel address. This process
described in section 2.2.3.

2.2 Operation

This section describes the basic Jailhouse functionality, explains internal
processes and also provides requirements (2.2.1) and steps which should be
done to enable and start the inmate in a cell(2.2.2, 2.2.3, 2.2.4).

2.2.1 Hardware requirements

Jailhouse relies on hardware virtualization features of CPU to be fast and to
simplify its code. For running on x86 architecture it requires (according to
[README.md] from [Jan]):. Intel system:. support for 64-bit and VMX. EPT (extended page tables). unrestricted guest mode. preemption timer. Intel IOMMU (VT-d) with interrupt remapping support (except

when running inside QEMU). AMD system:. support for 64-bit and SVM (AMD-V). NPT (Nested page tables) - required. Decode Assists - recommended

7

2. Jailhouse hypervisor..................................
. AMD IOMMU (AMD-Vi) is unsupported now but will be required

in future. at least 2 logical CPUs

It also could be launched under QEMU with KVM mode. However, even in
this case host parameters must respond the requirements mentioned above.

2.2.2 Cell configuration

Each cell (either root or non-root) must be statically configured before it
launches. This configuration determines which hardware resources can the
cell access. Jailhouse uses *.c files where parameters have to be assigned as
fields of special C structures, which are defined into
hypervisor/include/jailhouse/cell-config.h. For the non-root cell,
this setup looks like in Listing 2.1. Comments were added to key fields
to show how it should be used.

Listing 2.1: The part of a Non-root cell configuration. Fields commented.
#include <linux/types.h>
#include <jailhouse/cell-config.h>
#define ARRAY_SIZE(a) sizeof(a) / sizeof(a[0])

struct {
/*The size of arrays there must correspond with the amount of
fields of each type.*/
struct jailhouse_cell_desc cell;
__u64 cpus[1];
struct jailhouse_irqchip irqchips[1];
__u8 pio_bitmap[0x2000];
struct jailhouse_pci_device pci_devices[1];
struct jailhouse_pci_capability pci_caps[1];
} __ __attribute__((packed)) config = {

.cell = {
.signature = JAILHOUSE_CELL_DESC_SIGNATURE,
/*Name of the cell*/
.name = "NAME-of-non-root-cell",
.cpu_set_size = sizeof(config.cpus),
.num_memory_regions = ARRAY_SIZE(config.mem_regions),
.num_irqchips = 1,
.pio_bitmap_size = ARRAY_SIZE(config.pio_bitmap),
.num_pci_devices = 1,

},
/*CPUs which are assigned to a cell.
<n> bit set = core <n> will be used.*/
.cpus = {
00010010b, /* e.g., here are assigned 1st and 5th CPUs*/

},
/*Here is setup which mem regions this cell
could have access and with which rights (flags).*/
.mem_regions = {
{

8

...................................... 2.2. Operation

.phys_start = 0x3f000000,

.virt_start = 0,

.size = 0x00100000,

.flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |
JAILHOUSE_MEM_EXECUTE | JAILHOUSE_MEM_LOADABLE,

}
},
/*Several irq chips could be assigned.*/
.irqchips = {
{
.address = 0xfec00000,
.id = 0xff01,
/*Allowed irqs. <n>-bit set = allow <n> irq.*/
.pin_bitmap = 0xffffff,

},
},
/*Those bitmasks allow a cell to access some I/O ports. */
/*bit set = access denied, bit cleared = access allowed.*/
.pio_bitmap = {

[0/8 ... 0x3f7/8] = -1,
[0x3f8/8 ... 0x3ff/8] = 0, /* serial1 */
[0x400/8 ... 0xe00f/8] = -1,
[0xe010/8 ... 0xe017/8] = 0, /* OXPCIe952 serial1 */
[0xe018/8 ... 0xffff/8] = -1,

},
/*PCI devices assignment.*/
.pci_devices = {
{
.type = JAILHOUSE_PCI_TYPE_DEVICE,
.domain = 0x0000,
/*Bus, Device, and Function address*/
.bdf = 0x00d8,

/*It is possible to add capabilities to a device.*/
/*Index of the first entry for this device in the array
below.*/

.caps_start = 0,

.num_caps = 2,

.num_msi_vectors = 1,

.msi_64bits = 1,
},

}
/*list of capabilities */
.pci_caps = {
{
.id = 0x5,
.start = 0x60,
.len = 14,
.flags = JAILHOUSE_PCICAPS_WRITE,
},

}
};

9

2. Jailhouse hypervisor..................................
For the root-cell the structure must have the (struct jailhouse_system)
in the header instead of struct jailhouse_cell_desc, however, the rest
structures are the same as in the Listing 2.1.

Listing 2.2: The header of a root cell configuration. Fields commented.
.header = {
.signature = JAILHOUSE_SYSTEM_SIGNATURE,
.hypervisor_memory = {
/*This is the memory area,

where the hypervisor binary must be placed.
This memory must be reserved when Linux starts.*/

.phys_start = 0x3b000000,

.size = 0x600000,
},
.platform_info.x86 = {
.mmconfig_base = 0xb0000000,
.mmconfig_end_bus = 0xff,
.pm_timer_address = 0x608,
/*IOMMU could be defined here.*/
.iommu_units = {
{
.base = 0xfed90000,
.size = 0x1000,
},

},
},

.interrupt_limit = 256,
.root_cell = {

/*struct jailhouse_cell_desc follows from there.*/

Unfortunately, the only option to configure the non-root cell is to do it
manually. Jailhouse does not provide any interactive tool for it. However, for
the root cell configuration file such tool exists. It could be generated in two
steps:..1. Collect information about target system by executing:

jailhouse config collect <name-of-arch.tar>

This python script located into tools directory. It copies all from /proc
and /sys and compresses it...2. Process data on another system. This step requires python-mako library
installed.

jailhouse config create -r <name-of-arch.tar> <name-of-conf.c>

Alternately, if python-mako is available on the target system, the first step
could be skipped. Just use the second command without -r parameter.
After creating, the configuration is compiled in raw binary, and Jailhouse
operates with it when the cell is created.

10

...................................... 2.2. Operation

2.2.3 Enabling Jailhouse

To be ready for a battle, Jailhouse needs this steps to be performed:..1. Install Linux on target system (version >=3.18)..2. Compile and install Jailhouse user-space tools on the target system (see
README.md [Jan])...3. Provide the reserved memory region by appending memmap= option to
Linux kernel on boot. The value here must be the same as values of
.phys_start and .size in the header of root cell configuration.2.2.2..4. Load the jailhouse.ko module into the kernel.
This enables /dev/jailhouse in the system which Jailhouse user-space
tools can operate with...5. start the hypervisor by executing this:

jailhouse enable <path/to/cell/conf.cell>

The 4th step starts the following operations (well described in [Val14a]).
jailhouse user-space program sends the JAILHOUSE_ENABLE request to
the /dev/jailhouse, which signals driver to call jailhouse_cmd_enable()
(driver/main.c). In this function, the driver does some validation first.
It checks out CPU flags to determine which virtualization technology this
CPU uses (Intel’s VMX or AMD’s SVM), then it does basic validation
of a configuration binary (signature in the header). After that, it calls
request_firmware() function which searches for jailhouse-intel.bin or
jailhouse-amd.bin in /lib/firmware folder[ME]. At the next stage, driver
remaps memory region reserved in step 2 to the kernel address space memory
(using ioremap_page_range(...)), so hypervisor could be accessed from the
user-space. Driver copies that binary at the start of this memory area and
cell configuration right after it. Then, it calls jailhouse_cell_create()
function, whose operation is described in section 2.2.4 in details.

