
Master thesis

Czech

Technical

University

in Prague

Faculty of Electrical Engineering

Department of Control Engineering

Converter for Simulation
Scenarios of Automotive
Control Units

Leoš Mikulka

May 2015

Thesis supervisor: Ing. Michal Sojka, Ph.D.

ii

Acknowledgment

Let me thank my supervisor Ing. Michal Sojka, Ph.D. for his professional
guidance and helpful recommendations during the course of this work.

Furthermore, I would like to thank Ing. Milan Mráz for his willingness
and useful advice, primarily from the technical point of view.

Besides, I would like to send my last thanks to all other around me who
contributed with even a little piece of advice and supported me through
all the time.

iii

iv

Abstract

The main goal of this diploma thesis was the development of a converter
for simulation scenarios of electronic control units. The thesis mainly deals
with the simulation of a type rest-bus. The overview of available software
tools for testing and development of automotive control units is provided.
The rest-bus simulation representing the control of a head unit has been de-
veloped for two specific tools – Vector CANoe by the Vector company and
PROVEtech:TA by the MBtech Group company. Consequently, the con-
verter ensuring mainly the conversion of testing scripts and basic graphical
user interface from CANoe to PROVEtech:TA has been developed. Test-
ing scripts can be converted from CAPL language to WinWrap Basic and
C language. The whole conversion process as well as general usage of the
developed tool are described in this document. The thesis was developed in
a cooperation with company MBtech Group. The conversion of simulation
scenarios has been successfully tested on developed rest-bus simulations
for the head unit, which was provided by MBtech. The testing process
showed functional behavior of translating various simulation scripts from
the CAPL language to WinWrap Basic and C. The modularity of the tool
enables adding conversions to different tools.

Keywords

rest-bus simulation; electronic control units; converter; open-source

v

vi

Abstrakt

Hlavńım ćılem této diplomové práce byl vývoj převodńıku simulačńıch
scénář̊u automobilových ř́ıdićıch jednotek. Během této práce je převážně
pracováno se simulaćı typu rest-bus. V práci je uveden přehled soft-
warových nástroj̊u pro testováńı a vývoj ř́ıdićıch jednotek. Rest-bus sim-
ulace představuj́ıćı ovládáńı palubńıho poč́ıtače byla vytvořena pro dva
specifické nástroje – Vector CANoe od společnosti Vector a PROVEtech:TA
od společnosti MBtech Group. Následně byl vyvinut nástroj zajǐst’u-
j́ıćı převážně převod testovaćıch skript̊u a základńıho grafického uživatel-
ského prostřed́ı z CANoe do PROVEtech:TA. Testovaćı skripty mohou
být převáděny z jazyku CAPL do jazyku WinWrap Basic a C. Tato práce
byla vyv́ıjena ve spolupráci se společnost́ı MBtech Group. Převod simu-
lačńıch scénář̊u z CANoe do PROVEtech:TA byl úspěšně otestován na vyv-
inutých rest-bus simulaćıch pro ř́ıdićı jednotku palubńıho poč́ıtače, která
byla poskytnuta firmou MBtech. Testováńı prokázalo funkčnost převodu
r̊uzných simulačńıch skript̊u z jazyka CAPL do WinWrap Basic a C. Mod-
ularita nástroje umožňuje přidáńı převodu do daľśıch nástroj̊u.

Kĺıčová slova

rest-bus simulace; ř́ıdićı jednotky; převodńık; open-source

vii

viii

Contents

1 Introduction 1

2 Software Tools 3
2.1 Commercial Software . 3
2.2 Open-source Software . 4
2.3 PROVEtech:TA . 5

2.3.1 Workspace . 5
2.3.2 Test Manager . 6
2.3.3 Diagnostics . 6
2.3.4 Fault Simulation 7
2.3.5 PROVEtech:RE . 8

2.4 Vector CANoe . 8
2.4.1 Panels . 9
2.4.2 Analysis Windows 9

3 Rest-bus Simulation 13
3.1 Definition of Rest-bus Simulation 14
3.2 Description Files Formats 14

3.2.1 DBC File . 15
3.2.2 ARXML File . 18

3.3 Project Setup Procedure in PROVEtech:TA 19
3.3.1 XML – RBS Descriptor 20
3.3.2 XML – PROVEtech Configuration File 21
3.3.3 Setup of Workspace 21

3.4 Project Setup Procedure in CANoe 22
3.4.1 Simulation Setup 22
3.4.2 Panel Designer . 23

3.5 Test Languages . 23
3.5.1 WinWrap Basic . 23
3.5.2 CAPL . 25
3.5.3 Main Differences 27

4 Converter 33
4.1 Lexer and Parser . 33

4.1.1 Lexical Analysis . 35
4.1.2 Parsing . 38

4.2 Translator . 46
4.2.1 Translation to WinWrap Basic 46
4.2.2 Translation to C 52

4.3 Graphics Conversion . 54
4.3.1 Implementation . 54

4.4 Usage . 56

ix

4.4.1 Installation . 56
4.4.2 GUI . 56
4.4.3 Test Language Restrictions 57

4.5 Examples . 61
4.5.1 Example 1 . 62
4.5.2 Example 2 . 63
4.5.3 Example 3 . 64
4.5.4 Example 4 . 66
4.5.5 Example 5 . 67
4.5.6 Example 6 . 68

5 Conclusion 71

Appendix A 73

Bibliography 74

x

List of Figures

2.1 An example of test manager [1] 6
2.2 An example of diagnostics dialog [1] 7
2.3 An example of page for wiring faults [1] 8
2.4 An example of trace window with active filter and marker [2] 10
2.5 An example of graphics window with marker [2] 10
2.6 An example of scope window [2] 11
2.7 An example of state tracker [2] 12

3.1 Rest-bus simulation scheme 14
3.2 Demo example of a rest-bus simulation 15
3.3 Example of a configuration file for PROVEtech:RE 30
3.4 Created workspace in PROVEtech:TA 31
3.5 Created workspace in CANoe 31

4.1 An UML sequence diagram of the code translation from
CAPL to WWB . 34

4.2 Node Function_UD . 41
4.3 Node CAPL_event . 41
4.4 Node GlobalVars_decl 41
4.5 Node Declaration . 42
4.6 Different forms of declaration_single – assignments . . 43
4.7 Node CAPL_fcn . 45
4.8 Node Cond_EXPR . 45
4.9 Node IF-ELSE . 46
4.10 P:RE XML generation window 59
4.11 GUI & Code Conversion window 60
4.12 AST – global variables . 62
4.13 AST – the function, If statement 64
4.14 AST – function, For statement 65
4.15 AST – function, arrays . 67
4.16 AST – CAPL event, specific functions 68
4.17 AST – CAPL event, logical expression 70

xi

xii

List of Tables

2.1 Summary of available open-source tools 5

3.1 Numerical data types in CAPL and WWB 28

4.1 Definition of slightly complicated token rules 37
4.2 Supported CAPL events 42

xiii

xiv

Abbreviations

AUTOSAR Automotive Open System Architecture
ARXML AUTOSAR XML
AST Abstract Syntax Tree
BNF Backus-Naur Form
CAN Controller Area Network
CAPL CAN Access Programming Language
DBC Database Container
ECU Electronic Control Unit
FIBEX Field Bus Exchange Format
GUI Graphical User Interface
HiL Hardware-in-the-Loop
I-PDU Interaction Layer Protocol Data Unit
IL Interaction Layer
LIN Local Interconnect Network
LDF LIN Description File
LR Left-to-Right, rightmost derivation
LALR Look-Ahead LR
OEM Original Equipment Manufacturer
PDU Protocol Data Unit
PLY Python Lex-Yacc
RBS Rest-bus Simulation
RTAE Real Time Automation Engine
TA Test Automation
WWB WinWrap Basic
XML eXtensible Markup Language
XSLT eXtensible Stylesheet Language Transformation

xv

Chapter 1

Introduction

Electronic in today’s vehicles is becoming more and more complex as their overall
technological capacity grows. With this increased vehicle capacity comes a significant
growth in the number of electronic control units (ECUs) inside a vehicle. Due to this
increased complexity, each of individual ECUs interacts with each other and depends on
encompassing information, which is transferred through in-vehicle buses. Since safety is
an important factor, testing and validation of the right functionality of an ECU plays a
critical role. However, often not all ECUs of a network are available during testing. The
remaining bus simulation (rest-bus simulation) is an ideal solution when the missing
ECUs (i.e. the ”rest”) of the bus need to be simulated. This allows to simulate missing
functionality of any control unit of an in-vehicle bus, mostly CAN, LIN or FlexRay.
Moreover, it can greatly reduce testing time and costs.

