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Abstract
This bachelor thesis describes the modi-
fication of a racing car model. The aim
of this thesis was to make the new mod-
els more effective, universal and so they
would obey new rules of F1/10 competi-
tion. The whole process of the car mod-
elling was thoroughly described including
essential theoretical background regard-
ing the robotic operating system (ROS),
F1/10 competition and more. Implemen-
tation of two algorithms for slip detection
is described in the second part of this
work. This implementation included con-
figuration and tests of inertial measure-
ment unit (IMU). The outcome of this
thesis are two new car models which were
already used on projects in our research
centre. Moreover, this thesis contributes
as both theoretical and practical back-
ground for future application concerning
slip detection phenomena

Keywords: F1/10 car model, F1/10
competition, ROS, slip detection, IMU,
EKF

Supervisor: Ing. Michal Sojka, Ph.D.
Department of Telecommunication
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Engineering
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Abstrakt
Tato bakalářská práce pojednává o modi-
fikaci závodního modelu auta. Cílem této
modifikace bylo zefektivnění stávajícího
modelu tak, aby nové modely byly více
univerzální a aby splňovaly nová pravi-
dla soutěže F1/10. Celkový proces návrhu
nových modelů byl důkladně okomento-
ván a popsán včetně nezbytných teore-
tických základů týkajících se robotického
operačního systému (ROS), soutěže F1/10
a dalších. V druhé části práce je popsán
a zdokumentován vývoj dvou algoritmů
pro detekci smyku. Tento vývoj zahrno-
val konfiguraci a testování jednotky iner-
ciální navigace (IMU). Výsledkem této
práce jsou dva nové modely závodních
aut, které byly již využity na projektech v
našem výzkumném centru. Daším příno-
sem práce je teoretický a praktický základ
pro budoucí využití ohledně problematiky
detekce smyku.

Klíčová slova: F1/10 model auta,
soutěž F1/10, ROS, detekce smyku, IMU,
EKF

Překlad názvu: Detekce smyku pro
model auta F1/10
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Chapter 1

Introduction

In today’s rapidly developing world, robots are improving their significance in
human life. With the quick growth of technology, new challenges in the field
of automation appear accordingly. One of these challenges is an autonomous
vehicle control.

Luckily, nowadays, the process of solving these challenges is much easier
than in the past because of easy-accessible technology. Most importantly, the
price reduction of computer embedded systems is the key factor why we can
create more precise models or simulate different situations and conditions with
a relatively small budget. As a result of that, many international competitions
have emerged over the past years to help to popularize different research
fields.

One of those competitions is the F1/10 Autonomous Racing Competition
which focuses, according to the organizers, “on creating a meaningful and
challenging design experience for students. The competition involves designing,
building, and testing an autonomous F1 race car at 1/10th the size capable of
speeds over 60 km/h” [1]. In 2017, a team of students from the Department
of Industrial electronics decided to take part in the competition, and they
have won the next-years race in Porto.

Following their tremendous achievement, the department has decided to
build upon it and continue with the work. This thesis covers my contribution
to the new concept of the F1/10 model, which is being prepared for future
competitions and other projects. My goal was to enhance the previous design
both in the mechanical and electrical part of the model by building two
new car models. Moreover, my contribution to the project also included
integrating the Inertial Measurement Unit (IMU) sensor into the system
and carrying out experiments on it to calibrate it properly for the mounted
vehicle.

Lastly, the biggest challenge was to do a research about a current state
of the vehicle slip detection methods and to try to implement at least one
of these approaches to enhance the perception of the car model and to lay
knowledge base for future research.

The thesis is divided into three main chapters followed by conclusion
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1. Introduction .....................................

Figure 1.1: New vs. old car model.

(without the Introduction). The first two chapters 2 and 3 cover information
about the current state of our F1/10 project. Particularly in chapter 2, I
introduce the background topics related to the tasks done in this thesis. In
chapter 3, I describe the improvements that I have made on the two new car
models.

Later on, chapter 4 is about the side-slip angle estimation from the broad
literature overview to two implemented methods and their evaluation. The
conclusion and proposal of future-work topics are in chapter 5.

All abbreviations used in this thesis are in appendix B.

2



Chapter 2

Background

This chapter provides a theoretical background for vehicle construction.
Moreover, it introduces the car model from several points of view.

Firstly, I go through the F1/10 competition rules which are important to
and understand because the car construction must obey them.

Secondly, this chapter gives the car model overview from both the hardware
and software points of view.

2.1 F1/10 competition

Since the first competition, the organizers have introduced several changes
regarding the car model. I have compared the older version of the rules with
the latest version from February 2019 to highlight the most significant and
the most interesting ones.

Firstly, the new rules state that there is no limit on the number of sensors
as long as they meet the class restrictions. That brings massive space for
solving car identification challenges. For example, one could think about
using the wheel velocity sensors to improve the slip angle detection, or another
benefit might be in using multiple Light Detection And Ranging (LiDAR)
sensors to enhance the vision of the car model. Luckily, the capability class
for the processor increased as well to NVIDIA Jetson TX2 or similar which
supports the usage of multiple sensors.

Secondly, the organizers have divided vehicles into two new classes:

. F1/10 Restricted Class. F1/10 Open Class

As the names indicate, the open-class competition is a derivative of the
restricted-class one with almost no restrictions

3



2. Background .....................................
Thirdly, the revised rules present new race classes:. Time Trial Race. Head-to-head Race

Time trial class follows the original concept of the race. The goal is to go
through the presented track as many times and as fastest as possible without
a crash. Both the fastest lap and the highest number of laps are awarded.

The head-to-head race is a new type of competition when there are multiple
vehicles at once running through the track. The challenge is to be the fastest
without any vehicle-with-vehicle collisions.

To summarize, the newly-revised rules bring many exciting features and
challenges. Unfortunately, compared to the original rules, the new ones are far
less clear and also bring many doubts and questions for example, about the
judgment during the races, specifically during the head-to-head competition.
Moreover, in my opinion, the new rules could be a bit confusing for new
teams that do not have experiences with it.

2.1.1 F1/10 Restricted Class..1. A 1/10 scale rally car chassis equivalent to the Traxxas model 74054
type is allowed. Example in [2].. Use this example for reference in terms of dimensions. See further

description for restrictions on motor ratings.. Four-wheel drive and two-wheel drive versions are both allowed >
in this class...2. Only the use of stock tires, or equivalent - in size and profile, is allowed.

Example in [3].. No special traction modifications are allowed, this includes:. Applying any liquids or gels of any kind to the stock tires.. Using alternate racing tires...3. Use of NVIDIA Jetson TX2 or an equivalent capability processor or
anything of the lower spec is allowed...4. Use of Hokuyo 10LX or an equivalent LiDAR range sensor or anything
with a lower spec is allowed...5. Multiple LiDARs are allowed, as long as they are all equivalent to, or
lower spec than, the Hokuyo 10LX...6. There are no restrictions on the use of cameras, encoders, or custom
electronic speed controllers...7. Use of Brushless DC motor equivalent to Vellineon 3500 or anything of
the lower spec is allowed. Example in [4].