The final stage of Jailhouse enabling is the CPUs initialization. This process
has an excellent explanation under the same-named section in [Val14a]. Briefly,
hypervisor starts it by calling entry_hypervisor() function for every CPU
(which leads to arch_entry in hypervisor/x86/entry.S). Jailhouse needs
to become an interface between cells (root cell with Linux at this early
boot time) and CPU cores, so it saves system’s state and then sets up its
environment when the CPU0 initializes. It includes: setting up paging for
the hypervisor and APIC, creating the Interrupt Description Table (IDT),
creating root cell and remapping Linux memory regions and devices, and
configuring of Virtual Machine Extensions (VME). It also sets up UART
communication to write debug information in, so the following info (Listing
2.3) could be seen on the ttyS0 (by default). The continuing of this process

11

2. Jailhouse hypervisor..................................
is the same for all CPUs: renew IDT and Global Descriptor Table (GDT),
reset CR3 register (page table pointer) and setup Virtual Machine Control
Structure (VMCS). Finally, hypervisor sends a VMLAUNCH instruction, and
this returns the control to Linux, but since this point in time, Linux no longer
runs "on bare metal" but in the "cell" (virtual machine) under Jailhouse.

Listing 2.3: Log from the "QEMU-VM" root cell initialization.
Initializing Jailhouse hypervisor on CPU 0
Code location: 0xfffffffff0000030
Using xAPIC
Page pool usage after early setup: mem 43/1505, remap

65/131072
Initializing processors:
CPU 0... (APIC ID 0) OK
CPU 1... (APIC ID 1) OK
CPU 3... (APIC ID 3) OK
CPU 2... (APIC ID 2) OK
WARNING: AMD IOMMU support is not implemented yet
Adding PCI device 00:01.0 to cell "QEMU-VM"
Adding PCI device 00:02.0 to cell "QEMU-VM"
Adding PCI device 00:1b.0 to cell "QEMU-VM"
Adding PCI device 00:1d.0 to cell "QEMU-VM"
Adding PCI device 00:1d.1 to cell "QEMU-VM"
Adding PCI device 00:1d.2 to cell "QEMU-VM"
Adding PCI device 00:1d.7 to cell "QEMU-VM"
Adding PCI device 00:1f.0 to cell "QEMU-VM"
Adding PCI device 00:1f.2 to cell "QEMU-VM"
Adding PCI device 00:1f.3 to cell "QEMU-VM"
Adding virtual PCI device 00:0f.0 to cell "QEMU-VM"
Page pool usage after late setup: mem 180/1505, remap

65602/131072
Activating hypervisor

2.2.4 Cell initialization and start process

At the moment, when user executes Jailhouse user-space application like this:

jailhouse cell create <path/to/conf.cell>

It reads configuration binary into memory and sends the
JAILHOUSE_CELL_CREATE command to the driver with an address of the
loaded binary which is attached. It invokes jailhouse_cmd_cell_create()
(driver/control.c) which copies the mentioned binary from the user-space
memory to a kernel space and performs some checks for loaded cell description
(signature, size). Then it makes an image for a guest according to the taken
configuration (filling up the special struct cell defined in driver/cell.h
with pointers at mapped memory for guest’s regions and PCI devices). Af-
ter that, the driver leaves an information about the new cell in sysfs and
plugs requested CPUs out of the Linux (root cell). It also “unplugs” PCI
devices from Linux at this time. Jailhouse emulates PCI dummy driver

12

...................................... 2.2. Operation

(see jailhouse_pci_claim_release()) to cut it out of Linux as far as real
unplug could not be performed. The reason is explained in source code
comments (driver/pci.c): “Linux will reprogram the BARs and locate
resources where we do not expect them.”
Next stage starts when the driver issues the JAILHOUSE_HC_CELL_CREATE
hypercall. Hypervisor when catching it calls cell_create() in
hypervisor/control.c where it firstly gives a command for all new cell’s
processors to suspend except the current one (which executes this code right
now). It prevents race conditions between them[Val14b]. The following step
to allocate pages for memory regions of the cell.

After that, the cell initialization process starts. The cell_init() func-
tion fills the cpu_set field in cell struct with values of I/O ports’ bitmaps
and calls a routine to save (already reallocated to guest) locations and handlers
of the memory-mapped devices such as PCI, IOAPIC, and IOMMU. Then,
after checking that all CPUs are not owned by somebody else, the operation
moves to arch_cell_create() (hypervisor/arch/x86/control.c) where
begins the part which developers called Linux “shrinking” [Val14b]. The
point here is to follow the one-to-one assignment concept: if the root cell has
something that initializing cell wants, then access for Linux cell will be denied,
and the new cell gets it. The problem appears if, for example, Linux continues
to use serial port after it was assigned to another cell. Linux CPU will be
parked at the very first access in that case. After resources like I/O ports,
IOAPICs, IOMMUs, PCIs were reassigned, the communication region is
configured. This is “.. a per-cell shared memory area that both the hypervisor
and the particular cell can read from and write to. It is an optional com-
munication mechanism..” [Documentation/hypervisor-interfaces.txt].
It also contains information about PM timer address, the number of the
CPU assigned, information about the current cell state (could be Running or
Running/Locked for example).

Finally, the cell will be committed to the list of cells, cell state in communi-
cation region will be set at JAILHOUSE_CELL_SHUT_DOWN and for every cell’s
CPU hypervisor will issue arch_cpu_resume().

To execute some inmate in the new cell it is needed to move it to the cell’s
memory region. This is done by:

jailhouse cell load <name-of-cell> <inmate.bin> -a <offset-in-guest>

All inmates are treated as raw binaries. The size of this binary must be less
or equal to the guest memory region where it will be loaded. Mechanism of
transfer the file into cell’s memory is similar to previous cases. The driver
sends JAILHOUSE_HC_CELL_SET_LOADABLE to the hypervisor, and it remaps
guest regions marked as loadable to the root cell address space. The message
"Cell <name-of-cell> can be loaded." should be seen at this stage on the
debugging serial port. After that, the driver stores binary at the given address.

13

2. Jailhouse hypervisor..................................
And finally, to start it, user should invoke:

jailhouse cell start <name-of-cell>

It causes the hypercall JAILHOUSE_HC_CELL_START which, from its side,
causes hypervisor’s cell_start() perform the unmapping all loadable re-
gions from the root cell back to the guest. Cell’s state becomes
JAILHOUSE_CELL_RUNNING and on each CPU of the cell is invoked
arch_cpu_reset(). This sends fake Startup Inter-Processor Interrupt (SIPI)
to each CPU in the cell. At the next #VMEXIT, guest instruction pointer
will be set at 0xffff0, and the inmate starts.

2.3 Inmate demos

Jailhouse provides a small framework which makes the development of the
simple OS-less applications easier. It is not mandatory to use it, but it gives
a good example of how things could be done inside a cell. That tiny library of
useful functions is a C-header file inmate.h which defines routines for mem-
ory allocation and remapping, APIC and IOAPIC initialization, interrupt
handlers setup, several interactions with PCI devices and even some basic
SMP operations (smp_wait_for_all_cpus(), smp_start_cpu()).

Listing 2.4: Startup routine for every inmate demo. The part of header-32.S.
.code16
.section ".boot", "ax"

.globl __reset_entry
__reset_entry:
ljmp $0xf000,$start16

.section ".startup", "ax"

start16:
lgdtl %cs:gdt_ptr

mov %cr0,%eax
or $X86_CR0_PE,%al
mov %eax,%cr0

ljmpl $INMATE_CS32,$start32 + FSEGMENT_BASE

.code32
start32:
mov %cr4,%eax
or $X86_CR4_PSE,%eax
mov %eax,%cr4

14

.................................... 2.3. Inmate demos

mov $loader_pdpt + FSEGMENT_BASE,%eax
mov %eax,%cr3

mov $(X86_CR0_PG | X86_CR0_WP | X86_CR0_PE),%eax
mov %eax,%cr0

(...)