A wide range of companies offers software tools that support rest-bus simulation.
Some of these tools are provided as a part of a complete software for the develop-
ment and testing of control units. During this thesis, CANoe by Vector company and
PROVEtech:TA by MBtech company were used. Many costumers of MBtech company
use PROVEtech:TA software but very frequently are supplied with rest-bus simulation
created by an original equipment manufacturer (OEM) in CANoe software. This leads
to the need of a tool that would be able to convert created rest-bus simulation from
CANoe to PROVEtech:TA.

The main focus of this thesis is the creation of the converter from CANoe to
PROVEtech:TA. In order to achieve that, a developer needs to get familiar with the
steps needed for creating a rest-bus simulation for ECUs in both above mentioned
tools. For this purpose, the rest-bus simulation for the ECU of the head unit was
created manually for both tools as the first step of this work. These simulations
represent the communication of the head unit with control buttons. The next step
was to create the converter from CANoe to PROVEtech:TA. This tool was devel-
oped in Python. Furthermore, the emphasis was put on the modular development
of the tool. This means, additional features might be easily added. The tool runs
on Windows and Linux platforms. The relevant code is placed on GitHub (https:
//github.com/mikulleo/RestbusSim-Converter) and is released under the GPL li-
cense.

Furthermore, it is important to mention that an automatically generated simula-

1/75

https://github.com/mikulleo/RestbusSim-Converter
https://github.com/mikulleo/RestbusSim-Converter

CHAPTER 1. INTRODUCTION

tion of signals and messages on a bus based on input description files1 is generally the
main part of any rest-bus simulation. During this thesis, the simulation ensuring the
transmission of signals, leading to the functional behavior of the head unit was de-
veloped. The rest-bus simulation was developed only for the CAN bus according to
requirements by the MBtech company. Nevertheless, despite many differences between
bus types, working with their rest-bus simulations is similar in both tools, CANoe and
PROVEtech:TA.

Automated test scripts can be developed to simulate behavior of the ECU by various
operations with signals and messages. The scripts in Vector CANoe are written in
the CAPL language, and in PROVEtech:TA they are written in the WinWrap Basic
language.

The thesis is structured as follows: Chapter 2 provides an overview of available
software tools on the market, as well as some open-source software tools that might
be helpful during the development of rest-bus simulations. An introduction to CANoe
and PROVEtech:TA is provided as well. The term rest-bus simulation as well as the
configuration and overall setup of rest-bus simulation for PROVEtech:TA and CANoe,
together with formats of their description files and test scripting languages, are described
in Chapter 3. Chapter 4 describes the development of the converter from CANoe to
PROVEtech:TA, which is the main result of this work. The examples of built abstract
syntax tree as well as converted code are given in Section 4.5. A conclusion is given in
Chapter 5.

1description file: CAN – DBC, ARXML (described in Sections 3.2.1 and 3.2.2)

2/75

Chapter 2

Software Tools

This chapter describes several tools for the development of control units that could
be relevant to this work. Most software tools for control and test automation of ECUs
are under a commercial license. Regarding commercial software, only PROVEtech:TA
and Vector CANoe were available during this work. These two tools are described in
more detail in Sections 2.3 and 2.4. On the other hand, open-source software contains
in most cases tools for analysis and modification of description files that include signals
and messages belonging to a particular ECU. This might be helpful during the develop-
ment of an ECU. Commercial and open-source software tools are presented in Section
2.1 and Section 2.2.

2.1 Commercial Software

There are numerous commercial software tools for control and test automation of ECUs
on the market. First of all, Vector CANoe, and PROVEtech:TA by MBtech company,
both used in this project, are frequently used tools. Among others, TestStand by
National Instruments company is often used together with the VeriStand tool mostly
for Hardware-in-the-Loop (HiL) testing 1. A further example are Automation Desk
by dSpace23 or samDia by Samtec company4. Next, QTronic company and their tools
TestWeaver and Silver are mentioned because they focus on the control and automated
validation of simulated systems and virtual ECUs [3]. Separate tools for the rest-bus
simulation are, e.g. tresos Busmirror by Elektrobit5, or FlexConfig RBS developed by
Eberspächer company for the rest-bus simulation on FlexRay6.

Automated test scripts simulating behavior of an ECU are often part of rest-bus
simulations. Regarding these test scripts, it is interesting to mention the tool MaTeLo

1http://www.ni.com/teststand/
2Control Desk must be obtained in order to connect to a real bus
3https://www.dspace.com/en/pub/home/products/sw/test_automation_software/

automdesk.cfm
4http://www.samtec.de/en/hauptmenu/products/software/samdia/
5https://automotive.elektrobit.com/products/ecu/eb-tresos/busmirror/
6http://www.eberspaecher-electronics.com/en/products/flexconfig-rbsgateway.html

3/75

http://www.ni.com/teststand/
https://www.dspace.com/en/pub/home/products/sw/test_automation_software/automdesk.cfm
https://www.dspace.com/en/pub/home/products/sw/test_automation_software/automdesk.cfm
http://www.samtec.de/en/hauptmenu/products/software/samdia/
https://automotive.elektrobit.com/products/ecu/eb-tresos/busmirror/
http://www.eberspaecher-electronics.com/en/products/flexconfig-rbsgateway.html

CHAPTER 2. SOFTWARE TOOLS

(Markov Test Logic) by ALL4TEC company. MaTeLo is so-called Model-based testing
tool. Model-based testing is a black-box approach, i.e. it is a method that examines
the application functionality without peering into its internal structures or tasks [4]. It
allows export of a created test script based on a created model to different languages as
CAPL, Visual Basic, C, C# or Python. Also, it allows the export to formats XML or
PDF by using XSLT7. This software is supported by many test tools. Among others,
CANoe, PROVEtech:TA or TestStand – VeriStand. Using MaTeLo, it is possible to
generate scripts in many languages but it does not support any conversion between
those languages.

From the perspective of the rest-bus simulation, during Electric Taxi EVA project
under TUM CREATE program, the tool CANTool was developed [5]. It allows the
export of rest-bus simulation files. Even though, this tool is not commercial, it is not
freely available for download.

2.2 Open-source Software

Available open-source software tools can be in most cases used for analysis or setup of
configuration files used for the rest-bus simulation. Rarely, they allow the conversion
between different formats of configuration files. More about specific configuration files’
formats can be found in Section 3.1. The configuration files contain defined signals
and their parameters. Most of the open-source tools are collectively called ”viewers”.
Example of some the tools is shown in Table 2.1.

LDF and Fibex Viewer are simple tools offered by Intrepid Control Systems for
personal use 89. Next, FIBEXplorer is the well-arranged tool for Fibex files analysis10.
There are many more tools for DBC files analysis. The first of these, Canmatrix Convert
is able to export DBC files to Excel 11. This function has been verified. Above that,
the feature of converting ARMXL files to DBC files or XLS files is mentioned. This
functionality has not been working reliably though. This is mainly because there are
several AUTOSAR standard versions of ARXML files which differ from each other.
Other tool is cantools which allows extracting information from DBC files under Linux
platform 12. The software Busmaster can be used as the demonstration of the conversion
from CAPL script language into C++. However, the generated C++ code is specifically
designated only for usage in Busmaster tool 13.

7Extensible Stylesheet Language Transformation
8http://www.intrepidcs.com/support/ldftool.htm
9http://www.intrepidcs.com/support/fibexviewer.htm

10http://sourceforge.net/projects/fibexplorer/
11https://github.com/ebroecker/canmatrix
12http://sourceforge.net/projects/cantools/
13http://rbei-etas.github.io/busmaster/

4/75

http://www.intrepidcs.com/support/ldftool.htm
http://www.intrepidcs.com/support/fibexviewer.htm
http://sourceforge.net/projects/fibexplorer/
https://github.com/ebroecker/canmatrix
http://sourceforge.net/projects/cantools/
http://rbei-etas.github.io/busmaster/

CHAPTER 2. SOFTWARE TOOLS

Name Function open-source
LDF Viewer viewer YES (personal use)
Fibex Viewer viewer YES

Cannmatrix Conver conversion DBC → Excel YES
cantools viewer YES

BUSMASTER viewer; conversion CAPL → C++ YES

Table 2.1: Summary of available open-source tools

2.3 PROVEtech:TA

PROVEtech:TA is a software tool developed by MBtech Group for control and au-
tomation of test systems. It allows a user to interactively set and measure all relevant
state variables of a test system. Thus, the user can set signals and transmit messages
for different test scenarios. For the optimal testing, it offers a user-friendly test man-
ager for administration of test scripts and test results. The test manager is further
described in Section 2.3.2. During a measurement, the values of one or multiple signals
can be acquired and stored for further evaluation. PROVEtech:TA can also be used
for implementation of real-time test scripts which run directly on a connected real-time
hardware. PROVEtech:TA supports systems description based on formats DBC, LDF
(LIN bus), Fibex (FlexRay bus) and ARXML. Other important part of PROVEtech:TA
is the workspace. A user can add different controls such as switch controls, sliders, etc.
The workspace exchanges signals with the simulation model which usually runs on a
real real-time computer and provides the ECU environment. The configuration of the
workspace is described in Section 3.3.3. Moreover, the diagnostic module with the user
interface is included in the software. It allows access to all diagnostic services, that are
provided by the ECU under test. PROVEtech:TA also includes the fault simulation
model that enables injecting of electrical faults in order to test ECU reaction in hard-
ware and software. The test language for writing scripts in PROVEtech:TA is WinWrap
Basic. It is described in Section 3.5.1.