4



.............................2.2. The Robotic Operating System

2.1.2 F1/10 Open Class..1. Car dimensions should be within 10% of the dimensions of the car
required in Restricted class..2. Only electric drive motors are allowed.

2.2 The Robotic Operating System

2.2.1 Architecture overview

One of the main and most important components of the car model software
architecture is the Robotic Operating System (ROS). It is a well known robotic
tool which is widely used in robotics projects, and it is also recommended by
the F1/10 competition organizers in their tutorial [5] (ROS kinetic distribution
particulary). According to the official site [6], the ROS “is a flexible framework
for writing robot software. It is a collection of tools, libraries, and conventions
that aim to simplify the task of creating complex and robust robot behaviour
across a wide variety of robotic platforms.

Why? Because creating a truly robust, general-purpose robot software is
hard. From the robot’s perspective, problems that seem trivial to humans
often vary wildly between instances of tasks and environments. Dealing with
these variations is so hard that no single individual, laboratory, or institution
can hope to do it on their own.

As a result, ROS was built from the ground up to encourage collaborative
robotics software development. For example, one laboratory might have
experts in mapping indoor environments and could contribute a world-class
system for producing maps. Another group might have experts at using maps
to navigate, and yet another group might have discovered a computer vision
approach that works well for recognizing small objects in clutter. ROS was
designed specifically for groups like these to collaborate and build upon each
other’s work.”

ROS architecture is based on a graph concept. The essential part in
this plays the ROS Master node which “provides naming and registration
services to the rest of the nodes in the ROS system. It tracks publishers and
subscribers to topics as well as services. The role of the Master is to enable
individual ROS nodes to locate one another. Once these nodes have located
each other, they communicate with each other peer-to-peer. The Master also
provides the Parameter Server. The Master is most commonly run using the
roscore command, which loads the ROS Master along with other essential
components”[7].

Nodes communicate through ROS by publishing messages to topics. A
message is a data structure that consists of data fields each defined by proper
standard primitive type (integer, float, etc.) or even arrays. Every user has

5



2. Background .....................................
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Figure 2.1: ROS graph architecture example

an option to either use standardized message structures like “odometry” or
“imu”. On top of that, there is a possibility to define custom messages very
easily by creating “.msg” files.

Lastly, it is important the ROS topics . Based on the ROS wiki the topics
“Topics are named buses over which nodes exchange messages. Topics have
anonymous publish/subscribe semantics, which decouples the production
of information from its consumption. In general, nodes are not aware of
who they are communicating with. Instead, nodes that are interested in
data subscribe to the relevant topic; nodes that generate data publish to the
relevant topic. There can be multiple publishers and subscribers to a topic.

Topics are intended for unidirectional, streaming communication. Nodes
that need to perform remote procedure calls, i.e., receive a response to a
request, should use services instead. There is also the Parameter Server for
maintaining small amounts of the state”[8]. Those topics are transported
via TCP/IP-based and UDP-based message transport. According to [8], the
desired transport method is negotiated by nodes at runtime.

The described architecture is shown in the 2.1 as a simple example. Node
“A” requests for publishing some message “M”. A topic “T” is created after
confirming with the master node but no data are being sent because there is
no subscriber. Then, if node B requests for subscription the two nodes are
“connected” with topic “T”.

2.2.2 Software development

With the knowledge of the ROS architecture, the implementation of new
functionalities on top of ROS is pretty straightforward. The users have
three options when it comes to the programming language as ROS currently
supports Python, C++, and JAVA. Each new functionality is presented
as a package which has a simple “package.xml” definition file where the
programmer defines new ROS nodes to be added into the system. Furthermore,

6



.............................2.2. The Robotic Operating System

it is important to mention that there are two building tools in ROS - catkin,
and rosbuild.

Our ROS project uses catkin to compile and build the packages and most
of the nodes are written in Python.

2.2.3 Recording files

Every implementation process consists of a debugging part. For simple repairs
only console logging is sufficient. But when it comes to deeper scrutiny, it is
useful to be able to simulate certain conditions or situations multiple times.
For this, ROS has rosbags. “Bags are typically created by a tool like rosbag,
which subscribe to one or more ROS topics, and store the serialized message
data in a file as it is received. These bag files can also be played back in ROS
to the same topics they were recorded from, or even remapped to new topics.

Using bag files within a ROS Computation Graph is generally no different
from having ROS nodes send the same data, though you can run into issues
with timestamped data stored inside of message data. For this reason, the
rosbag tool includes an option to publish a simulated clock that corresponds
to the time the data was recorded in the file.

The bag file format is very efficient for both recording and playback, as
messages are stored in the same representation used in the network transport
layer of ROS”[9]

2.2.4 Data visualisation

ROS package called rviz is a useful tool for 3D data visualization of the ROS
topics [10]. This tool helps significantly during the debugging process. I
have used it during the implementation stage of this thesis (see chapter 4).
Particularly, I used the data from the ROS node, which provides odometry
data to the position during my experiments. This node was developed by my
colleagues from F1/10 team. Moreover, I use ROS hector_slam package that
provides are mapping based on data from LiDAR [11].

2.2.5 Used packages

In this subsection, I provide the list of ROS packages that I used during the
second part of my work (see section 4.5). For clarification, these packages are
only related to my work. Our F1 / 10 model works with many other packages
that are not associated with this work. Therefore there are not listed here.. razor_imu_9dof - this package provides ROS driver for Sparkfun Razor

IMU 9DOF sensors. Moreover, it also contains the necessary firmware
that needs to be loaded onto the board. More about the IMU configura-
tion in section 4.5.1.

7



2. Background .....................................
. imu_filter_madgwick - this package is used as one of the methods to

filter the raw data from IMU. It works on a fusion algorithm which was
originally developed by a student as a part of his Ph.D. research and
later transformed into a ROS package. Even though it has received
thousands of downloads, it is currently unfortunately not maintained nor
updated [12].. vesc_to_odom - is a ROS package written in C++, provided by the
mit-racecar team [13]. The package takes data from VESC and computes
information about the robot odometry.

2.3 Model overview

This section serves as a quick overview of the vehicles hardware components
that are relevant to this thesis. Namely, the overview presents components
that are used for processing data and for car model’s perception. Figure 2.2
shows simplified graph of hardware connections.

RF 

transceiver

Sensors

Servo

Nvidia TX2

USB hub

Teensy

Auto/man

VESC

Figure 2.2: Simplified hardware connection overview.