The example of the startup code for inmates is represented in Listing 2.4
(see header.S for applications running in 64-bit mode, or header-32.S for
32-bit mode). As it has been mentioned earlier, Jailhouse waits for the inmate
entry point at address 0xffff0. So the small trick is needed there to jump
to 16-bit code section (for the GDT and protected mode flag setup). Inmate
demo binaries are loaded into guest memory with the offset 0xf0000 (see load-
ing in section 2.2.4). Those binaries are linked with consideration to this offset.

Here how it is done. The linker script (inmate.lds) which is shown in
Listing 2.5 ensures the following. 16-bit .startup section, which contains
those mentioned setup instructions, is bonded at the very beginning of the
binary. Section .boot is pinned at 0xfff0, so addition with the offset gives
right entry address. Sections .text, .data and .rodata have their Virtual
Memory Addresses (VMA) with the load offset included. However, their Load
Memory Addresses (LMA) do not have it. As a result, when the binary will
be placed into the memory of a cell everything will be where it is supposed
to be.

(VMA means “the address the section will have when the output file is
run”[lin] and LMA means “the address at which the section will be loaded”[lin].)

Listing 2.5: The linker script for inmate demos.
SECTIONS
{
/* 16-bit sections */
. = 0;
.startup : { *(.startup) }

. = 0xfff0;

.boot : {
*(.boot)
. = ALIGN(16);

}

/* 32/64-bit sections */
. = 0xe0000;
stack_top = .;
bss_start = .;
.bss : {
*(.bss)

15

2. Jailhouse hypervisor..................................
. = ALIGN(8);

}
bss_dwords = SIZEOF(.bss) / 4;
bss_qwords = SIZEOF(.bss) / 8;

. = 0xf0000 + SIZEOF(.startup);

.text : AT (ADDR(.text) & 0xffff) {
*(.text)

}

. = ALIGN(16);

.rodata : AT (ADDR(.rodata) & 0xffff) {
*(.rodata)

}

. = ALIGN(16);

.data : AT (ADDR(.data) & 0xffff) {
*(.data)

}

/DISCARD/ : {
(.eh_frame)

}
}

ENTRY(__reset_entry)

Thus, Section .boot, which has the mentioned entry point placed at
0xffff0, has only one instruction: ljmp $0xf000,$start16. It causes in-
struction pointer to move on physical address 0xf0000. And after, when
GDT and protected mode flag are set, it jumps back to the 32-bit code, where
it comes to paging bits and, finally, to the inmate_main() function entry
(see Listing 2.4.

More details on how to create the inmate are provided below in sections
2.3.1 and 2.3.2.

2.3.1 APIC demo

APIC demo (stands for Advanced Programmable Interrupt Controller) is
canonical inmate which usually used to demonstrate Jailhouse features (e.g.
in [Jan15]). It is a tiny program (lied in inmates/demos/x86/apic-demo.c)
which sets up an interrupt for the APIC timer and “measures actual time
between the events happening”[Val15]. Besides that, it shows the basics of
using the inter-cell communication and manipulating the cell state.

The configuration file (presented in Listing 2.8) for that cell is very laconic.
It defines only two memory regions: the lowest (1 MB wide) where the
inmate is loaded, and the little one (only 4 KB) is for communication. The

16

.................................... 2.3. Inmate demos

second region has an additional flag JAILHOUSE_MEM_COMM_REGION to let the
hypervisor know where to read/write messages. And it prints a log at the
serial port 0.

Listing 2.6: Launching the apic-demo cell.
jailhouse cell create /jailhouse/configs/apic-demo.cell
[27.588227] smpboot: CPU 3 is now offline
[27.610212] Created Jailhouse cell "apic-demo"
jailhouse cell load apic-demo /jailhouse/inmates/apic-demo.bin

-a 0xf0000
jailhouse cell start apic-demo
jailhouse cell shutdown apic-demo
JAILHOUSE_CELL_LOAD: Operation not permitted
jailhouse cell shutdown apic-demo
#

Right after the demo starts, cell’s state is set to state
JAILHOUSE_CELL_RUNNING_LOCKED. This is done by an assignment to
comm_region->cell_state. Usually, it means that hypervisor could not
shrink this cell. After that the application calibrates the Time Stamp Counter
(inmates/lib/x86/timing.c) and initializes APIC timer. Then handler is
set for the timer’s interrupt. So, when every next interrupt occurs, jitter is
calculated. “Jitter is the difference between the expected and actual time
(the latency), and the smaller it is, the less visible (in terms of performance)
the hypervisor is.”[Val15]

The program waits for a message in the communication region. If the
shutdown request appears there, the program sends a message that it is not
possible right now. If this request appears by the second time, apic-demo
breaks the loop. Right before the final return apic-demo changes cell’s sta-
tus into JAILHOUSE_CELL_SHUT_DOWN, so the Jailhouse knows that shutdown
process has gone well. Illustrations are given there: Listings 2.6,2.7.

Listing 2.7: Shorted (...) listing from apic-demo cell’s operation.
Cell "apic-demo" can be loaded
Started cell "apic-demo"
CPU 3 received SIPI, vector 100
Calibrated TSC frequency: 3292506.587 kHz
Calibrated APIC frequency: 99773 kHz
Timer fired, jitter: 821 ns, min: 821 ns, max: 821 ns
Timer fired, jitter: 1090 ns, min: 821 ns, max: 1440 ns
(...)
Timer fired, jitter: 1261 ns, min: 821 ns, max: 1440 ns
Rejecting first shutdown request - try again!
Timer fired, jitter: 1418 ns, min: 821 ns, max: 1440 ns
(...)
Timer fired, jitter: 1306 ns, min: 821 ns, max: 1440 ns
Stopped APIC demo
Cell "apic-demo" can be loaded

17

2. Jailhouse hypervisor..................................
Listing 2.8: The apic-demo cell configuration.(configs/apic-demo.c)

#include <linux/types.h>
#include <jailhouse/cell-config.h>

#define ARRAY_SIZE(a) sizeof(a) / sizeof(a[0])

struct {
struct jailhouse_cell_desc cell;

__u64 cpus[1];
struct jailhouse_memory mem_regions[2];
__u8 pio_bitmap[0x2000];

} __attribute__((packed)) config = {
.cell = {
.signature = JAILHOUSE_CELL_DESC_SIGNATURE,
.name = "apic-demo",

.cpu_set_size = sizeof(config.cpus),

.num_memory_regions = ARRAY_SIZE(config.mem_regions),

.num_irqchips = 0,

.pio_bitmap_size = ARRAY_SIZE(config.pio_bitmap),

.num_pci_devices = 0,
},

.cpus = {
0x8,

},

.mem_regions = {
/* RAM */ {
.phys_start = 0x3f000000,
.virt_start = 0,
.size = 0x00100000,
.flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |
JAILHOUSE_MEM_EXECUTE | JAILHOUSE_MEM_LOADABLE,

},
/* communication region */ {

.virt_start = 0x00100000,

.size = 0x00001000,

.flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |
JAILHOUSE_MEM_COMM_REGION,

},
},

.pio_bitmap = {
[0/8 ... 0x3f7/8] = -1,
[0x3f8/8 ... 0x3ff/8] = 0, /* serial1 */
[0x400/8 ... 0xe00f/8] = -1,
[0xe010/8 ... 0xe017/8] = 0, /* OXPCIe952 serial1 */
[0xe018/8 ... 0xffff/8] = -1,

},
};

18

.................................... 2.3. Inmate demos

2.3.2 HPET demo

This example was implemented by me to become more familiar with Jailhouse
and with the inmate’s creation process. It is a demonstration of using the
High Precision Event Timer (HPET) - event timer hardware which has its
registers memory mapped and its interrupts routed through the IOAPIC
chip. So, this is a problem where the set of inmate.h functions could be useful.