The PROVEtech tool suite is equipped with PROVEtech:RE as well. PROVEtech:RE
is a test platform designed for PCs running under Microsoft Windows or INtime oper-
ating system. PROVEtech:RE is described in Section 2.3.5.

Moreover, PROVEtech:TA includes the Automation Library which provides fun-
damental methods for accessing a model computer which is running the Real-Time
Automation Engine (RTAE), such as PROVEtech:RE or a real-time computer. [6]

2.3.1 Workspace

The workspace of PROVEtech:TA is divided into two parts, the workpage and the cock-
pit. They offer the same features, though the cockpit always stays visible. The workpage
offers a wide range of display elements for the simulation and signal visualization such as
sliding displays or switch controls. A user can place several workpages to the workspace.
The workpage exchanges signals with a simulation model, which usually runs on a real-

5/75

CHAPTER 2. SOFTWARE TOOLS

time computer or real-time automation engine such as PROVEtech:RE, and represents
the ECU environment. Measurements, which protocol all signal changes, are config-
ured and evaluated on the workpage. The workspace created during this project can
be found in Fig. 3.4.

2.3.2 Test Manager

The test manager includes the environment for programming test scripts, as well as the
management of existing and executed test cases. Test scripts can be executed separately
or in groups and they are stored together with the test results and reports. If required,
tests can run on a real-time computer with a real time automation engine (RTAE).
The test manager supports Oracle, Microsoft SQL server and PostgreSQL database
systems for storage of test scripts and results. Several test systems can be operated
independently from each other, but nevertheless on the same database. An example of
the test manager window is shown in Fig. 2.1.

Figure 2.1: An example of test manager [1]

2.3.3 Diagnostics

The diagnostics module allows the access to all diagnostics services which are provided
by an ECU under test. Furthermore, the error storage can be accessed and internal

6/75

CHAPTER 2. SOFTWARE TOOLS

ECU data can be displayed. The other diagnostic functions like coding and flashing of
ECUs are also supported. All diagnostic functions can be accessed via the graphical
user interface as well as test scripts. The communication with the ECU is handled by
using a dedicated diagnostic hardware. An example of the diagnostics window is shown
in Fig. 2.2.

Figure 2.2: An example of diagnostics dialog [1]

2.3.4 Fault Simulation

With the fault simulation module, electrical faults can be injected in order to test the
respective ECU reaction in hard- and software. By means of this fault simulation,
components and systems can be tested related to their robustness and reliability. An
external failure insertion unit (relay box) is required. PROVEtech:TA controls the
failure simulation by setting the corresponding relays in the connected failure insertion
unit. This effects the simulation of electrical faults, e.g. wiring interruptions, short cuts

7/75

CHAPTER 2. SOFTWARE TOOLS

and pin-to-pin failures. Afterwards, it can be checked whether the fault was recorded
in the diagnostic memory. Additionally, PROVEtech:TA also contains visual panels to
control the failure simulation for both, ECU pin failures and CAN line failures. An
example of the fault simulation is shown in Fig. 2.3.

Figure 2.3: An example of page for wiring faults [1]

2.3.5 PROVEtech:RE

PROVEtech:RE is runtime environment which enables PROVEtech:TA to access many
types of hardware devices, for example Vector CANcase used during this project. It also
contains a simulation engine which can be used for rest-bus simulation. It is a Windows-
based program. It is basically an ”invisible”program running in the background without
its own user interface14. Furthermore, it upports standard automotive interfaces and bus
systems such as CAN, LIN, FlexRay, etc. The most important feature for this project
includes the rest-bus simulation creation. The configuration of rest-bus simulation is
described in Section 3.3. However, additional features comprise generation of signal
waveforms or behavioral models, or Simulink model integration. [6]

2.4 Vector CANoe

Vector CANoe is the comprehensive software tool developed by Vector Group for de-
velopment, test and analysis of ECU networks. At the beginning of the development

14PROVEtech:RE does not need any user interface because it is controlled through PROVEtech:TA

8/75

CHAPTER 2. SOFTWARE TOOLS

process, CANoe can be used to create simulation models which simulate the behavior
of an ECU. Further these models serve as the basis for analysis and testing of whole
systems. Similarly as in PROVEtech:TA, a user can interactively adjust signals and
messages for different test scenarios. CANoe contains several windows for the analysis.
These windows are described in Section 2.4.2. The workspace of CANoe can consist of
the windows mentioned. Furthermore, the workspace usually consists of panels. The
panels are graphical control elements. They are described in Section 2.4.1. CANoe
also contains a diagnostic feature set for diagnostic communications with the ECU.
Various bus systems are supported. Among them are CAN, LIN, FlexRay, or Ether-
net. Above that, CAN-based protocols are e.g. J1939, CANopen, or CANaerospace.
Among supported system descriptions are DBC, LDF, Fibex or ARXML formats. The
test language for writing scripts in Vector CANoe is CAPL. It is described in Section
4.4.3.

2.4.1 Panels

The workspace of Vector CANoe may consist of panels. The panels are graphical control
elements such as standard buttons, check boxes, radio buttons, up to LCD controls,
meters or even media players. These elements can be used to modify signal or variable
values. The configuration of the panels is carried out in the panel designer, and is
described in Section 3.4.2. The panels can then be opened in the workspace as separate
windows.

2.4.2 Analysis Windows

CANoe provides a user with several windows and blocks that helps to easily analyze the
network during all development phases. Most important windows are described below.
The description is based on [2].

2.4.2.1 Trace Window

Bus activities, such as transmission of messages or error frames, are listed in the trace
window. Moreover, individual signal values may be displayed for each message. For the
data analysis, the following functions are available:

• Insert filters – used to reduce the amount of data displayed, or even delete some
data from the data stream

• Hide unchanged data

• Color events – highlight important data with different colors

• Set markers – markers are assigned to an event and its time stamp; used to quickly
find events

• Show statistics – used to display signals and messages in details

9/75

CHAPTER 2. SOFTWARE TOOLS

• Log data

An example of the trace window is shown in Fig. 2.4.

Figure 2.4: An example of trace window with active filter and marker [2]

2.4.2.2 Graphics Window

Similar to the trace, the graphics windows are used to monitor bus activities. Moreover,
it can be used to display environment data and diagnostic parameters as curves. The
functions available in the graphics window include logging data, showing statistics or
setting markers. An example of the graphics window is shown in Fig. 2.5.

Figure 2.5: An example of graphics window with marker [2]

2.4.2.3 Scope Window

The scope window graphically depicts bus level measurements and is used for the anal-
ysis of protocol errors. In the scope windows, it is possible to set triggers manually,

10/75

CHAPTER 2. SOFTWARE TOOLS

via CAPL or via pre-configured events. Individual trigger conditions can be combined
using the logical OR function. Another function is the ability to compare signals in
different approaches. The scope windows can be completely controlled from a CAPL
test module. An example of the scope window is shown in Fig. 2.6.

Figure 2.6: An example of scope window [2]

2.4.2.4 Statistics Window

The statistics window shows statistical information about bus activities during a mea-
surement. This includes information such as bus load on a node and frame level, burst
counter or counters and rates for messages and error frames. Certain bus statistics can
be evaluated in the analysis windows such as the graphics window.

2.4.2.5 State Tracker

The state tracker can be used to analyze states, state transitions and signals, as well
as to visualize time dependencies. It is especially well-suited for displaying digital
inputs and outputs as well as status information such as terminals status or network
management states. The functions of the state tracker are following:

• Search for error – errors can be searched and functions can be monitored based
on analysis of the time response of states, signals and state transitions

• Analyze information – analysis of various information such as the states of internal
ECU communications, bus signals or ECU I/Os

11/75

CHAPTER 2. SOFTWARE TOOLS

• Monitor AUTOSAR runnables – monitoring of runnable states and reading of
these states via the Vector hardware

An example of the state tracker is shown in Fig. 2.7.