2.3.1 Processing

. NVIDIA Jetson TX2 - All the processing and calculations related to the
algorithms developed on our car platform such as localization run on
NVIDIA Jetson TX2. It is a state-of-art embedded system [14]. It is
mounted on the car on an orbitty carrier board [15] which provides the
necessary interfaces to communicate with the Jetson like Ethernet etc.. Teensy 3.2 - is a USB-based microcontroller that comes with Cortex-
M4 96MHz central processing unit (CPU). Its purpose is to control the

8



................................... 2.3. Model overview

behaviour of the electronic speed controller, and SERVO of the car model
by received radio frequency (RF) signals coming from the antenna and
messages coming NVIDIA board using its build firmware.

2.3.2 Perception

. LiDAR - is the main on-car sensor used for perceiving the environment
surrounding. It uses the laser pulses to collect range data by receiving
the reflected light. Our car platform features LiDAR that is prescribed
by the F1/10 competition rules - Hokuyo UST-10LX. This LiDAR works
on 40 Hz scanning frequency with semiconductor laser diode light source.
It can measure from 0.02m up to the 10m range and 270◦ view angle
(± 40mm accuracy). The communication is through standard Ethernet
interface. The LiDAR data are mainly used for navigation algorithms.. Camera - is the second vision sensor of the car model. In this occasion,
the rules do not limit camera class. We use Intel RealSense Depth
Camera D435, which uses stereo vision to calculate depth. Specifically,
the built-in infrared projector is used to shoot irregular patterns of dots
which are later interpreted with the depth sensors. The vision range
is from 0.1m up to approximately 10m. Main advantages are output
frame rate up to 90fps, easy mounting, and global shutter type of sensor
providing simultaneous image scan. The communication interface is
USB-C cable.. IMU - is the key sensor of this thesis. The current competition rules state
no restrictions when it comes to this sensor. Therefore, we freely chose
to use SparkFun 9DoF Razor IMU M0. It can be divided into three sub
sensors - accelerometer, gyroscope, and magnetometer. It measures linear
acceleration, angular rotation velocity and magnetic field vectors along
its three axes. This IMU comes with onboard microprocessor Atmel’s
SAMD21G18A which is Arduino-compatible, 32-bit ARM Cortex-M0+
microcontroller.. VESC - is an open-source electronic-speed-controller designed by Ben-
jamin Vedder [16]. The VESC controls DC-brushless motor of the car
model. Controlling the VESC is done by pulse-width modulation (PWM)
signal from the computer unit (Teensy).

9



10



Chapter 3

Car model design

This chapter contains information about the procedure of model construction.
Firstly, I introduce the motivation for the construction of the new models
and bill of materials for hardware and electrical components. The second
part describes the designing of the printed circuit board (PCB) and chassis
boards.

In the end, the utilization of the new car models is briefly commented.

3.1 Motivation

The first ever F1/10 model in our research team was created in 2017 by
my colleague Martin Vajnar as a part of his master’s thesis [17]. This
original model was built based on the documentation provided by the f1tenth
organization [18]. This detailed, manual is undoubtedly an excellent start
for the newly formed teams; however, it is not much universal. For example,
more positions for LiDAR or camera can be beneficial in custom model
architectures.

The first requirement for the model draft was to have multiple LiDAR
positions since our model, uses algorithms based on data from it. Moreover,
the original design had rather a hectic cable setup, and the batteries powering
the electronics were in unstable positions on the car. Also, the original bill of
materials (BOM) mostly refers to parts that are only available overseas or
worse out of stock. Because of that, a BOM revalidation was made to find
easy-accessible parts that could be all bought within a few weeks at most.
Finally, the car power board which is used to “provide a stable voltage source
for the car and its peripherals since the battery voltage drops as the battery
runs out” [18] had several unused electrical components. Following that, my
goal was to remove those parts and design a new PCB less spacious on the
car chassis.
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3. Car model design ...................................
Name Description

Orbitty Carrier for NVIDIA Jetson TX2 Controller
Focbox Motor Controller - VESC Controller

Intel RealSense Depth Camera D435 Sensor
Teensy USB Board, Version 3.2 Controller
SparkFun 9DoF Razor IMU M0 Sensor

USB Hub Miscellaneous
Hokuyo UST-10LX Scanning Laser Rangefinder Sensor
Traxxas Slash 1:10 VXL 4WD TQi TSM RTR RC car

Traxxas Slash 1:10 VXL 4WD TQi RTR Mike Jenkins RC car

Table 3.1: BOM - hardware components.

Name Quantity Description

Polarized capacitor 4 100[nF ]
Non-polarized capacitor 10 100[nF ]
Non-polarized capacitor 2 330[nF ]

Polarized capacitor 2 330[µF ]
3-pin male header 8 -

Red LED 6 -
Resistor 6 360[Ω]
Switch 4 SLIDE SPDT 100 [mA] 12[V ]

DC/DC converter 2 30 [W ] 12[V ]
Term blocks 8 2.54 mm, 2pos.
IC reg. linear 2 12 to 8[V ] LDO

LiPo 3S battery 2 5100[mAh]
LiPo 2S battery 2 4000[mAh]

Table 3.2: BOM - electrical components.

3.2 PCB design

The original design of the power board was too big to fit on the chassis next
to the NVIDIA JETSON [19]. Assuming we do not want to widen the chassis
board due to stability issues and unnecessary additional mounting, the perfect
opportunity to fit on the board the previously mentioned components next
to each other was to shorten the PCB design. As mentioned in the previous
section, after mounting the car based on the tutorial [20] it was discovered
that some of the PCB components were not necessary. It was namely the
LIPO protection, several thermal blocks and several switches. The new design
was derived from the previous PCB provided by the organizing team and was
made using Altium designer software. The final design is in figure 3.1.
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Figure 3.1: Power board design.(dimensions in mm)

3.3 Chassis boards design

The chassis design was the second step after getting the new PCB made. At
the start, I used a drawing in AutoCAD format .dwg from the organizers [20]
as a template. To get new possible positions for the LiDAR, I have created a
separate board for its mounting. It is designed in a way so that the LiDAR
could be put either on top of it or upside down. Furthermore, I did several
changes to the board that is mounted directly to the car. Namely, I changed
the positions for the IMU, the power board, and the VESC. An important
task was both putting the VESC under the board and moving the PCB next
to the NVIDIA JETSON, which made more space on top of the board. The
more space there is left, the more future improvements can be made without
much work like adding new sensors or changing the positions of the current
ones.

In the second step, I have created a different board for our second car. This
car has a differently shaped chassis, which is also higher from the ground
compared to the first car. Because of that, I had to do a slightly different
design of the board. The most significant advantage of the second car is that
all of the elements could easily fit under the board, creating even more space
on top of it.

All of my designs are in D.1, D.2, D.3, D.4 D.5 and respectively and are
part of the CD contents as well. The boards are made of 4 mm plexiglass
and shaped with laser cut.
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3. Car model design ...................................

Figure 3.2: New F1/10 model.