Figure 2.2: The High Precision Event Timer architecture overview. Source: [hpe]

Implementation form was inspired by the apic-demo and ioapic-demo, the
set of constants was partly taken from Linux kernel sources. Of course, any
step could not be done here without reading the specifications[hpe]. Please,
refer to Figure 2.2 where the HPET architecture is clearly described. Briefly,
HPET Architecture has several timers whose registers are mapped at the
address which is found in ACPI tables. Timers must be configured through
their capabilities’ registers. Base parameters are the mode of an operation
(periodic/one-shot), interrupt (where to route) and the comparator ’s value
field. When the value on some timer’s comparator is equal to the main
counter, the timer produces an interrupt.

The cell was configured in the similar way as it is done for apic-demo
(refer to Listing 2.8), but two additional memory regions allowed there. The
first one is where HPET found - [0xfed00000-0xfed01000], the second one
is the IOAPIC space - [0xfec00000 - 0xfec01000]. Note, that HPET must
be turned off in Linux (e.g. with appending the "nohpet" option to the kernel).

The program must find the General Capabilities Register address first. In
a general case, ACPI tables must be parsed for it, but as far as we know

19

2. Jailhouse hypervisor..................................
our environment, it is not necessary (cell is configured statically, so the
memory region has been already added there). So, I hardcoded the address
at 0xfed00000 value (it is there in QEMU, and the same is in the majority
of real cases). However to interact with this piece of memory, it is needed to
remap it into the cell. And the function map_range(), (found in inmate.h),
was used for that purpose. After this is done, access to that space is available.
Information about the amount of registers and the address of the main counter
register is taken from General register in the way how it should be done
according to the spec [hpe]]. When all timers are enumerated, the program
shows the basic info for everyone available. Then, legacy mode is turned
on - it is just some attempt to make this demo more applicable because the
specification predefines interrupts’ IRQs in this mode (for the first and the
second timer). This program operates with only the first three timers - all
are set to the periodic mode. Finally, IOAPIC is initialized, and IRQs are
assigned and, after enabling the main counter, all three comparators start to
produce interrupts. Results are in Listing 2.9.

Listing 2.9: Demonstration of the HPET demo operation.
Created cell "hpet-demo"
Page pool usage after cell creation: mem 196/1505, remap

65602/131072
Cell "hpet-demo" can be loaded
Started cell "hpet-demo"
CPU 3 received SIPI, vector 100

Base Address for HPET registers : 0x00000000fed00000

Timer 0 on: 0x00000000fed00100,
Timer comparator : 0xffffffffffffffff,
Interrupts where to route: 0x0000000000ff0104

Timer 1 on: 0x00000000fed00120,
Timer comparator : 0xffffffffffffffff,
Interrupts where to route: 0x0000000000ff0104

Timer 2 on: 0x00000000fed00140,
Timer comparator : 0xffffffffffffffff,
Interrupts where to route: 0x0000000000ff0104
Done preparation..

Timer 0 says hi!

Timer 0 says hi!

Timer 2 says hi!

Timer 1 says hi!

After all that long initialization process the program behaves the same way as
apic-demo does - waits for a shutdown request from outside. And it handles
three "Hello from timer <number>" interrupts.

20

Chapter 3
L4 Fiasco.OC launch

Running the bare-bones program inside a cell could be useful to solve simple
problems, but, mostly, an operating system is required in real applications
when something more complex has to be implemented (Network protocol
stack, Autopilot, etc.). So, there is a motivation to port some OS as an
inmate. Moreover, if Jailhouse has real-time properties, it is worth for OS to
have that too.

Currently, it is possible to boot Linux in non-root cell, and the
Documentation/non-root-linux.txt [Jan] file describes how that should
be done. The kernel must be patched and configured in a specific way. User-
space tool for bootstrapping that kernel exists also. However, this it would
not be a real-time case still (without special kernel patches and configuration,
which could be more complex).

That is why Fiasco.OC was chosen to port. It is small enough, and it does
meet real-time requirements. It is quite configurable and has an environment
which makes development process of the user-space applications much easier.

The following section (3.1) provides the small overview on an architecture of
Fiasco.OC. Subsection (3.1.1) is dedicated to the L4 bootstrapper application
which is used to launch L4-based systems. Next section (3.2) describes steps
for launching Fiasco under Jailhouse.

3.1 Overview

Fiasco.OC is a microkernel-based operating system developed by the Fiasco
Team at Technical University Dresden. It consists of the L4-based microkernel
and user-level programs which are related to the L4 Runtime Environment
(L4Re). The kernel itself is very minimalistic. Thus, it provides only base
functionality as the Inter-Process Communications (IPC), creating/deleting
address spaces (Tasks) and threads functionality. As it noticed about the
Fiasco minimalism in [ZDM+09]: “The microkernel provides a total of seven
system calls, in other words, microkernel rules the world with only 7 system
calls.” All other responsibilities are lied on shoulders of L4Re.

21

3. L4 Fiasco.OC launch
The minimal configuration in which the OS could be launched must contain

Fiasco kernel, root pager called Sigma0, root task Moe and at least one user-
space application which runs on top of all it. Sigma0 provides the API for
user-space program to work with memory (remapping, allocation and such).
Moe, which operates above the paging manager, is a task which kernel starts
in the first place. It serves more abstract interface for all other user-space
applications.

The diagram, that could be found in Fig. 3.1, clearly describes the archi-
tecture of the L4 Fiasco.OC.

Detailed information about the architecture and programming references
could be found in [l4-].

.
Figure 3.1: Basic Structure of an L4Re based system. Source:[l4-]

3.1.1 Fiasco bootstrapping process

Fiasco kernel itself is a Multiboot-compliant so that it could be booted for
example via GRUB with modules which are added separately. However, for
purposes to distribute the whole system as a single image in L4Re exists a
package called L4 bootstrapper. The image could be built with it if the make
E=<entry-name> is invoked in the L4 build system.

L4 bootstrapper also solves the problem of portability. Not only it supports
being loaded by the Multiboot-compliant boot loader. It has an ability,
for example, to be launched from Linux user-space (Fiasco-UX) or in XEN
environment. It even supports launching from real-mode with PXElinux.

22

................................. 3.2. Port Fiasco into cell

To set up boot configuration, an entry must be added to the modules.list.
The example is in Listing 3.1.

Listing 3.1: Build entry for the helloworld example in modules.list
modaddr 0x01100000

default-kernel fiasco -serial_esc
default-bootstrap bootstrap

entry hello
roottask moe --init=rom/hello
module l4re
module hello

Bootstrapper sets up UART communication first, and then it tries to de-
termine available system memory. If there is no faults, the bootstrapper
search for modules in the image (modules were placed there as raw binaries
after linking, see bootstrap.ld.in script in l4/pkg/bootstrap/ARCH_x86).
Then it moves all modules behind the predefined address and jumps to the
kernel start address.

Those operations mentioned above are platform specific. Different im-
plementations are located into bootstrap/platform folder. For example,
x86_pc.cc contains all necessary for the x86 PC.