Figure 2.7: An example of state tracker [2]

12/75

Chapter 3

Rest-bus Simulation

This chapter explains the term rest-bus simulation, as well as steps needed for creat-
ing of such a simulation. The whole procedure of creating a specific rest-bus simulation
includes several steps. The procedure obviously varies for different software tools. For
PROVEtech:TA these steps are:

• Configuration of description files

• Creating of XML file called RBS descriptor (Section 3.3.1)

• Creating of PROVEtech XML configuration file (Section 3.3.2)

• Setup of a workspace, creating of automated test scripts

For Vector CANoe these steps are:

• Configuration of description files

• Adding database containing signals and messages to a project

• Configuration of simulation setup (Section 3.4.1)

• Setup of a workspace, creating of automated test scripts

However, it is appropriate to mention that all rest-bus simulations need configuration
files containing all simulated messages and signals. The format of the configuration files
depends on the bus type used during a rest-bus simulation. These files are described in
Section 3.2. How the rest-bus simulation should be created in PROVEtech:TA is then
described in Section 3.3. Steps needed for configuration of rest-bus simulation in CANoe
are described in Section 3.4. Automated scripts for the rest-bus simulation are written
in the language specific for a particular software tool. The programming languages
used in PROVEtech:TA and Vector CANoe, together with differences between them,
are described in Section 3.5.

13/75

CHAPTER 3. REST-BUS SIMULATION

3.1 Definition of Rest-bus Simulation

The term rest-bus simulation comes from the phrase Remaining Bus Simulation. During
the development of a vehicle network, the system integrators often face the problem
that not all control units are available on a bus. Since performing operations on an
incomplete network may lead to an improper behavior, the rest-bus simulation was
developed. It simulates communication of any missing control units. This means, all
real measurements and signals are replaced by simulated ones. Control units therefore
can be tested without the need of creating a whole network. Moreover, using the rest-
bus simulation can greatly reduce testing time and costs of setting up an entire network
or performing expensive field tests. Fig. 3.1 shows the scheme of rest-bus simulation
in this project. An example of the demo rest-bus simulation from Vector CANoe is
displayed in Fig. 3.2.

Figure 3.1: Rest-bus simulation scheme

3.2 Description Files Formats

A format of description files differs for different buses. For CAN bus, the configuration
files are called DBC files. For LIN bus, they are called LDF files. Above that, ARXML
files can be used instead. ARXML is an XML-based format used for the description of
an ECU based on AUTOSAR standard which is generally applicable for various kinds
of buses. These files will always serve as the input for a certain step in the rest-bus
simulation configuration process. Therefore, the structure of DBC files is described in
Section 3.2.1. The basic structure of ARXML files used during this project is described
in Section 3.2.2.

14/75

CHAPTER 3. REST-BUS SIMULATION

Figure 3.2: Demo example of a rest-bus simulation

3.2.1 DBC File

A DBC file describes signals and messages for the communication of a CAN network.
This file is sufficient to monitor and analyze the network and carry out the rest-bus
simulation, i.e. to simulate nodes that are not physically available. The functional
behavior of an ECU is not addressed by the DBC file. The following sections describe
the overall structure of a DBC file. A DBC file consists of several sections. There are
specific keywords that characterize these sections inside a DBC file. These keywords can
be followed by attributes needed for accurate description of a particular DBC section.
During this project, a DBC file delivered by OEM was used as the base. The information
about DBC files are based on [7].

3.2.1.1 Version and Additional Symbols Specification

The DBC file begins with a header describing the version and new keywords (symbol
entries) for other sections. The version is either empty or is a string used by CANdb
editor. The CANdb editor is the editor by Vector for editing DBC files. The header
has the following structure:

VERSION "version string"

NS_:

keyword

keyword

.

.

.

15/75

CHAPTER 3. REST-BUS SIMULATION

3.2.1.2 Bit Timing

This DBC section is obsolete and is usually empty. Nonetheless, it must appear in the
DBC file. Thus, only the keyword BS will be listed as follows:

BS_:

3.2.1.3 Node Definitions

All nodes participated on the bus are listed in this DBC section. The section contains
only one attribute – node_name. The structure and an example of the implementation
are as follows:

BU_: node_name

BU_: Controls Display TransmitGateway

3.2.1.4 Message Definitions

This DBC section defines the names of all messages as well as their properties and
signals transferred in the messages. Signal definition, together with the exact structure
and an example of the message implementation, are described in Section 3.2.1.5. The
message definition has following attributes:

message_id

message_name

message_size: size in bytes

transmitter: name of a node transmitting the message; if the message has no
sender or is unknown, the name is Vector__XXX

signals: signals defined according to Section 3.2.1.5

3.2.1.5 Signal Definitions

The signal definition segment includes properties of a given signal and its position in a
message. The definition has the following attributes:

signal_name

multiplexer_indicator: defines whether the signal is a normal signal (empty
string), a multiplexer switch (M) or a multiplexed by the multiplexer switch (mX,
where X is a number of the multiplexer)

start_bit: the position of the first bit; for little endian byte order the position
of least-significant bit is given, for big endian byte order the position of most-
significant bit is given

16/75

CHAPTER 3. REST-BUS SIMULATION

signal_size: number of bits

byte_order: 0 for little endian, 1 for big endian

value_type: + for unsigned, - for signed

(factor, offset): defines values for the linear conversion rule to convert the
signal’s raw value into the signal’s physical value – physical_value = raw_value

* factor + offset

[min, max]: the range of valid physical values of the signal

unit: e.g. m/s, kg, etc.

receiver: name of the node receiving the signal; if the signal has no receiver or
is unknown, the name is Vector__XXX

The message structure with defined signals and an example of the implementation are
as follows:

BO_ message_id message_name : message_size transmitter

SG_ signal_name multiplexer_indicator : start_bit | signal_size

@ byte_order value_type (factor , offset) [min , max] unit

receiver

BO_ 499 Controls_Group1 : 8 Controls

SG_ Control_North_Pressed : 17 | 1@1+ (1,0) [0,1] ""

TransmitGateway

SG_ Control_South_Pressed : 21 | 1@1+ (1,0) [0,1] ""

TransmitGateway

SG_ RadioKey_Pressed : 51 | 1@1+ (1,0) [0,1] ""

TransmitGateway

SG_ RadioKey_Pressed_Ack : 52 | 1@1+ (1,0) [0,0] ""

TransmitGateway

3.2.1.6 Comment Definitions

In this section, comments for nodes, messages and signals are included. An example of
a comment is following:

CM_ BO_ 499 "Central controls operation"

CM_ SG_ 499 Control_North_Pressed "Central control elemement North

operation"

3.2.1.7 User Defined Attributes Definitions

User defined attributes are meant to extend the object properties of the DBC file. These
attributes must be defined by defining the keyword BA DEF and they must be assigned
a value entry by the keyword BA . The section contains the following attributes:

object_type: i.e. node (BU), message (BO), signal (SG)

17/75

CHAPTER 3. REST-BUS SIMULATION

attribute_name

attribute_value_type: i.e. INT, HEX, FLOAT, STRING or ENUM; in case of
numeric values, minimum and maximum value must be assigned

After this definition, it it possible to assign a value entry to a specific attribute in
similar way as comments are assigned a text. The structure and an example of the
implementation are as follows:

BA_DEF object_type attribute_name attribute_value_type

BA_DEF SG_ "GenSigStartValue" INT 0 10000

BA_DEF SG_ "CycleTime" INT 0 3600000

BA_ "GenSigStartValue" SG_ 499 Control_North_Pressed 0

BA_ "CycleTime" SG_ 499 Control_North_Pressed 100

3.2.2 ARXML File

The AUTOSAR XML files (ARXML) generally contain the whole system description.
The system description consists of a network topology, i.e. bus systems (CAN, FlexRay,
etc.), connected ECUs, gateways, as well as of the description of communication such
as mapping signals to CAN channels, or even mapping of software components. The
ARXML files are generated by special tools. Since they are very verbose, it is not
convenient to edit them by the hand. They usually consist of tens of thousands lines of
XML code.