3.4 Car model integration

All of the necessary equipment is described in tables 3.1 and 3.2. One of the
constructed models 3.2 was used in master’s thesis of my colleague[21] from
the f1tenth project. The work required a fully functional model with high
computational requirements which proved full functionality of the car model.
Moreover, the car has also been used during student semestral projects.
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Chapter 4

Slip detection

The ability to move the driving responsibility from the driver to the vehicle
controller has been one of the most significant challenges of the 21. Century.
During this process, we focus, among others, on connecting common Active
Safety Systems (ASS) [22] that are already available on standard cars like
Anti-lock Braking System (ABS), Electronic Stability Control (ESC) and
many others so that these systems would be able to produce one controller
creating an autonomous vehicle.

Slip estimation is one of the challenges in the vehicle control field. Its
estimation and prevention is an important step towards controlling the vehicle
dynamics in terms of suitable yaw rate, avoiding dangerous conditions, or
improving car performance. Moreover, slip plays an important role during
vehicle localization and position estimation.

In this chapter, the slip detection techniques are discussed. Firstly, I
introduce the types of vehicle slips. The longitudinal slip is only described
theoretically with some mentioned estimation methods found in the literature.
Afterwards, the main focus moves on the side-slip estimation, introducing
common approaches towards it. Finally, I describe and evaluate the imple-
mentation of two algorithms dealing with the side-slip estimation.

4.1 Longitudinal slip/Wheel slip

The wheel slip is a well-known vehicle phenomenon. Its measurement/detection
is, for example, a key for the ABS systems which prevents the tires from
locking during the braking maneuver. Generally, we can divide the wheel-slip
motion into two situations - during acceleration and braking.

The first situation typically occurs during high acceleration maneuver. The
transformed wheel force that is pushing the vehicle is higher than road friction
transformed force. This situation puts the wheels into pure spinning motion
without noticeable longitudinal movement.

On the other hand, during aggressive braking maneuver one could observe
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4. Slip detection ....................................
that the wheel goes into a locked mode when the vehicle slips due to the
inertial force of the car being higher than the static friction force of the soil.
We can define the longitudinal slip ratio with the equation as follows [23]:

λ =
{
rω−vx
rω , rω > vx, for acceleration

rω−vx
vx

, rω < vx, for deceleration
(4.1)

where vx is the longitudinal vehicle velocity of the vehicle centre of gravity
(CG), r is the wheel radius, and ω is the angular velocity of wheels.

There is a wide range of motivational aspects to estimate and control
the wheel slippage. Wheel slippage can, for instance, significantly affect
the odometry predictions of the vehicle since it gives the wheel encoders an
accumulative error. Another unwanted impact could be energy consumption
when wheel slippage occurs during acceleration. All in all, the wheel slippage
interferes with many automation problems such as localization and position
estimation algorithms and that is why it has gained considerable interest.

I have reviewed several approaches to wheel slip detection. In [24], the
proposed algorithm is a predictive algorithm that takes the motor armature
current and wheel velocities as input. The authors take the wheel-soil interac-
tion into account only partly. However, their algorithm is simple and showed
promising results. Vinkó and Ákos [25] propose a solution using extended
Kalman filtration (EKF) on data from inertial sensors that are placed on
each wheel. In my opinion, the most promising approach was used in [23].
The method is based on dynamic vehicle modeling. The advantage is that
only the longitudinal dynamics are taken into account why simplifies the
model significantly. As expected, the dynamic approach showed good results,
following the measured or expected values.

4.2 Lateral slip/ Side-slip

The second type of vehicle slip is side-slip. It is defined as follows:

β = arctan
(
Vy
Vx

)
(4.2)

where the Vy and Vx are the lateral and longitudinal velocity respectively,
and β is the side-slip angle. In common words, the vehicle side-slip angle
(VSA) is the angle between the vehicle heading and the velocity vector CG.

VSA estimation plays a key part in improving vehicle stability performance.
More specifically, “nowadays, vehicle control systems such as rear wheel
steering, active steering, direct yaw moment control through active differentials
or torque vectoring, advanced traction controls, and the above mentioned ESC
(in all its forms) are used in conjunction to extend the vehicle performance
and stability envelopes.”[26]

Apart from the stability control, one of the main reasons for studying the
VSA estimation is the lack of sensors for its measurement. Even though

16



................................. 4.3. Common approaches

there are ways of measuring the VSA, these sensors lack reliability (GPS), or
the cost is way too high for commercial cars not to mention our car model
(optical sensors).

In our case, the goal is to summarize and study the VSA estimation
methods and also to implement one of the approaches to improve the car
model perception which could be possibly used later during the next F1/10
competition by fusing the estimates with other car model control algorithms.

4.3 Common approaches

As mentioned in the previous section, the biggest problem with the VSA
measurement is that a suitable sensor in terms of cost, reliability, accuracy,
and robustness to environmental conditions does not yet exist [26, 27, 28].
For our car model, the GPS measurements are not usable because the testing
and the competition are indoors. Unfortunately, even the indoor GPS which
we possess does not provide measurements with sufficient accuracy and is
thus unusable.

The following sections 4.3.1 and 4.3.2 introduce two most common ap-
proaches towards VSA estimation[28].

4.3.1 Observer-based estimation

Observer-based estimation is the most used method for VSA estimation [26].
It relies on the knowledge of the vehicle model as a reference. Those models
could be either kinematic or dynamic (see section 4.4 for more details about
vehicle models).

The main drawback of this method is its computational burden, which
depends on the complexity of the vehicle model and also on the choice of
the observer. On the other hand, this method provides better results and is
far more robust than the second method (see section 4.3.2). The literature
overview on the VSA estimation from Chindamo, Lenzo and Gadola [26]
recognizes three main observers: the Luenberger observer (LO), the sliding-
mode observer (SMO), the Kalman Filter (KF) and their variants. LO and
SMO are deterministic observes, which means that these observers deal worse
with modelling errors and noises of the input variables. Kalman-filter-based
observes are more complicated to implement but can deal better with the
stochastic behaviour of the model and its variables.

This thesis includes the implementation of two observer-based methods -
LO and extended Kalman filter (EKF) 4.5).
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Figure 4.1: Typical neural-network design for VSA estimation.

4.3.2 Neural network-based estimation

Neural network-based estimation is the second recognized [26] method. Its
biggest advantage is that it does not need any specification for the car model.
Figure 4.1 shows typical design of such network. It only takes the car as
a black box system and uses just relationships between input and output
variables taken from low-cost sensors to estimate the VSA.

Nonetheless, this approach still has several major drawbacks, the biggest
being probably its need to redo the training procedure every time the en-
vironment changes. Although it is being considered as the second choice
for VSA estimation, the interest in this approach has recently risen, being
encouraged by the availability of high-speed computational units. One of the
the examples can be found in [29] or [30].

4.4 Vehicle modelling

Vehicle modelling is considered as one of the most important tasks for any
car development. The main motivation for modelling is that with the model,
simulations, testing and implementation become easy, faster and more avail-
able.