3.2 Port Fiasco into cell

The following sections describe modifications which were contributed into the
L4 bootstrapper (3.2.2) and into the Fiasco kernel (3.2.3) to launch it as a
Jailhouse inmate. Section 3.2.1 contains information about cell configuration
and host’s Linux parameters. Log in Listing 3.9 presents the Fiasco.OC which
successfully works in a cell.

3.2.1 Cell and host system configuration

As it has been mentioned earlier, the first step, when creating a new cell for
the Jailhouse, is to configure it. Such configuration must describe resources
which application requires otherwise it would not work.

The Fiasco kernel (and the bootstrap) uses:. Ports from 0x3f8 to 0x3ff for sending debug info at the serial port.. Port 0x80 to produce delays.. Ports 0x20 and 0x21 when accessing to the Programmable Interrupt
Controller (PIC) on the Master chip.. Ports 0xA0 and 0xA1 when accessing to the PIC Slave chip.

23

3. L4 Fiasco.OC launch
. Ports from 0x40 to 0x43 when using the Programmable Interrupt Timer

(PIT).. Ports 0x60 and 0x64 when trying to operate with PS/2 keyboard..Memory - at least 3MB for the inmate image. The rest depends on
user-space applications’ requirements.

Section 2.2.2 explains how to describe it in configuration file (lies in
jailhouse/configs/fiasco-demo.c).

Unfortunately, it is not enough just to allow this in configuration. It is
also needed to ensure that Linux would not access to these ports. To avoid
competition about I/O ports the following corrections were added to the
Linux configuration (tested with the kernel version 4.5.0-rc4):

. Parameter CONFIG_IO_DELAY_0XED was turned on. This allows Linux to
use the port 0xed instead of 0x80 as the I/O delay.. Parameter CONFIG_SERIO_I8042 was turned off to avoid all operations
with PS/2 keyboard controller. Alternatively, the i8042.nokbd argument
could be appended to the kernel command line at the boot time.

There is no need to worry about the PIC and the PIT as far as Linux uses the
Advanced Programmable Interrupt Controller (APIC) and the APIC timer
instead.

3.2.2 Bootstrap modification

According to what have been discussed above, an application must be built in
a special way to become an inmate. Jailhouse does not provide any bootloader
at all; it only sets up the instruction pointer at the address 0xffff0. Thus, the
bootstrap process needs several customizations to boot the Fiasco successfully.
Note please, that the following text is related to the i386 version.

An issue about the entry point difference was solved in the similar way how
it is done with the demo inmates. It includes modifications of the startup
code (crt0.S) and the linker script (bootstrap.ld.in). To start with, the
addition (presented in Listing 3.2) were inserted into crt0.S. It is, basically,
a part of the inmates’ startup code which does a jump from the reset entry
into the .jh.boot section in 16-bit code. There, the Global Descriptor Table
(GDT) sets up and, after enabling the protected mode (bit 0 set in the CR0
register), the program counter moves to 32-bit code. There, Memory type
range register (MTTR) sets up at Default Type which tells CPU that this
part of memory could be cached. And then it goes to the original code of
bootstrap (symbol _start). However, the __reset_entry symbol must be

24

................................. 3.2. Port Fiasco into cell

placed at the right address, and the linker script has to ensure it.
Listing 3.2: Startup code improvements in crt0.S.

#ifdef JAILHOUSE
#define X86_CR0_PE 0x00000001
#define MSR_MTRR_DEF_TYPE 0x000002ff
#define MTRR_ENABLE 0x00000800
#define INMATE_CS32 0x8

.code16

.section ".jh.boot", "ax"

.globl __reset_entry
__reset_entry:
ljmp $0xf000,$start16

.section ".jh.startup", "ax"

start16:
lgdtl %cs:gdt_ptr
mov %cr0,%eax
or $X86_CR0_PE,%al
mov %eax,%cr0
ljmpl $INMATE_CS32,$_start

.code32

.global loader_gdt
loader_gdt:
.quad 0
.quad 0x00cf9b000000ffff
.quad 0x00af9b000000ffff
.quad 0x00cf93000000ffff

gdt_ptr:
.short gdt_ptr - loader_gdt - 1
.long loader_gdt + FSEGMENT_BASE

.align(4096)

.global loader_pdpt
loader_pdpt:
.long 0x00000083

.align(4096)

#endif //JAILHOUSE
.section .init

.globl _start
_start:

#ifdef JAILHOUSE
movl $MSR_MTRR_DEF_TYPE,%ecx
rdmsr
or $MTRR_ENABLE,%eax
wrmsr

#endif //JAILHOUSE

25

3. L4 Fiasco.OC launch
Sections were relocated into the bootstrap.ld.in to satisfy the mentioned

requirement. First of all, the .boot section was bound at 0xfff0. The code
which was added into SECTIONS is shown in Listing 3.3. Note also, that the
resulting binary will be loaded with the 0xf0000 offset, so the right address
for the entry will be achieved.

Listing 3.3: Placing the .jh.boot section in a binary.
#define LOAD_OFFSET (0x0)
#ifdef JAILHOUSE
#define LOAD_OFFSET (0xf0000)

. = 0;

/* 16-bit sections */
.jh-startup : { *(.jh.startup) }

. = 0xfff0;

.jh-boot :
{
*(.jh.boot)
. = ALIGN(16);

}
#endif

Moreover, that offset (defined in Listing 3.3 as the LOAD_OFFSET) must be
considered when placing all other sections like e.g. .text and .data. In that
case, Load Memory Address (LMA) must be specified without the offset as it
is shown in the example for the .text section in Listing 3.4. The result of
linking is presented in Listing 3.6.

Listing 3.4: Placing the .text section in a binary considering the load offset.
.text : AT (ADDR(.text) - LOAD_OFFSET)
{
*(.init)
(.text .text. .gnu.linkonce.t*)
(.rodata)

}

The bootstrap must be built with the REALMODE_LOADING flag. It enables a
piece of code which creates synthetic multi-boot info and uses information
about the memory map provided by command line arguments. These argu-
ments could be passed through the BOOTSTRAP_CMDLINE declaration so that
the final image could have that build in. These build flags were appended to
Makeconf.local as it is shown in Listing 3.5.

Listing 3.5: Additional build options declared in Makelocal.conf
DEFINES += -DREALMODE_LOADING
BOOTSTRAP_CMDLINE += -mem=1M@0x0 -mem=50M@0x100000

-maxmem=51M

26

................................. 3.2. Port Fiasco into cell

Listing 3.6: Linked bootstrap with LMAs modified.
objdump -h bootstrap.elf

bootstrap.elf: file format elf32-i386

Sections:
Idx Name Size VMA LMA File off Algn
0 .jh-startup 00002000 00000000 00000000 00001000 2**12
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .jh-boot 00000010 0000fff0 0000fff0 00003ff0 2**0
CONTENTS, ALLOC, LOAD, READONLY, CODE
2 .text 00009e24 002d0000 001e0000 00004000 2**5
CONTENTS, ALLOC, LOAD, READONLY, CODE
3 .data 00000124 002d9e40 001e9e40 0000de40 2**5
CONTENTS, ALLOC, LOAD, DATA
4 .data.module_info 00000098 002d9f64 001e9f64 0000df64
2**2

CONTENTS, ALLOC, LOAD, DATA
5 .bss 00004420 002da000 001ea000 0000dffc 2**5
ALLOC
6 .module_data 000c44e8 002df000 001ef000 0000e000 2**12
CONTENTS, ALLOC, LOAD, CODE

27

3. L4 Fiasco.OC launch
3.2.3 Modifications in Fiasco kernel

It was necessary to add some changes to the source code of the Fiasco kernel.
To interact with the local APIC (read/write to its memory mapped registers)
it uses functions presented in Listing 3.7.