The whole ARXML structure is not explained in details because the whole expla-
nation could be as long as this whole thesis. However, the vary basic structure of the
ARXML file relevant for this project is mentioned. During this project, the ARXML file
has been obtained from OEM. This file originates from the same database as the DBC
file mentioned in Section 3.2.1. It describes the bus topology and data, such as clusters,
ECU instances, signals, and so on. The whole file is divided into several AUTOSAR
packages (AR-PACKAGE). This allows to create top level packages to structure the con-
tained AUTOSAR elements. All packages include the tag SHORTNAME that contains a
unique name of elements. The description of the ARXML file is based on [8]. Some of
the elements are

UNIT: the physical measurement unit; all units defined should be SI units

SW-BASE-TYPE: the meta class; represents a base type used within ECU software

COMPU-METHOD: the meta class; expresses the relationship between a physical value
and a mathematical representation

SYSTEM-SIGNAL: allows to represent the communication system’s view of data
exchanged between SW components which reside on different ECUs in a flattened
structure (with exactly one system signal defined for each data element prototype
sent and received by connected SW component instances)

18/75

CHAPTER 3. REST-BUS SIMULATION

ECU-INSTANCE: used to define the ECUs used in the topology; includes these
important sub-tags

ASSOCIATED-COM-I-PDU-GROUP-REFS: helps to identify which ISignalIPduGroup
are applicable for which ECU

COMM-CONTROLLERS: communication controllers of the ECU,
e.g. CAN-COMMUNICATION-CONTROLLER

CONNECTORS: all channels controlled by a single controller

SLEEP-MODE-SUPPORTED: specifies whether the ECU instance can be put to
the low power mode

WAKE-UP-OVER-BUS-SUPPORTED: specifies whether wake-up over bus is sup-
ported

CAN-CLUSTER: CAN bus specific cluster attributes

I-SIGNAL: Signal of the interaction layer (IL). The run-time environment (RTE)
supports so called ”signal fan-out”where the same system signal is sent in different
SignalIPdus to multiple receivers. The System Signal is unique per System. To
support the RTE ”signal fan-out” each SignalIPdu contains ISignals. If the same
System Signal is to be mapped into several SignalIPdus there is one ISignal needed
for each ISignalToIPduMapping.

FRAME: describes the attributes of each frame; important sub-tag is PDU-TO-

FRAME-MAPPING which defines the composition of Pdus in each frame

I-PDU-GROUP: refers to the I-PDUs that should be always kept together

END-TO-END-PROTECTION: the meta class; represents the ability to describe a par-
ticular end to end protection

3.3 Project Setup Procedure in PROVEtech:TA

As mentioned at the beginning of this chapter, the project setup procedure contains
from several steps that must be carried out in order to obtain a full-fledged rest-bus
simulation.

Naturally, the first step during the setup of any rest-bus simulation is to connect
an ECU to the software. The ECU used in this project is connected to the software
over a CAN-to-USB interface, namely Vector CANCaseXL VN1630. The ECU has two
buses – CAN1 and CAN2. Due to the fact that the bus type is High Speed CAN, 120 Ω
termination resistors must be placed at both ends.

Next step is to create an XML file for the rest-bus simulation known as RBS de-
scriptor. This file can be generated by a tool called RBSConfig which comes with
PROVEtech:RE. To generate this file, the DBC file or the ARXML file is needed as an
input. The generation and configuration of the RBS descriptor is described in Section
3.3.1.

19/75

CHAPTER 3. REST-BUS SIMULATION

After that, other configuration file in the XML format must be created in order for
PROVEtech:RE to be able to communicate on the CAN bus. This configuration file
is PROVEtech specific. At this time, no tool is available for the generation. Thus, it
must be created manually. To generated this XML specific file, DBC file or ARXML
file, and RBS descriptor XML are needed. The structure of this XML is described in
Section 3.3.2.

Now, the rest-bus simulation configuration can be loaded in PROVEtech:TA. PROVEtech:RE
is connected by selecting Settings → Configurations → Add Configuration. In the
new configuration, a new model must be created. In the new model, hardware type
PROVEtech:RE must be selected, and the path to the XML configuration file is added.
Finally, the workspace can be adjusted in PROVEtech:TA. This means, for example
adding signals needed during the rest-bus simulation or adding a message window where
all sent and received messages are displayed. The setup of the workspace specific for
this project is described in Section 3.3.3.

It is important to mention that the most of the rest-bus simulation in PROVEtech:TA
is carried out by PROVEtech:RE. It enables connecting the real hardware into PROVEtech:TA,
as well as creating the rest-bus simulation. More about PROVEtech:RE can be found
in Section 2.3.5.

3.3.1 XML – RBS Descriptor

The RBS descriptor in the XML format is generated using the RBSConfig tool. After
launching this tool, a new network is created by selecting Datapool→ New network→
CAN network. During this step, a user chooses the path to the DBC or the ARXML
file. This adds all messages and signals defined in the DBC or the ARXML file to
the configuration. As the next step, the transmission type of every message must be
defined. Some of the supported transmission types are the following:

Cyclic – the message in sent periodically

Spontaneous – the message is always sent when at least one of its signals changes
its value

Cyclic if active – the message is sent periodically if at least one of its signals
differs from its inactive value

Spontaneous with minimum delay – the message is sent when at least one of its
signals changes its value and the last transmission was sent at least the specified
interval ago

Spontaneous with repetition and minimum delay – if a signal of the message
changes its value, the message is sent with a minimum delay; after that it gets
repeated for n times with a cycle time of t

There are other transmission types such as Cyclic and Spontaneous, Cyclic and

Spontaneous with minimum delay or Cyclic if active and spontaneous with min-

imum delay. These types are combination of the above mentioned. More information
about these transmission types can be found in [9].

20/75

CHAPTER 3. REST-BUS SIMULATION

The RBSConfig tool enables changing other attributes, e.g. Cycle time, Delay time,
etc. To make the rest-bus simulation enabled, the attribute IsRbsEnable must be set
to True. After that, the RBS descriptor can be generated by selecting Configuration→
Save all as XML. The generated XML file also includes a new signal TX enable which
enables sending messages in PROVEtech:TA.

3.3.2 XML – PROVEtech Configuration File

The specific configuration XML file for PROVEtech:RE must be created manually. At
this time, no tool that would be able to create this kind of file is available. First, a clock
source is defined between EventSource tags. There are two types of clocks supported,
namely Idle and SysClock. For the system clock SysClock, a time period must be set
in ms to tell the source how often it should generate events. Furthermore, the CAN
hardware device must be defined between Device tags. The device used in this project
is VectorCANCaseXL VN1630A. Individual channels are defined between Port tags.
For the rest-bus simulation, a channel must contain the following tag attributes:

HWPort – hardware channel, in this project e.g. VN1630 Channel 1, 0, 0

BitRate – in this project 250 000 bit/s for channel 1, 500 000 bit/s for channel 2

NWDescriptor – path to DBC or ARXML file

RBSDescriptor – path to RBS descriptor file

Next, a so called Peer must created which informs the software that the rest-bus sim-
ulation should be created on the given CAN channel. For the demonstration, a part of
the created XML configuration file is shown in Fig. 3.3.

3.3.3 Setup of Workspace

It is completely up to a user how the workspace is arranged. It may be set up in
innumerably many ways. Signals that are needed during the rest-bus simulation are
added by selecting the button Signal Selection. Signal controls can be added to the
workspace with different appearance. A user can choose for example a binary switch,
a slider, a strip chart, a gauge, etc. Besides controls, a message window can be added
to the workspace by right-click and selecting Create Message Window. All sent and
received messages can be seen in the message window. For the purpose of this project,
only binary switches are needed. The following signals of the buttons for head-unit
menu navigation have been used in this thesis: NORTH – move up, SOUTH – move
down, WEST – move left, EAST – move right, and then the buttons for mode switching
and return, i.e. NAVIGATION, RADIO, PHONE, RETURN, etc. Two important steps
must be carried out for the rest-bus simulation to be functional. First, before pressing
a button, a signal called update bit1 must be set. Otherwise, the corresponding button
will not work! Moreover, a signal called TX enable must be set to allow transmitting
of messages. The workspace for this project is shown in Fig. 3.4.

1e.g. NORTH UB

21/75

CHAPTER 3. REST-BUS SIMULATION

3.4 Project Setup Procedure in CANoe

The configuration of the rest-bus simulation in CANoe is carried out only by the software
itself. Except DBC or ARXML file, there is no need for other configuration files.
On the other hand, the configuration inside the software includes more steps than in
PROVEtech:TA.

At the beginning, as described in Section 3.3, an ECU is again connected to the
software using the CAN-to-USB interface Vector CANCaseXL VN1630 and placing
termination resistors at both ends. The next step is to configure hardware in the menu
Configuration → Network Hardware Configuration. It is important to set the correct
baud rate and bit timing registers here.