The model complexity can vary a lot, depending on the chosen tasks that
are to be accomplished. The majority of the vehicle models that have been
designed are either domain specific, highly complex, or generalized. One of
the most common model simplifications is the assumption of a single track
model or bicycle model, which is also used in this thesis. “The modelling is
based on a series of simplifications:

. The velocity of the vehicle’s centre of gravity is considered to be constant
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...................................4.4. Vehicle modelling

along the longitude of its trajectory.. All lifting, rolling and pitching motion will be neglected.. The vehicle’s mass is assumed to be concentrated at the centre of gravity
S.. The front and the rear tires will be represented as one single tire on each
axle. , The imaginary tire contact points V and H, which the tire forces
are to act upon, lie along the centre of the axle.. The pneumatic trail and the aligning torque resulting from the slip angle
of the tire will be neglected.. The wheel-load distribution between front and rear axle is assumed to
be constant.. The longitudinal forces on the tires, resulting from the assumption of a
constant longitudinal velocity, will be neglected”[31].

In this section, I describe two commonly considered vehicle modelling ap-
proaches - kinematic and dynamic.

4.4.1 Kinematic model

Kinematic modelling is, compared to the dynamic, much simpler because the
vehicle motion has no reference to forces. Therefore, many parameters and
forces are not considered, such as those regarding tires. That simplifies the
model a lot because estimating the tire forces is a non-trivial task.

On the contrary, the simplifications have their drawbacks. Apart from
the fact that the model is less accurate, “the main issue of VSA estimation
using a kinematic model is that it does not work when the vehicle yaw rate
is relatively small or zero”[26]. Because of that, a bare kinematic model
without any modification would not be sufficient. The chosen methods for
VSA estimation (see section 4.5) are based on kinematic models shown in 4.2.

CGVx

Vy

x

δ β

ω

Figure 4.2: Kinematic bicycle model.

4.4.2 Dynamic model

Dynamic models provide a far more accurate description of the vehicle. On
the other hand, the modelling of highly non-linear tire models could be very
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4. Slip detection ....................................
tricky. The results of the VSA estimation can be significantly worsen if the
tire model does not reflect the actual conditions. Moreover, parameters like
tire wear and road conditions can also have negative effects on the estimation
if not modelled. These issues are commonly addressed and modelled with
linear models such as Pacejka’s.

4.5 Implementation

This section describes the steps during the VSA estimation algorithm imple-
mentation. At first, I introduce the methods for IMU noise filtration. Then,
the car model odometry model is briefly explained. In the end, I propose two
VSA estimation methods.

4.5.1 IMU calibration and noise filtering

As specified in 2.3.2, the SparkFun 9DoF Razor IMU M0 (4.3) is used on
the car platform. Before using the sensor, it is necessary to flash the internal
SAMD21 microprocessor with a firmware. That is done with Arduino IDE.
The used firmware is a part of the razor_imu_9dof (see 2.2.5) ROS package
that handles the data from IMU and publishes the raw data in topic “/imu”.

The second step before using the IMU is its calibration. Thanks to the ROS
wiki [32] the process of calibration is pretty straightforward. The calibration
is done for each sub-sensor accelerometer, gyroscope, and magnetometer
separately. The goal is to find the influence of gravity on those sensors and
edit the IMU configuration file accordingly.

The third step in the configuration is noise filtration. In the models that are
introduced later in this thesis I use three outputs variables of the IMU sensor
- yaw ωz[rad/s] , longitudinal acceleration Ax[m/s2] and lateral acceleration
Ay[m/s2]. Because of that, I only focused on filtrating those data. Three
filtration methods are introduced in this thesis:

. Low-pass filter - an exponential moving average (EMA) filter is used.
The output of the filter is a weighted sum of the new sensor measurement
and the previous filter output value. It is defined as [33]:

x(k)filtered = (1− α) ∗ x(k − 1)filtered + αxsensor (4.3)

where α <0,1> is the filtering coefficient..Madgwick filter - is a filter that is a part of ROS package imu_filter_madgwick.
The package is based on of code on code by Sebastian Madgwic [34]..Kalman filter - the filter is designed so that the state vectors are taken
as the measurements from the IMU that I want to filter. Firstly, I
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................................... 4.5. Implementation

define the state-transition matrix Ak, the observation matrix Hk, the
covariance matrix of the process noise Qk and the covariance matrix
of the observation noise Rk, the observation zk and the measurement
states xk_raw. Covariance matrices Qk and Rk were tuned during the
implementation of the non-linear observer (see sub-section 4.5.2).

xk =
[
Ax Ay ωz

]T
(4.4)

Ak =

1 0 0
0 1 0
0 0 1

 , Hk =

1 0 0
0 1 0
0 0 1

 (4.5)

Qk =

1 0 0
0 1.5 0
0 0 0.75

 , Rk =

1 0 0
0 1 0
0 0 1

 (4.6)

xk_raw =
[
Ax_raw Ay_raw ωz_raw

]T
(4.7)

zk = Hkxk_raw (4.8)
The prediction phase consists of two computations. We predict the state
vector and the error covariance using the previous computations:

x̂k|k−1 = Akx̂k−1|k−1

Pk|k−1 = AkPk|k−1A
T
k +Qk

(4.9)

Since the dynamics of the change of the state vectors are unknown
we take the previous filtered value as a guess (Ak and Hk are identity
matrices). In this model the Kalman filter behaves practically like an
enhanced low-pass filter.
The second step is the update of the Kalman gain Kk, the measurement
residual ỹ, the innovation covariance matrix Sk, the error covariance
matrix estimate Pk|k and the state estimate x̂k|k:

ỹ = zk −Hkx̂k|k−1

Sk = HkPk|k−1H
T
k

Kk = Pk|k−1H
TS−1

k

Pk|k = (I −KkHk)P̂k|k−1

x̂k|k = x̂k|k−1 +Kkỹk

(4.10)

4.5.2 Non-linear observer

The vehicle state observer is based on work of Selmanaj, Corno, Panzani and
Savaresi [28]. Firstly, we need to define the kinematic model 4.2 as follows:

Ax = V̇x(t)− ωz(t)Vy(t)
Ay = V̇y(t) + ωz(t)Vx(t)

(4.11)
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(a) : IMU bottom view. (b) : IMU top view.