Listing 3.7: Definitions of the reading/writing to memory in Fiasco.
kernel/fiasco/src/kern/ia32/apic-ia32.cpp

PUBLIC static inline Unsigned32
Apic::reg_read(unsigned reg)
{

return *((volatile Unsigned32*)(io_base + reg));
}
PUBLIC static inline void
Apic::reg_write(unsigned reg, Unsigned32 val)
{

((volatile Unsigned32)(io_base + reg)) = val;
}

After the compilation, there is generated an assembly instruction in format
mov $address, %eax or mov %eax, $address, which is not acceptable in
Jailhouse. Jailhouse cannot allow the cells to do whatever they want with
the APIC, because it would allow escaping from the cell. Therefore Jailhouse
has to intercept all the accesses to the APIC and allow only those that are
safe. (see apic_mmio_access(..) in hypervisor/arch/x86/apic.c). As
a result, there is the error "FATAL: Unsupported APIC access". To avoid
this situation, functions in Listing 3.7 were changed as it showed in Listing
3.8 and defined in the inmate.h in the inmate demos library. It forces the
compiler to produce instructions in format mov %ebx, %edx, which is passed
through the Jailhouse parser.

Listing 3.8: Improvments of reading/writing to APIC registers in Fiasco.
kernel/fiasco/src/kern/ia32/apic-ia32.cpp

PUBLIC static inline Unsigned32
Apic::reg_read(unsigned reg)
{

Unsigned32 val;
/* assembly-encoded to match the Jailhouse hypervisor MMIO

parser support */
void *address = (void*)(io_base + reg);
asm volatile("mov (%1),%0" : "=r" (val) : "r" (address));
return val;

}
PUBLIC static inline void
Apic::reg_write(unsigned reg, Unsigned32 val)
{/* assembly-encoded to match the Jailhouse hypervisor MMIO

parser support */
void *address = (void*)(io_base + reg);
asm volatile("mov %0,(%1)" : : "r" (val), "r" (address));

}

28

................................. 3.2. Port Fiasco into cell

Listing 3.9: Log from the Fiasco running Hello World demo. In a Jailhosue cell.
Initializing Jailhouse hypervisor on CPU 2
Code location: 0xfffffffff0000030
Using xAPIC
Page pool usage after early setup: mem 38/16347, remap 65/131072
Initializing processors:
CPU 2... (APIC ID 4) OK
CPU 3... (APIC ID 6) OK
CPU 1... (APIC ID 2) OK
CPU 0... (APIC ID 0) OK
Found DMAR @0x00000000fed90000
Found DMAR @0x00000000fed91000
Reserving 24 interrupt(s) for device f0f8 at index 0
Adding PCI device 00:00.0 to cell "RootCell"
Adding PCI device 00:02.0 to cell "RootCell"
Reserving 1 interrupt(s) for device 0010 at index 24
Adding PCI device 00:14.0 to cell "RootCell"
Reserving 8 interrupt(s) for device 00a0 at index 25
Adding PCI device 00:16.0 to cell "RootCell"
Reserving 1 interrupt(s) for device 00b0 at index 33
Adding PCI device 00:19.0 to cell "RootCell"
Reserving 1 interrupt(s) for device 00c8 at index 34
Adding PCI device 00:1a.0 to cell "RootCell"
Adding PCI device 00:1b.0 to cell "RootCell"
Reserving 1 interrupt(s) for device 00d8 at index 35
Adding PCI device 00:1c.0 to cell "RootCell"
Reserving 1 interrupt(s) for device 00e0 at index 36
Adding PCI device 00:1c.2 to cell "RootCell"
Reserving 1 interrupt(s) for device 00e2 at index 37
Adding PCI device 00:1d.0 to cell "RootCell"
Adding PCI device 00:1e.0 to cell "RootCell"
Adding PCI device 00:1f.0 to cell "RootCell"
Adding PCI device 00:1f.2 to cell "RootCell"
Reserving 1 interrupt(s) for device 00fa at index 38
Adding PCI device 00:1f.3 to cell "RootCell"
Adding PCI device 02:00.0 to cell "RootCell"
Reserving 8 interrupt(s) for device 0200 at index 39
Adding PCI device 02:00.1 to cell "RootCell"
Reserving 8 interrupt(s) for device 0201 at index 47
Page pool usage after late setup: mem 2105/16347, remap
16452/131072

Activating hypervisor
Created cell "fiasco-demo"
Page pool usage after cell creation: mem 2121/16347, remap
16452/131072

Cell "fiasco-demo" can be loaded
Started cell "fiasco-demo"
CPU 1 received SIPI, vector 100
cmdline:0x2d8823, realmode_si=(nil)

L4 Bootstrapper
Build: #298 Tue May 17 17:16:45 CEST 2016, x86-32, 4.9.2

29

3. L4 Fiasco.OC launch
cmdline params: ’-mem=1M@0x0 -mem=50M@0x100000 -maxmem=51M’
RAM: 0000000000000000 - 00000000000fffff: 1024kB
RAM: 0000000000100000 - 00000000032fffff: 51200kB
Total RAM: 51MB
Scanning fiasco
Scanning sigma0
Scanning moe
Moving up to 5 modules behind 1100000
moving module 02 { 372000-3a34e7 } -> { 1193000-11c44e7 }
[201960]

moving module 01 { 366000-37130f } -> { 1187000-119230f }
[45840]

moving module 00 { 318000-365337 } -> { 1139000-1186337 }
[316216]

moving module 04 { 2fb000-317537 } -> { 111c000-1138537 }
[116024]

moving module 03 { 2df000-2fa44f } -> { 1100000-111b44f }
[111696]

Loading fiasco
Loading sigma0
Loading moe
find kernel info page...
found kernel info page at 0x400000
Regions of list ’regions’
[1000, 1fff] { 1000} Kern fiasco
[2000, 20eb] { ec} Root mbi_rt
[100000, 10f193] { f194} Sigma0 sigma0
[140000, 177287] { 37288} Root moe
[2d0000, 2de41f] { e420} Boot bootstrap
[300000, 38ffff] { 90000} Kern fiasco
[400000, 44efff] { 4f000} Kern fiasco
[1100000, 1138fff] { 39000} Root Module
API Version: (87) experimental
Sigma0 config ip:001001ec sp:00000000
Roottask config ip:0014020e sp:00000000
Starting kernel fiasco at 00300798

Welcome to L4/Fiasco.OC!
L4/Fiasco.OC microkernel on ia32
Rev: fb3ab8c-dirty compiled with gcc 4.9.2 for Intel Pentium
[]

Build: #11 Mon May 16 16:25:15 CEST 2016

Performance-critical config option(s) detected:
CONFIG_NDEBUG is off

Superpages: yes
Kmem:: cpu page at 2eed000 (4096Bytes)

KERNEL: Warning: ACPI: Could not find RSDP, skip init
Allocate cpu_mem @ 0xfc6f0400
FPU0: SSE AVX

30

................................. 3.2. Port Fiasco into cell

Local APIC[02]: version=15 max_lvt=6
APIC ESR value before/after enabling: 00000000/00000000
Using the Local APIC timer on vector f8 (Periodic Mode) for
scheduling

ACPI: cannot find FADT, so suspend support disabled
Absolute KIP Syscalls using: Sysenter
Enable MSI support: chained IRQ mgr @ 0xfc6f0024
SERIAL ESC: allocated IRQ 4 for serial uart
Not using serial hack in slow timer handler.
CPU[0]: GenuineIntel (6:3A:9:0)[000306a9] Model:
Intel(R) Core(TM) i5-3550 CPU @ 3.30GHz at 3292MHz