After that, a database should be added into the new project. This step, as well as
the configuration of the ECU, is described in Section 3.4.1. If the added database is
in DBC format, it can be edited using CANdb editor. It allows changing attributes of
nodes, messages and signals, and therefore modify a DBC file. Some of the properties
of a message can be directly changed by selecting Configuration → Interaction Layers.
This will not modify the DBC file.

Finally, the workspace can be created in Panel Designer. The workspace contains
controls for signals needed during the rest-bus simulation. The creation of the workspace
is described in Section 3.4.2.

3.4.1 Simulation Setup

First of all, the database must be added to the project. This is done in Simulation
Setup window by selecting Networks → CAN → Database → New. The relevant DBC
or ARXML file is selected.

After that, a network node, which represents the ECU, must be added to the net-
work. This is done by selecting Networks → CAN → Nodes → Insert Network Node.
After that, the node must be configured by right-clicking and selecting Configuration.
The most important step during this configuration is to add so-called components to
the node. These components are runtime libraries in the form of DLL files. They add
relevant functions to the rest-bus simulation that can be further used during creation of
a test script in CAPL. The basic library used during the rest-bus simulation is Vector
Interaction Layer (IL). Vector IL provides signal-oriented means of accessing the bus.
It also performs mapping of signals to their sent messages and controls the sending of
these messages as a function of the so called Send Model. This send model contains
functions as ILSetSignal that performs setting a signal bit on the ECU. However,
the modeling library can be OEM specific. In this case, different Send Models may
be provided by the OEM as well. Subsequently, the conversion of the rest-bus simu-
lation from CANoe to other software may become virtually impossible. For example,
PROVEtech:TA currently does not support vendor specific DLL libraries.

In the last step, the state is switched to Simulated and CAPL script can be added
in Node Specifications. The CAPL script then may be opened by selecting Edit on
the node in the simulation setup window. This opens the CAPL browser where test

22/75

CHAPTER 3. REST-BUS SIMULATION

scripts can be edited. After the node configuration has been established and test scripts
compiled, whole project must be compiled by selecting Configuration → Compile All
Nodes.

3.4.2 Panel Designer

The panel designer is used to create a custom workspace that will be displayed during
the rest-bus simulation as separate windows. A user has wide range of controls available.
Starting from standard button, check box, radio button, up to LCD control, meter or
even media player. After adding a control to the workspace, the signal must be assigned
to the control. In the properties of the control, Symbol → Attach Signal is selected.
Moreover, the control can be assigned an environment or a system variable after it has
been initialized in CANoe. The variable may serve, for example as the initializer of a
CAPL script. Standard buttons and check boxes are sufficient for usage in this project.
The workspace of this project is shown in Fig. 3.5.

3.5 Test Languages

This section describes programming for writing automated test scripts in tools PROVEtech:TA
and CANoe. PROVEtech:TA uses WinWrap Basic (WWB) as the programming lan-
guage for writing test scripts. WWB has the basis of Visual Basic, and has several
similar variants. The variant used during this project is WWB-COM. CAN Access
Programming Language (CAPL) is used for writing test scripts in Vector CANoe. This
language is very similar to the C programming language. WWB is described in Section
3.5.1. CAPL is then described in Section 4.4.3. The both languages are quite different
because they come from completely different basic programming languages. Therefore,
some of the main differences are described in Section 3.5.3.

3.5.1 WinWrap Basic

WinWrap Basic (WWB) is the programming language based on Visual Basic. It has
been developed by Polar Engineering and Consulting for programs of various types
as an alternative to ActiveX, Visual Basic for Applications, and Visual Studio Tool
for Applications. Currently the WWB supports three compatibility modes – WWB-
COM for Visual Basic for Applications compatibility, WWB.NET for Visual Basic.NET
compatibility and WWB.NET/Compiled for Visual Basic.NET compiled script code.
The COM mode supports some extensions in comparison to the compatibility mode,
e.g. additional data types, operators or conversion functions. The syntax and semantics
is mentioned in Section 3.5.1.2. PROVEtech:TA tool includes extensions to WWB
covering objects and functions for different tasks. These additional features enable
performing bus testing and analysis. Therefore, the full rest-bus simulation does not
have to rely only on PROVEtech:TA itself but can be enhanced by using automation
scripts. Details about extensions to WWB are described in Section 3.5.1.1.

23/75

CHAPTER 3. REST-BUS SIMULATION

3.5.1.1 Extensions to WWB

The extensions to WinWrap Basic for PROVEtech:TA include classes, objects and
functions with various tasks for the rest-bus simulation. Most of them are global objects
and can be used directly with no need for creating new instances. These global objects
are described below:

• Diag – contains the necessary methods for the diagnosis of control units via the
diagnostic tool CAESAR from Daimler and I+ME ACTIA (built into the test
system) available

• Dgn – allows access to the MCD-3 D diagnostic classes, i.e. to every diagnostic
service and diagnostic job

• FaultSim – allows control of the PROVEtech:TA fault simulation module

• GUI – commands for controlling the workpage and the cockpit of PROVEtech:TA

• Measure – provides methods for managing data acquisitions, i.e. start/stop data
acquisition, save signal curves, etc.

• System – manages signals, a test protocol with sub-protocols and provides general
system functionality

• TM – contains methods and classes to automatize the Test Manager functionali-
ties

Further, Evaluation class provides commands for evaluating data acquisition. In order
to use this class, it is necessary to create its instance first.

3.5.1.2 Syntax and Semantics

PROVEtech:TA supports different WinWrap Basic variants. The special comment
#Language must be placed at the beginning of the code in order to determine the
variant used. The syntax and semantics is the same as for Visual Basic. During this
project WWB-COM is used. This includes enhanced Visual Basic for Applications
compatibility. The new enhancements are:

• data types – Decimal, SByte, UHuge , UInteger, ULong

• instruction Return

• conversion functions – CSByte, CUHuge_, CUInt, CULng

• logical operators – AndAlso, IsNot, OrElse

Visual Basic in general does not use semicolons to terminate fragments of code. All
functions or procedures, as well as control statements must be ended by the relevant

24/75

CHAPTER 3. REST-BUS SIMULATION

End, e.g. End Sub, EndIf, Wend2, etc. WWB-COM offers many data types (only the
type char is missing3). A full documentation of syntax can be found at [10].

As mentioned in Section 3.5.1.1, PROVEtech:TA contains extensions that enable the
development of the rest-bus simulation by using WWB. Most importantly, it includes
the data type CanMsg that is used for the manipulation with messages on a bus. Other
message types for LIN or FlexRay messages are introduced as well. Moreover, it contains
objects for message filters or message queues. The name of an object must always
precede a particular function. Example is shown below:

1 Sub Main

2 System.SetSignal("testSignal" ,10.5)

3 Measure.Start

4 Wait 10

5 Measure.Stop

6 End Sub

3.5.2 CAPL

CAN Access Programming Language (CAPL) is a programming language inspired by
the syntax of the C programming language. CAPL is primarily used with PC-based
environments Vector CANalyzer and mostly CANoe. This language has been developed
in order to meet requirements for the development of distributed embedded systems
based on CAN bus. During these days however, other buses such as LIN or FlexRay
are supported. With CAPL programs it is possible to simulate a network and node
behavior, and to perform bus testing and analysis. Therefore, comprehensive tests can
be carried out because the user does not rely only on CANoe tool itself. CANoe however,
includes CAPL browser that is the primary editor for CAPL language, including the
compiler for a created code.

3.5.2.1 Syntax and Semantics

The development of a CAPL program is possible outside the built-in CAPL browser.
However, the special beginning and ending comment sequence must be included at the
beginning/end of every section. These sequence have the following format: beginning
– /*@@xxx: */, end – /*@@end */. The exact form of comments available for this
project is mentioned in Section 4.1.2.2.

As mentioned above, the similarity to C language makes CAPL syntax and semantics
easy to understand. It is important to keep in mind though that CAPL does not support
many concepts from C language, such as pointers, structures, unions, etc. CAPL does
not support symbolic constants (i.e. macros) either. The supported data types are
following:

char, byte, int, word, long, dword, float, double, message, timer, msTimer

2ending of while statement
3data type Byte or String can be used instead

25/75

CHAPTER 3. REST-BUS SIMULATION

For creating expressions, several operators are introduced, including arithmetic opera-
tors, assignment operators, bitwise operators, etc. Then there are statements that are
equivalent to those in the C programming language. Among them

• Declaration and initialization of variables

• Arrays

• Expressions

• Control statements.