Figure 4.3: IMU.

where Ax and Ay[m/s2] are the longitudinal and lateral accelerations re-
spectively, Vx and Vy[m/s] are the longitudinal and lateral velocities and
ωz[rad/s] is the yaw rate.
The equations in formula 4.11 can be rewritten into state-space model:[

V̇x
V̇y

]
=
[

0 ωz(t)
−ωz(t) 0

]
︸ ︷︷ ︸

A

[
Vx
Vy

]
+
[
1 0
0 1

]
︸ ︷︷ ︸

B

[
Ax(t)
Ay(t)

]
(4.12)

Based on this kinematic model the following state observer was introduced in
[35]: [ ˙̂

Vx
˙̂
Vy

]
= (A−KC)

[
V̂x
V̂y

]
+B

[
Ax(t)
Ay(t)

]
+KVx (4.13)

K =
[
2α|ωz(t)| (α2 − 1)ωz(t)

]T
(4.14)

where V̂x and V̂y are the longitudinal and lateral velocity estimates, Vx is
a measured reference of the longitudinal velocity that is taken from the
car model odometry, and α is a constant parameter. This observer secures
stability during cornering. However, it has two major drawbacks:

. “Longitudinal velocity is updated only on cornering, although on straight
maneuvers the reliability of the velocity measure through wheel angular
velocities is higher. For straight maneuvers, the observability is lost. In these conditions, the
observer trivially integrates the accelerations. Small measurement offsets
and errors combined with long straight maneuvers, which are common,
can cause the filter divergence”[28].

The main contribution of [28] is the modification of the state matrix A and
the observer gain matrix K.
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Figure 4.4: Heuristic force computation.

The state matrix includes new element F (t) which is a heuristic force.
Its main purpose is to drive the lateral velocity estimation(and thus the
side slip angle estimate) to zero during straight driving. “The scheduling of
F is based on the idea that, as the vehicle curves, the kinematic model is
observable and the closed loop observer performs correctly; on the other hand,
during straight driving, F should be large to drive the side-slip estimation to
zero”[28]. It has two components Fδ and Fωz , which are computed from the
corresponding measurements of steering angle and yaw rate. This stabilizing
force is computed as bivariate Gaussian Distribution with formula 4.15:

Fi = e
−0.5

(
i2
σ2
i

− di
2

σ2
di

)
i = ωz, δ (4.15)

where σ is the standard deviation. The derivatives are approximated using
backward rectangular rule. The frequency of the published data from IMU is
50 Hz so the time step T = 0.02[s]:

ẋ = x[k]− x[k − 1]
T

(4.16)

The observer gain matrix is redesigned with three parameters α0, α1 and
α2. α1 and α2 multiplicated with the yaw rate update the observer state
on cornering while the α0 provides the update of the longitudinal velocity
estimate V̂x also during straight driving.

The redesigned observer is defined as follows:

A =
[

0 ωz(t)
−ωz(t) −F (t)

]
, C =

[
1 0

]
[ ˙̂
Vx
˙̂
Vy

]
=
[
−α0 − α1|ωz(t)| ωz(t)
−(α2 + 1)ωz(t) −F (t)|

]
︸ ︷︷ ︸

(AKC)

[
V̂x
V̂y

]

+B

[
Ax(t)
Ay(t)

]
+
[
α0 + α1|ωz(t)|

α2ωz(t)

]
︸ ︷︷ ︸

K

Vx

(4.17)
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Figure 4.5: Observer model.

In the last step, I discretized the model given by 4.17 using Euler approxima-
tion method:

x[k + 1] ≈ (I +AT )x[k] + TBu[x] (4.18)

Then the discretized model is defined as:[
V̂x[k + 1]
V̂y[k + 1]

]
=
[
1− α0 − α1|ωz[k]| ωz[k]
−(α2 + 1)ωz(t) 1− F [k]|

]
T

[
V̂x[k]
V̂y[k]

]

+ TB

[
Ax[k]
Ay[k]

]
+ T

[
α0 + α1|ωz[k]|

α2ωz[k]

]
Vx

(4.19)

The car model rolls and gravity acceleration can significantly influence the
lateral acceleration measurement. Firstly, we address the offset estimation.
Formula 4.20 sums two equations. The first describes the dynamics of the
lateral velocity while the second equation is the sensor output model:{

V̇y(t) = Ay(t)− ωz(t)Vx(t)
Aoffy (t) = Ay(t) + ∆Ay(t) + εy(t)

(4.20)

where Aoffy (t) is the processed sensor output, Ay(t) is the real lateral acceler-
ation, ∆Ay(t) is a time-varying sensor offset and εy(t) is a zero mean noise.
Combining the presented formulas in 4.20 we obtain the equation for sensor
offset:

∆Ay(t) = Aoffy (t)− ωz(t)Vx(t)− V̇y(t)− εy(t) (4.21)

We can simplify 4.21 with two assumptions. Only mean values of the quantities
in 4.21 would be considered thus we can neglect εy(t) which has zero mean by
definition. Secondly, “the mean values of the derivative of the lateral velocity
on a certain time interval can be related to the vehicle lateral velocity with
the following”[28]:

E[V̇y] = 1
tf − t0

∫ tf

t0
V̇y(t)dt = Vy(tf )− Vy(t0)

t′f − t0
(4.22)

Assuming a generic route with straight finishing and starting the derivative
of V̇y is zero on average and we can ignore it. The final equation for offset
estimation is defined as:

∆Ay(t) = Aoffy (t)− ωz(t)Vx(t) (4.23)
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Lastly, I address the gravity compensation. The formula is taken from [28]
and is derived from the vertical car dynamics. The roll angle is computed
from the quaternions that are part of IMU output.

Aoffy (t) = Ay_measure − gsin(θ) (4.24)

where g is the gravitational acceleration and θ is the roll angle.
The overall design of the observer is shown in 4.5. The estimation of VSA at
each step k is computed as:

β̂[k] = V̂y[k]
V̂x[k]

(4.25)

4.5.3 Extended Kalman filter

The second implemented approach is EKF based on [36]. Again I assume the
kinematic bicycle model defined by state space model:

ẋ = Ax+Bu+Gw

A =
[

0 ωz
−ωz 0

]
, B =

[
1 0
0 1

]

G =
[
−Vx −1 0
Vy 0 −1

]
, w =

[
ωz,n Ax,n Ay,n

]T (4.26)

where ωz,n, Ax,n and Ay,n are the yaw rate, longitudinal acceleration and
lateral acceleration measurement noises. G and w are the disturbance input
matrix and the process noise vector respectively.

However, the process noise vector is unknown and thus neglected:

ẋ = Ax+Bu (4.27)

Since the car model uses sensor with output rate of 50 Hz the kinematic
model is discretized using forward rectangular rule (T = 0.02 [s]):

(z − 1)
T

x = Ax+Bu (4.28)

The discrete state-space model is obtained as:

xk+1 = Φkxk + Γuk + Γ1wk

Φk =
[
−Vx −1 0
Vy 0 −1

]
,Γ =

[
T 0
0 T

]
, Γ1 =

[
−Vx|kT −T 0
−Vy|kT 0 −T

]
(4.29)

Because Γ1 contains the velocity states we define the EKF estimate as follows:

x̂k+1 = Φkx̂k + Γuk + Lk(yk − Cx̂k) (4.30)
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4. Slip detection ....................................
where Lk is the estimation Kalman gain matrix defined as:

Lk =
{
PkH

TR−1, |ωz| ≥ ωz,th
0, |ωz| < ωz,th

(4.31)

where R is the variance of measurement noise and Pk is the estimate covariance
matrix described as:

Pk = Mk −MkH
T (HMkH

T +R)−1HMk (4.32)

finally the matrix Mk matrix is the update law for Pk:

Mk+1 = ΦkPkΦT
k + Γ1,kQΓT1,k (4.33)

in which the Qk is the process noise covariance matrix.
As mentioned before, the kinematic model becomes unobservable when the
yaw rate it too small (smaller than the threshold value). The model in [36]
proposes lateral velocity estimate based on cornering stiffness parameters of
the tyres which are unknown in our car model. Therefore, during the occasion
of potential unobservability the estimate for the lateral velocity from the
non-linear observer is used (see section 4.5.2).