128 Entry I TLB (4K pages)
64 Entry D TLB (4K pages) 512 Entry D TLB (4k or 4M pages)

Freeing init code/data: 24576 bytes (6 pages)

Calibrating timer loop... done.
MDB: use page size: 22
MDB: use page size: 12
SIGMA0: Hello!
KIP @ 400000
Found Fiasco: KIP syscalls: yes
allocated 4KB for maintenance structures
SIGMA0: Dump of all resource maps
RAM:------------------------
[0:0;fff]
[4:2000;2fff]
[0:3000;fffff]
[0:110000;13ffff]
[4:140000;177fff]
[0:178000;3fffff]
[0:449000;10fffff]
[4:1100000;1138fff]
[0:1139000;2eeafff]
IOMEM:----------------------
[0:3300000;fedfffff]
[0:fee01000;ffffffff]
IO PORTS--------------------------
[0:0;fffffff]
MOE: Hello world
MOE: found 47224 KByte free memory
MOE: found RAM from 2000 to 2eeb000
MOE: allocated 46 KByte for the page array @0x3000
MOE: virtual user address space [0-bfffffff]
MOE: rom name space cap -> [C:103000]
BOOTFS: [1100000-111b450] [C:105000] l4re
BOOTFS: [111c000-1138538] [C:107000] hello
MOE: cmdline: moe --init=rom/hello
MOE: Starting: rom/hello
MOE: loading ’rom/hello’
Hello World!

31

32

Chapter 4
Benchmarks

The following sections are dedicated to the discussion about evaluating the
influence of shared memory hierarchy (caches, DRAM) on the performance
of software running in different cells. Section 4.1 determines goals of such
study and which results are expected to be achieved. Implementation of the
testing suite is described in section 4.2. The results of the implemented tests
are presented in section 4.3.

4.1 Goal

A common multi-core processor has L3 cache shared between cores, and all
the rest memory hierarchy is also shared. Suppose now, that every core does
the entirely different program, so, everyone needs access to the different areas
of memory. In that case, the cores will compete with each other for the cache
(i.e. cache trashing) and memory access time will be increased. Also, what is
more important, the problem of ’bottleneck’ appears. When one core wants
access to memory at the same time the other core does, one of them needs
to wait. A memory-intensive application on one core can significantly slow
down applications on other cores.

All those mentioned issues have a negative influence on real-time and safety
of a system. The reason is well explained in [BMVB]: “...current techniques
for timing analysis are not effective when applied to the complex hierarchical
memory system of modern many-cores. The reason is that classic real-time
theory usually views memory latencies as implicit components of the worst-
case execution time of tasks, and the interference among cores concurrently
accessing memory is upper-bounded to provide a safe worst-case analysis.”.

The goal for benchmarking the Jailhouse is to investigate how significant
that influence will be in a case when one cell does accesses to memory, and
so does the other cell e.g. root one. Moreover, when this value is known, it
could give the overview of Jailhouse real-time properties and open the field
for further improvements.

33

4. Benchmarks
4.2 Implementation

To achieve goals mentioned in the previous section, it was decided to imple-
ment a simple benchmark that could run both inside a Jailhouse’s cell and on
bare hardware. Conditions of that launching must be the same in both cases
on purpose to investigate if any slowdown of memory access comes while
using Jailhouse.

Moreover, to demonstrate the ’bottleneck’ problem the same benchmark
could be used. That benchmarking program is running inside a cell. It
measures an efficiency (bandwidth) of its accesses to memory of different
size. So if some memory-using program starts in Linux at this time, then
the inmate probably could notice a slowdown. The program which runs
into Linux uses the same memory amount over and over again, thus, for
the concrete accessing size an interaction brings more (or less) slowdowns
into the cell. And after that, this test should be done in another direction;
Benchmarking program do measurements inside the root (Linux) cell, and
Fiasco makes an external interference.

That benchmarking inmate consists of the ported Fiasco.OC (described
in Chapter 3) and a small program running in the Fiasco’s user-space. The
benefit of using this OS there is that it only needs to swap the Bootstrapper
(see 3.1.1) to run the whole suite on bare hardware.

This simple benchmark was implemented as follows (code is given in Listing
4.1). At the every step, it initializes an array with pointers which store an
address of the next array element. The last pointer will have the address of
the first element of the array, so all that represents a cyclic linked list. The
size variable determines how long that list will be. Then, the test is started,
and the program goes through the list pointer by pointer forcing a CPU to
access the memory over and over as long as the value of REPEATS runs out.
It accesses only the memory amount of particular size, so it determines the
load level which that test brings into the system. When there are no more
repeats left, the time of the whole test is calculated, and the average time of
one memory read is reported. On every next stage, the size is multiplied by
two, and the program tries a the memory amount. The range of it is from 1 to
32 MiB. Time is measured in clock cycles using the rdtsc assembly instruction.

If the ALL_WORKSETS_BENCH macro is not defined, then, instead of changing
the size on every step, the program uses only one given, so it generates a
constant load.

34

................................... 4.2. Implementation

Listing 4.1: The algorithm of implemented benchmark.
struct s {

char dummy[56];
struct s *ptr;

};
struct s array[0x1000000/sizeof(struct s)];
#define REPEATS (0x20000000)

static __inline__ uint64_t rdtsc(void)
{

uint32_t a, d;
asm volatile("rdtsc" : "=a" (a), "=d" (d));
return (((uint64_t)a) | (((uint64_t)d) << 32));

}

int main(int argc, char *argv[])
{

unsigned int size;
#ifdef ALL_WORKSETS_BENCH

for (size = 1024; size <= sizeof(array); size *= 2)
#else //!ALL_WORKSETS_BENCH

size = WORKSET_SIZE;
if (argc - 1) {

char * nxt_cr;
size = strtoul(argv[1], &nxt_cr, 0);

}
while (1)

#endif
{

unsigned int i;
for (i=0; i < size / sizeof(array[0]); i++)

array[i].ptr = &array[i+1];
array[size / sizeof(array[0]) - 1].ptr = &array[0];

i = REPEATS;
volatile struct s *p = &array[0];
uint64_t tic, tac;

tic = rdtsc();
while (i--) {

p = p->ptr;
}
tac = rdtsc();
printf("%d %llu\n", size, (tac - tic) / REPEATS);
fflush(stdout);

}
return 0;

}

35

4. Benchmarks
Listing 4.2: Processor characteristics on hardware that was used for tests.
lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 58
Model name: Intel(R) Core(TM) i5-3550 CPU @ 3.30GHz
Stepping: 9
CPU MHz: 3292.379
BogoMIPS: 6584.75
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 6144K
NUMA node0 CPU(s): 0-3

The hardware on which tests are running has the configuration described in
Listing 4.2. The processor consists of 4 separate CPU cores. Each core has
the 32 KiB L1 data cache and 256 KiB L2 cache. L3 cache is 6 MB wide and
is shared among all cores. According to this characteristics, next test-cases
are assigned: while all work sets size benchmark is running in one cell, loads
of 64 KiB, 256 KiB, 1 MiB, 4 MiB, 8 MiB, 16 MiB and 32 MiB are applied
in the other cell. This makes possible evaluation of critical points, where the
’bottleneck’ effect could appear.

4.3 Results

Benchmarks’ results are presented in Figures 4.1 and 4.2. Points of each line
show how much time (clock cycles) took the average memory access while
benchmark operated with the working set of particular size (on the X axis).

As it could be seen, the difference for Fiasco.OC running bare metal and
above the hypervisor is not noticeable. The same applies for the Linux also.
So, Jailhouse contributes almost no influence at inmates’ memory access
bandwidth. However, as it has been mentioned earlier, the asymmetric multi-
processing still comes for a price.