After that, there are features that are CAPL specific. First, the declaration of global
variables is done inside the section variables. The example is given below:

1 /*@@var */

2 variables { ... }

3 /*@@end */

Next, CAPL is organized in so called event procedures. Each event is associated with a
single event. When the event occurs, the corresponding procedure will execute. These
events include e.g. reception of a message (on message), expiration of a timer (on
timer), change in an environment variable (on envVar), etc. These event are classified
as follows:

• Message events

• Timer events

• Keyboard events

• Controller events

• Error frame events

• System (tool) events

• Variable events

Furthermore, a user can define its own functions like in C language. However, CAPL
has additional functions that provide a variety of special purpose operations that are
useful during the rest-bus simulation. These functions may be e.g. setting a value of a
signal, reading a name of database name, sending a message, resetting a controller, etc.

3.5.2.2 CAPL DLLs

Additional functions that would be used during the rest-bus simulation can be created
by modeling gateway nodes. This gateway enables communication between two network
buses, and is implemented by using so called node layer DLLs. CANoe includes the
interaction layer as the base which provides most of the functionality needed for com-
munication between buses. However, these DLLs can sometimes be created by OEM

26/75

CHAPTER 3. REST-BUS SIMULATION

and delivered to a customer with a created rest-bus simulation. These OEM specific
DLLs can introduce new functions that can be later used during the rest-bus simulation
for various purposes.

3.5.3 Main Differences

This sections points out the main differences between the CAPL and WWB-COM
language. Naturally, the syntax and semantics is different from each other. It is not the
goal of this section to describe all syntax differences in detail though. The section should
be primarily used as a guide when determining which translations are not possible, or
what modifications must be made in order to make them translatable. Due to the reason
that both languages are quite different from each other (CAPL based on C language,
WWB based on Visual Basic), not all details are described, plus general syntax and
semantic differences are not explained since it would be over the scope of this project.

Data Types

Some of the data types exist in WWB under different name. First of all, char is not
present in WWB-COM. The type String is used instead. The numerical data types
are in Table 3.1.

Furthermore, CAPL contains enumeration data types message, timer and msTimer.
These data types do not have exact equivalents in WWB. The data type message is
provided to WWB by PROVEtech:TA library. However, messages need to be declared
little differently. CAPL declaration includes both, an identifier and variable name,
at once. In WWB, the name must be declared first and the ID can be subsequently
assigned by accessing an object. The example of both is given below:

1 message 0x101 msg; /* CAPL */

1 Dim msg An New CanMsg ’ WWB ’

2 msg.ID = &H101

The type timer, or similar, does not exist in WWB. Due to this fact, the straightforward
usage of timers is possible only in CAPL. One possible option is to use the function
Wait. However, this command is not exact by means of real-time. For exact timing,
the Automation Library should be used [1]. By the time of writing this thesis, latest
information has been that timers should be available for PROVEtech:TA in the future.

Array Indexing

When declaring an array, a number specified in the array brackets in CAPL corresponds,
as in C language, to the size of an array. However, when declaring an array in WWB, a
number corresponds to the highest index as the lowest index is zero. Thus, the amount
of array elements is not specified. The following example shows the difference:

1 int arr [10] /* CAPL */

27/75

CHAPTER 3. REST-BUS SIMULATION

CAPL WWB size
int Integer 16 bit signed

word UInteger 16 bit unsigned
long Long 32 bit signed

dword ULong 32 bit unsigned
- Single 32 bit signed

float, double Double 64 bit signed
- Huge 64 bit signed
- UHuge 64 bit unsigned
- Decimal 96 bit signed

Table 3.1: Numerical data types in CAPL and WWB

1 Dim arr(9) as Integer ’ WWB ’

The array declared in WWB contains elements 0 to 9. Thus, it does contain same
amount of elements as the array declared in CAPL.

Moreover, CAPL supports expressions inside the array brackets, e.g. [index++].
This is not possible in WWB and has to be solved in another way.

For Loop

CAPL includes the C-style For loop. WWB allows two syntaxes of the For loop, both
different from CAPL though. First type is the iteration from one value to some final
value with an iteration step. For example:

1 For i = 1 to 1000 Step 100

2 Debug.Print i

3 Next i

Next possible implementation is Python-like For loop for iteration over set of items.
This kind of For loop has no equivalent in CAPL. For example:

1 For Each Document In App.Documents

2 Debug.Print Document.Title

3 Next Document

Jump Statements

WWB does not include these jump statements – break, continue. The statement
return is included in WWB-COM, therefore, it can be used in the same manner as in
CAPL.

Global Variables

The global variables in CAPL are defined inside the section variables { ... }. Be-
cause no such a section exists in WWB, it is recommended to place the global variables

28/75

CHAPTER 3. REST-BUS SIMULATION

inside the main method in a WWB script4.

Events

As mentioned in Section 3.5.2.1, a CAPL program may include events. Whenever an
event occurs, the procedure belonging to the event is triggered. There are no such
events in WWB. It means, it is not possible to execute code based on e.g. pressed key,
changed variable, expired timer, etc. Because of this reason, the keyword this has no
usage in a WWB program. The keyword this can be thought of as a “pointer” to a
particular message, timer, variable, etc. for which an event is declared.

Nevertheless, PROVEtech:TA enables code execution based on a received message.
First option would be to implement special DLL files for this purpose. Another, more
convenient option is to use the Automation Library. By using a real-time script, it
is possible to wait for reception of a message and execute some code afterwards. It
can be seen that this is not the full equivalent of the CAPL event. A message can be
received any time during a simulation in CANoe and the particular code will execute. In
PROVEtech:TA however, we must start a real-time program and wait for the reception
of that message, so it is not possible to make one-to-one translations from CAPL events
to Automation Library events.

4i.e. right after Sub Main

29/75

CHAPTER 3. REST-BUS SIMULATION

Figure 3.3: Example of a configuration file for PROVEtech:RE

30/75

CHAPTER 3. REST-BUS SIMULATION

Figure 3.4: Created workspace in PROVEtech:TA

Figure 3.5: Created workspace in CANoe

31/75

CHAPTER 3. REST-BUS SIMULATION

32/75

Chapter 4

Converter

The goal of the converter is to convert a rest-bus simulation created in CANoe to
other software tools. This thesis deals mainly with the conversion into PROVEtech:TA.
The main focus of the conversion is on converting test scripts from CAPL to another
language. For this purpose, the lexer and parser have been developed in Python with
Python Lex-Yacc (PLY) package. More about the developed lexer and parser can be
found in Section 4.1. The converter supports two target platforms that use two differ-
ent languages. Specifically, PROVEtech:TA that uses WinWrap Basic as the language
of test scripts, and Linux that uses C as the language of test scripts. The overview
of the translator is given in Section 4.2. The overall structure of the code translation
is displayed in Fig. 4.1. Additionally, the conversion of a workspace from CANoe
to PROVEtech:TA has been created as well. Since the graphical user interfaces of
PROVEtech:TA and CANoe are very different from each other, it is not possible to
make one-to-one conversions of the graphical user controls of the given rest-bus simu-
lation. So, it may be necessary to spend some time arranging the graphical controls
manually after the conversion. The workspace conversion is described in Section 4.3.
XSLT language was used for graphics conversion. Additionaly, XSLT was used for the
feature of setting certain values in XML configuration file for PROVEtech:TA. The
usage of the whole program is described in Section 4.4.

4.1 Lexer and Parser

The lexer and parser has been developed with Python Lex-Yacc (PLY) package. PLY
is a pure Python implementation of the known unix-based tools Lex and Yacc, both
written in C. PLY relies on the way in which traditional Lex and Yacc tools work.
Both of these modules, lex.py and yacc.py are found in Python package called ply.
From now on, names Lex and Yacc refer to lex.py and yacc.py modules. The Lex
module is used for carrying out the lexical analysis. This means, it breaks input text
into a collection of tokens specified by a collection of regular expression rules. The
Yacc module, on the other hand, is in charge of parsing a code. It is used to recognize
language syntax that has been specified in the form of context-free grammar. The Yacc
module uses left-to-right, rightmost derivation (LR) parsing. It generates its parsing

33/75

CHAPTER 4. CONVERTER

Figure 4.1: An UML sequence diagram of the code translation from CAPL to WWB

tables using Look-Ahead LR (LALR) algorithm.