The estimate of VSA is computed at every step as follows:

β̂k = arctan
(
V̂y,k

V̂x,k

)
(4.34)

4.5.4 ROS integration

The two presented algorithms are managed in one ROS package called spark-
fun_9do_razor_m0. The package is included on the CD as an attachment.
The architecture overview of the implemented node is shown in 4.6.

Teensy

VESC

IMU

/pwm_high

pwm_high

/imu

Imu

/odom

Odometry

slip_angle

slip_angle

ekf

IMU 

madgwick

/imu/data

Imu

/slip_angle

slip_angle_msg

/slip_angle

slip_angle_msg

Figure 4.6: Graph of the ROS implementation architecture.

The NL observer receives data from VESC which are handled through
vesc_to_odom package (see section 2.2.5), data from IMU and data from
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teensy. The data from Teensy consist constants of PWM to calculate the
steering angle.

The EKF observer works with data from imu and also receives data
from the NL observer about the lateral velocity. That is wrapped inside
slip_angle_msg.

4.6 Evaluation

This section documents the evaluation of the above-mentioned methods that
were implemented. Firstly, I compare the IMU filtration methods. Secondly,
results from four proposed experiments are shown and described. Table 4.1
shows tuning parameters of the non-linear observer and threshold value for
the vehicle yaw rate. Those parameters were found experimentally. More
specifically, the parameters ao-a2 were found by tuning the difference between
the longitudinal velocity estimate and the longitudinal velocity from the
odometry.

Unfortunately, during those experiments, no reference to the vehicle side-
slip angle is available.

Parameter Value Unit

a0 5 [-]
a1 12 [-]
a2 7.5 [-]
ωz,th 0.1 [rad/s2]

Table 4.1: Tunning parameter values.

4.6.1 IMU noise filtering

The first experiment is a simple case when the car is standing still. The
values for longitudinal acceleration and lateral acceleration are presented
in 4.7. We can see that the best result provide the Kalman filter and the
low-pass filter while the Madgwick filter almost copies the noisy output from
IMU. Because of that, this filter is not later used. The yaw rate during this
experiment was not significantly noisy; thus, is not presented. Moreover, the
lateral acceleration shows −0.05 [m/s2] offset. Both of the mentioned models
4.5.2 and 4.5.3 are updated with this information.

4.6.2 Straight drive

The second experiment is straight drive maneuver. The longitudinal velocity
and the steer angle are fixed using ROS node which can interpret user-specified
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Figure 4.7: Longitudinal and lateral acceleration - stopped car.

driving values (velocity, steering angle) values and send them to the Teensy
controller.

0 1 2 3 4 5

Time [s]

-20

-10

0

10

20

A
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

Longitudinal

Raw

LP fil.

KF

0 1 2 3 4 5

Time [s]

-0.5

-0.4

-0.3

-0.2

-0.1

0

A
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

Lateral

Raw

LP fil.

KF

0 1 2 3 4 5

Time [s]

0

2

4

6

V
e

lo
c
it
y
 [

m
/s

]

NL

EKF

Odometry

0 1 2 3 4 5

Time [s]

-1

-0.5

0

0.5

V
e

lo
c
it
y
 [

m
/s

]

NL

EKF

Figure 4.8: Longitudinal and lateral measurements and estimations - straight
drive maneuver.

The vehicle model accelerates to approximately three seconds and is then
stopped manually by the RF controller. We can see from the left figures in
4.8 that the longitudinal acceleration and the longitudinal velocity have the
expected courses. Mainly, both estimates (NN and EKF) follow the reference
taken from odometry.
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Figure 4.9: Angular measurements - straight drive maneuver.

On the contrary, the lateral velocity is highly off. Ideally, the lateral
acceleration and the estimate for the lateral velocity (down-left graph) would
be near zero, but IMU shows insignificantly high values, even though the
raw data are modified with the offset and gravity compensations. This
could be caused by several aspects. Possibly, the offset estimation or gravity
compensations are not properly calculated. Moreover, the mounting correction
of the IMU is not included in the model, which could also be a possible
explanation for those outputs.

This erroneous behaviour of the lateral velocity estimation significantly
influences the side-slip angle estimation shown in 4.9. During breaking
maneuver, the lateral velocity estimate exceeds the longitudinal velocity,
which causes divergence of the non-linear observer, and the observability
is lost. The EKF-based observer behaves more realistic but still shows a
not negligible angle. That is because when the yaw rate is smaller than
0.1 [rad/s] threshold value the estimate for the lateral velocity is taken from
the non-linear estimation (see section 4.5.3).

Figure 4.9 also shows the yaw rate and the heuristic force. The scheduling
is done right because when the yaw rate increases the force converges to zero,
which is correct behaviour (see section 4.5.2).
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Figure 4.10: Longitudinal and lateral measurements and estimations - fixed
circling maneuver.

4.6.3 Circling without drift

The second test is a circling maneuver. Again, the velocity and the steering
angle are fixed with special ROS node. The values are chosen so that the car
would not slip and smoothly rotate in the same circles. Fig 4.10 shows the
measurements and estimations of accelerations and velocities, respectively.
Down left figure shows that the longitudinal velocity estimate converges to
the odometry measurements. On the other hand, the EKF estimation is
highly oscillative for both-axis velocities, and thus the slip-angle estimation
behaves the same way.

For the non-linear observer, the disturbing factor of the side-slip estimation
is again the lateral velocity which reaches high values for a relatively small
turn.

Figure 4.11 documents, among others, the lateral slip angle estimation.
The EKF estimation is unfortunately unusable as the information is lost with
the velocities estimation error. The non-linear shows more realistic behaviour,
even though the angle to which the estimation converges is around 70 deg,
which is very high. This possible explanation for this could be the before
mentioned neglected mounting correction. The IMU is mounted closer to the
front wheels than to the back ones. Thus the estimation indicates more the
lateral slip angle of the front wheels than of a whole vehicle.

Finally, 4.11 shows the fixed steering angle, the heuristic force, and the yaw
rate. Again, we can confirm that the heuristic behaves as it should; when the
yaw rate or steering angle differ from zero, it should converge to zero.