External loads which are less than 256 KiB have not affected the curve
form because data of such size could be placed in L1 and L2 caches locally for

36

....................................... 4.3. Results

each core. However, when the measured process is influenced by larger size
accesses from the other cell, the slowdown of 8-10% is noticed when measured
process operates with data sets less than 1 MB. This could be explained by
the fact that Intel processor has an inclusive cache.

There is almost no competition, as far as the probability of access to shared
memory is minimal. Unfortunately, the slowdown effect of shared L3 cache
takes its place. All curves start to grow near the point of 1 MB while a sum
of required memory sets becomes closer to the 6 MiB - the size of the L3
cache. It is could be seen in Fig. 4.2: the huge difference between the no-load
test and 32MB test.

Surprisingly, Linux cell has got much slower accesses (peak values) than
Fiasco which has only one CPU assigned.

The worst case ’bottleneck’ influence achieved during tests is approximately
220 % slowdown. This result was obtained when the benchmark run on
just two cores out of four available. When the benchmark is run on all cores
in parallel, we expect the slowdown to be even higher.

37

4. Benchmarks

 0

 5

 10

 15

 20

 25

 30

 35

 40

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

C
lo

c
k
 c

y
c
le

s
 p

e
r

o
n
e
 m

e
m

o
ry

 a
c
c
e
s
s
 (

a
v
e
ra

g
e
)

(-
)

Working set size (bytes)

Mesurements in Fiasco influenced by Linux.

On bare
In cell w/o interference

64 KiB interference
256 KiB interference

1 MiB interference
2 MiB interference
4 MiB interference
8 MiB interference

16 MiB interference
32 MiB interference

Figure 4.1: Results of measurements from the Fiasco (non-root cell) perspective.

 0

 5

 10

 15

 20

 25

 30

 35

 40

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

C
lo

c
k
 c

y
c
le

s
 p

e
r

o
n
e
 m

e
m

o
ry

 a
c
c
e
s
s
 (

a
v
e
ra

g
e
)

(-
)

Working set size (bytes)

Mesurements in Linux influenced by Fiasco.

On bare
In root cell

64 KiB interference
256 KiB interference

1 MiB interference
2 MiB interference
4 MiB interference
8 MiB interference

16 MiB interference
32 MiB interference

Figure 4.2: Results of measurements from the Linux (root cell) perspective.

38

Chapter 5
Conclusion

I have studied the concepts and operation principles of Jailhouse hypervisor
and described it in this thesis. For purpose to become more familiar with
Jailhouse hypervisor’s environment simple demo was developed. It sets up
High Precision Event Timer to send interrupts periodically or in one-shot
mode and handle it. Such example shows how the OS-less program, which
requires interacting with IOAPIC chip and other memory mapped hardware,
was implemented using the Jailhouse inmate library.

L4 Fiasco.OC was successfully ported into Jailhouse cell. It is fully func-
tional and there were almost no differences between its operation into cell and
bare-metal. To achieve this the L4 Bootstrapper was modified: startup code
and linker script were edited to build the binary which meets the Jailhouse
requirements. Also, kernel code was slightly modified to solve a problem with
APIC access.

Simple benchmarks were implemented and applied on the test-case where
two cells could interfere with each other while accessing to the memory si-
multaneously. The benchmarking programs are made both for Linux and L4
Fiasco.OC user-spaces. This made possible to determine that a presence of
shared memory hierarchy brings the slowdown of %220 in the worst case.

This work may be continued in future to bring more enchantments into
all mentioned points. Improvements of this demo are possible; It could be
enhanced to be more platform independent. For example, the base address
of HPET might be read from ACPI tables, and available interrupts for the
setup could be determined automatically. It even could be improved to the
full-functional driver. Fiasco.OC port also has some field for new features e.g.
enabling multiprocessor support in the cell for it, or improving the adopted
bootstrapper to achieve an ability to start the x86_64 version of Fiasco kernel.

The repository containing all source code related to this work is publicly
available at http://rtime.felk.cvut.cz/gitweb/jailhouse-test.git.

39

http://rtime.felk.cvut.cz/gitweb/jailhouse-test.git

40

Appendix A
Bibliography

[BMVB] Paolo Burgio, Andrea Marongiu, Paolo Valente, and Marko
Bertogna, A memory-centric approach to enable timing-
predictability within embedded many-core accelerators.

[hpe] IA-PC HPET (High Precision Event Timers) Specifica-
tion, [online]http://www.intel.com/content/dam/www/
public/us/en/documents/technical-specifications/
software-developers-hpet-spec-1-0a.pdf, Accessed: 2016-
05-26.

[Jan] Kiszka Jan, Github - siemens/jailhouse: Linux-based partitioning
hypervisor., [online]https://github.com/siemens/jailhouse.
git, Accessed: 2016-05-26.

[Jan15] , Hard partitioning for linux: The jailhouse hypervisor,
[online] http://events.linuxfoundation.org/sites/events/
files/slides/LinuxConNA-2015-Jailhouse_0.pdf, August
2015, Accessed: 2016-05-26.

[l4-] L4re - l4 runtime environment, [online]https://l4re.org/doc/
l4re_intro.html, Accessed: 2016-05-26.

[lin] Red hat enterprise linux 4: Using ld, the gnu linker, [on-
line]https://access.redhat.com/documentation/en-US/Red_
Hat_Enterprise_Linux/4/html/Using_ld_the_GNU_Linker/
scripts.html#BASIC-SCRIPT-CONCEPTS, Accessed: 2016-05-26.

[ME] Sainz Manuel Estrada, Linux kernel documentation - re-
quest_firmware hotplug interface., [online]https://www.kernel.
org/doc/Documentation/firmware_class/README, Accessed:
2016-05-26.

[Val14a] Sinitsyn Valentine, Understanding the jailhouse hypervisor, part
1., LWN.net (2014).

[Val14b] , Understanding the jailhouse hypervisor, part 2., LWN.net
(2014).

41

http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
https://github.com/siemens/jailhouse.git
https://github.com/siemens/jailhouse.git
http://events.linuxfoundation.org/sites/events/files/slides/LinuxConNA-2015-Jailhouse_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/LinuxConNA-2015-Jailhouse_0.pdf
https://l4re.org/doc/l4re_intro.html
https://l4re.org/doc/l4re_intro.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Using_ld_the_GNU_Linker/scripts.html#BASIC-SCRIPT-CONCEPTS
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Using_ld_the_GNU_Linker/scripts.html#BASIC-SCRIPT-CONCEPTS
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Using_ld_the_GNU_Linker/scripts.html#BASIC-SCRIPT-CONCEPTS
https://www.kernel.org/doc/Documentation/firmware_class/README
https://www.kernel.org/doc/Documentation/firmware_class/README

A. Bibliography.....................................
[Val15] , Jailhouse, Linux Journal (2015).

[ZDM+09] Q. Zhou, Y. Ding, N. McGuire, C. Li, G. Cheng, and B. Hu, A
case study of microkernel for education, 133–136.

42

	Project Specification
	Introduction
	Jailhouse hypervisor
	Concepts
	Operation
	Hardware requirements
	Cell configuration
	Enabling Jailhouse
	Cell initialization and start process

	Inmate demos
	APIC demo
	HPET demo

	L4 Fiasco.OC launch
	Overview
	Fiasco bootstrapping process

	Port Fiasco into cell
	Cell and host system configuration
	Bootstrap modification
	Modifications in Fiasco kernel

	Benchmarks
	Goal
	Implementation
	Results

	Conclusion
	Bibliography