30



......................................4.6. Evaluation

0 5 10 15

Time [s]

-4

-3

-2

-1

0
A

n
g
le

 [
°]

Steering angle 

0 5 10 15

Time [s]

-100

-50

0

50

100

A
n
g
le

 [
°]

Slip angle 

NL observer

EKF

0 5 10 15

Time [s]

0

0.5

1

N
 [
k
g
*m

*s
-2

]

Heuristic force F

0 5 10 15

Time [s]

-2

-1.5

-1

-0.5

0

A
n
g
u
la

r 
v
e
lo

c
it
y
 [
ra

d
/s

2
]

Yaw rate 
z

Raw

LP fil.

KF

Figure 4.11: Angular measurements- fixed circling maneuver.
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Figure 4.12: Longitudinal and lateral measurements and estimations - track lap.

4.6.4 Track lap

This experiment is one track lap at a track built in our research centre (map
of track in 4.14b). During this experiment, the car model is controlled with
the RF controller.

Although the floor in the laboratory where the test was run is very slippery,
the lateral slip angle from the non-linear estimator is not very accurate. In
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Figure 4.13: Angular measurements - track lap.

particular, when comparing the values from 4.13 of the slip angle and the
yaw rate or steering angle, the estimate is very “slow” and does not converge
to zero when the car is in straight drive motion.

The EKF estimator shows false values, specifically for the longitudinal
velocity estimation. Because of that, the estimation of the side-slip angle
cannot be taken as valid.

4.6.5 Circling with drift

In this experiment, the car model is controlled manually with the RF
transceiver. The velocity and steering are higher than in the previous similar
experiment (4.6.3) making the circle trajectory to extend as the car model is
influenced by the side-slip (see 4.14b).

As shown in 4.16, the car model is circling approximately twenty seconds
to the right and then about ten seconds to the left. The VSA estimation from
the NL observer is stable. However, it converges to high values. That could
be influenced by the mounting of the IMU, which may be too front-positioned.
Namely, we can see in 4.15 that the values of the lateral velocity estimate are
again very high.

The EKF observer shows no valuable response from which we could make
any conclusion. During experiments with straight driving motion, the assump-
tion was that the lateral velocity from the NL observer influences the EKF
so much that it can cause its divergence. However, during strictly turning
motion, the two observers are not connected at all. That means that the
EKF is probably badly tuned or there is a bug in the implementation.

The heuristic force corresponds with the yaw rate and steering angle as it
should.
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(a) : Path visualization of the vehicle model
during track lap.

(b) : Path visualization
of the vehicle model dur-
ing circle drifting.

Figure 4.14: Maps of the experimental environment with car model visual
reference. Visualized with RViz.
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Figure 4.15: Longitudinal and lateral measurements and estimations - circling
with drift.
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Figure 4.16: Angular measurements- circling with drift.
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Chapter 5

Conclusion

The aim of this thesis was to construct and modify two new models for the
F1/10 competition and for other research purposes. These modifications can
be divided into two parts - mechanical and software. As the car model was
explicitly built for the competition, the first step for both of these parts was
to get familiar with the competition rules.

Firstly, I worked out a new design for two unique car models. These
designs included remodelling of the power board and remodelling of the
chassis boards. All modifications provided more space on top of the car which
met the requirements for more possible positions for sensors on top of it.

The second part of this thesis focuses on research on vehicle slipping
motion. The aim was to familiarize with the slipping estimation problem and
to propose and implement estimation algorithm. I have implemented two
methods on side-slip estimation - NL observer and EKF observer. During the
process I had to study the car platform itself from hardware (IMU, Teensy
etc.) to software (ROS) components. Mainly, the IMU configuration and
noise filtering was highly studied, tested and described in the thesis.

Then, the observes were tested on set of experiments in our research
laboratory. These tests were properly documented and depicted. The NL
observer showed promising results even though it was based on a simple
kinematic model. On the other hand, the EKF observer was not successfully
implemented, partially because the original EKF observer was modelled for
more dynamic approach.

To summarize, this thesis contributes to the F1/10 project of our research
team with two new vehicle models, IMU configuration overview and knowledge
base for on-the-vehicle VSA estimation.

5.1 Future work

This chapter introduces several improvements that could be done to enhance
the model and the implemented methods used for VSA estimation. The main
sensors that could enhance the estimation are:
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5. Conclusion......................................
. Ultrasonic sensors.Wheel velocity sensors. IMU

Mainly, the wheel velocity sensors could provide better longitudinal velocity
estimation. Other possibility, might be in adding more LiDARs or using
ultrasonic sensors to improve the car model localization.

Furthermore, the main improvements could be done in modelling of the
car. More specifically, the dynamic approach could be used to improve the
card model and its control.

Finally, the used inertial measurement unit (see section 2.3.2) proved to be
very inaccurate. More accurate IMU sensor would be key improvement to
the algorithms presented in this thesis.
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Appendix B

Glossary

Acronym Meaning

ABS Anti-lock Braking System
ASS Active Safety Systems
CG Centre of Gravity
CPU Central Processing Unit
EKF Extended Kalman Filter
ESC Electronic Stability Control
GPS Global Positioning System
IMU Inertial Measurement Unit
LiDAR Light Detection And Ranging
LO Luenberger Observer
LP Low-pass
NL Non-linear
PCB Printed Circuit Board
PWM Pulse-Width Modulation
RF Radio frequency
SMO Sliding-Mode Observer
USB Universal Serial Bus
VSA Vehicle Side-slip Angle
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Appendix C

CD contents

Directory name Description
/thesis.pdf Bachelor thesis in pdf format.
/code/sparkfun_9dof_razor_m0/ ROS package including two pre-

sented algorithms as ROS nodes writ-
ten in python.

/chassis_boards/ All Autocad drawings of chassis
boards.

/pcb/ PCB designs of power board - origi-
nal and new for comparison.

/videos/ Illustrative videos of the au-
tonomously driven experiments.
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Appendix D

Chassis boards design
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D:\school\projekt\bachelor_thesis_src\chassis\CHASSIS_IMU.dwg, 04.05.2019 22:25:24, AutoCAD PDF (High Quality Print).pc3

Figure D.1: IMU board design. (dimensions in mm)
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D:\school\projekt\bachelor_thesis_src\chassis\CHASSIS_LIDAR.dwg, 04.05.2019 22:26:03, AutoCAD PDF (High Quality Print).pc3Figure D.2: LiDAR board design. (dimensions in mm)
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D:\school\projekt\bachelor_thesis_src\chassis\CHASSIS_VESC.dwg, 04.05.2019 22:25:08, AutoCAD PDF (High Quality Print).pc3

Figure D.3: VESC board design. (dimensions in mm)
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Figure D.4: Board design for the smaller car model.(dimensions in mm)
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Figure D.5: Board design for the bigger car model.(dimensions in mm)
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