The Lex and Yacc modules are meant to work together. Specifically, Lex provides
an external interface in the form of the token() function that returns a next valid token
on the input stream. Yacc calls this repeatedly to retrieve tokens and invoke grammar
rules. The output of Yacc in this project is an Abstract Syntax Tree (AST). Building
the AST for this project is described in Section 4.1.2.2. The implementation of Lex
is further described in Section 4.1.1. The implementation of Yacc is then described in
Section 4.1.2. The biggest difference between the Yacc module in Python and the Yacc
program in Unix is that Unix Yacc converts grammar specification to a C code whereas
Python Yacc interprets the specification directly. This means that there are no extra
source files nor a special compiler step, e.g. running Yacc to generate Python code for
the compiler. Since the generation of parsing tables is relatively expensive, PLY caches

34/75

CHAPTER 4. CONVERTER

the results and saves them to a file. If no changes are detected in the input source, the
tables are read from the cache. Otherwise, they are regenerated. [11]

4.1.1 Lexical Analysis

As mentioned above, the Lex module (lex.py) is used to tokenize an input string.
This means, it breaks the input string into chunks called tokens. Tokens are given the
identifiers which are used by the parser. The tokenizing breaks input into separate
tokens. An example of a simple input expression and a tokenized output may look as
follows:

x = 1 + 2;

(’ID’,’x’), (’EQ ’,’=’),

(’DEC_NUM ’,’1’), (’PLUS ’,’+’), (’DEC_NUM ’,’2’)

The identification of individual tokens is done by defining regular expression rules.
Further, it is described how the definition of regular expressions was done during this
project.

Beforehand, it is mentioned that the class Lexer is defined in the file lexer.py.
As the first step, a list of tokens, which defines all possible token names, must be
provided. The list of tokens was divided into several “sub-categories” where tokens are
defined according to [12]. These categories are:

• arithmetic operators – +, −, ∗, /, %, ++, −−

• assignment operators – =, + =, <<=, & =, · · ·

• boolean operators – !, ||, &&

• bitwise operators – , &, |, ̂, <<, >>

• relation operators – ==, ! =, >, >=, <, <=

• miscellaneous operators – ., ?, :

• others

The sub-category others, from the categories listed above, contains all other token
names that specify, for example a white space, parentheses, an identifier, a comment,
etc. The following code is an example of defined tokens:

1 tokens = [

2 # arithmetic operators

3 ’PLUS’,

4 ’MINUS’,

5 ’TIMES’,

6 ...

7 # others

8 ’WS’,

9 ’LCBR’,

10 ’RCBR’,

35/75

CHAPTER 4. CONVERTER

11 ’ID’,

12 ’COMMENT ’,

13 ...

14]

This token list is then appended by a list that specifies reserved words and a list that
specifies different number formats, i.e. int, float and hex. The reserved words handle
all data types from CAPL, as well as keywords of control statements such as if, else,
etc.

1 reserved_words = {

2 ’char’ : ’CHAR’,

3 ’byte’ : ’BYTE’,

4 ’int’ : ’INT’,

5 ...

6 ’void’ : ’VOID’,

7 ’if’ : ’IF’,

8 ’else’ : ’ELSE’,

9 ...

10 ’return ’ : ’RETURN ’,

11 ’default ’ : ’DEFAULT ’,

12 ’this’ : ’THIS’,

13 }

14

15 ved_numbers = {

16 ’dec_num ’ : ’DEC_NUM ’,

17 ’float_num ’ : ’FLOAT_NUM ’,

18 ’hex_num ’ : ’HEX_NUM ’,

19 }

20

21 tokens = [’PLUS’,’MINUS ,...] + list(reserved_words.

values ()) + list(reserved_numbers.values ())

Each token is specified by writing a regular expression rule. Each of these rules are
defined by declarations with special prefix t_ to indicate that they define a token. The
regular expressions are defined by a string with prefix r. The simple regular expressions
are specified first for the tokens. The simple regular expressions include operator signs,
char, and so on. More about the regular expressions rules can be found in [13].

1 t_PLUS = r’\+’

2 t_MINUS = r’\-’

3 ...

4 t_LSHIFT_EQ = r’\<\<\=’

5 ...

Tokens with slightly more complicated expressions are listed, together with examples of
them, in Table 4.1. Moreover, the token CAPLEVENT_word must be mentioned separately.
It handles the keywords of CAPL events declarations. More can be found in Section
4.1.1.1. As the last, tokens that are defined as series of more complex regular expressions
are explained in Section 4.1.1.2.

When using the lexer, data are first fed into input method. After that, token is
called repeatedly to produce tokens. The following code shows the implementation of

36/75

CHAPTER 4. CONVERTER

token rule regular expression example
t NUM r’[0-9]’ 123

t STRING r’\"(\\.|[^\\"])(\\.|[^\\"])+\"’ ”hello world”
t ID r’[a-zA-Z_][a-zA-Z0-9_-]*’ x09 c

t CHARC r’\"(.)\"’ ”a”
t KEY r’\’(.)\ ’b’

t COMMENT r’/*([^*]|*[^*/])**/’ /* comment */

Table 4.1: Definition of slightly complicated token rules

using input and token.

1 def test(self ,filename):

2 data = open(filename).read()

3 self.lexer.input(data)

4 while True:

5 tok = self.lexer.token() # take next token

6 if not tok: break # EOF reached

7 print(tok)

4.1.1.1 CAPL Events Token

Since a program developed in CAPL may be organized around event procedures, a token
with a regular expression that handles the keywords of this events must be introduced.
The token CAPLEVENT_word currently supports the following general and CAN specific
events:

preStart, start, stopMeasurement, busOff, timer, key, message, errorAc-

tive, errorPassive, warningLimit, errorFrame, envVar, sysVar, preStop

The rest of events is not currently supported because they are outside the scope of
this thesis assignment. It can however be easily implemented by either modifying
t_CAPLEVENT_word token rule or by creating a new token with a specific token rule.

4.1.1.2 Token Rules as Functions

If some kind of action needs to be performed or if tokens shall be build from series of
complex regular expression rules, a token rule can be specified as a function. In case
of a complex regular expression (example in Table 4.1), a variable with this regular
expression is initialized beforehand. The @TOKEN decorator is then used with either a
token rule or a variable representing the complex regular expression as its parameter.
This decorator then attaches to a function as the parameter t. Generally, the function
always takes a single argument t which is an instance of LexToken. It has the attributes
type – token type, value – actual text matched, lineno – current line number and
lexpos – position of the token relative to the beginning of an input.

First, the following particular function introduces a rule to match an identifier and
to do a special name lookup.

37/75

CHAPTER 4. CONVERTER

1 @TOKEN(t_ID)

2 t_RESERVED(self ,t):

3 t.type = self.reserved_words.get(t.value , ’ID’)

4 return t

This function identifies the token rule t_ID and assigns a value of an entry from the
reserved words set.

Complex regular expressions (i.e. built from series of regular expressions) are han-
dled by a function in the form t_FunctionName(self,t). These regular expressions
include – different formats of digits (float and hex), array brackets (e.g. [10][10]),
the declaration of CAPL events (on keyword, e.g. on message) and specific CAPL
header and footer comments that circumscribe either CAPL events or functions (e.g.
/*@@message:msg:*/, /*@@end */). The following example shows the function for de-
tecting token CAPLEVENT. This token is built from series of complex regular expressions
that are defined in the decorator on_event_declar.

1 on_event_declar = r’(on’ + t_WS + r’)+(’ + t_CAPLEVENT_word + r’)+’

2

3 @TOKEN(on_event_declar)

4 t_CAPLEVENT(self ,t):

5 return t

Another functions for handling another complex regular expressions are written in the
same manner.

4.1.2 Parsing

The Yacc module (yacc.py) is used to parse language syntax. The name ”yacc” stands
originally for ”Yet Another Compiler Compiler”. The syntax is specified in terms of
Backus-Naur Form (BNF) grammar. An example of such a unambiguous grammar
might look as follows:

expression : expression + term

| expression - term

| term

term : term * factor

| term / factor

| factor

factor : NUMBER

| (expression)

In the grammar, symbols such as NUMBER, +, −, are known as terminals. They cor-
respond to raw input tokens. Identifiers such as term or expression are known as
non-terminals. They refer to grammar rules consisting of terminals and other rules.
This grammar is defined in docstrings which are then inserted into a Python code. As
an example, the simple arithmetic expression from the previously described grammar
is shown:

38/75

CHAPTER 4. CONVERTER

1 def p_expression_plus(p):

2 ’expression : expression PLUS term’

3 p[0] = p[1] + p[3]

The expression grammar given in the previous example has been written in order to
eliminate ambiguity. However, generally it is very difficult to write grammar with all
ambiguity eliminated. The dealing with ambiguous grammar is described in Section
4.1.2.1.

Yacc uses the LR parsing. LR parsing can be called shift-reduce parsing as well. It
is the bottom up technique that tries to recognize the right hand side of grammar rules
first. During LR parsing, symbols are shift onto a stack. After that, it is looked up on
this stack and the next input token, and it is searched for patterns that match one of
the grammar rules. When a valid right hand side is found on the top of the stack, it
is usually reduced and the grammar symbols are replaced by the grammar symbol on
the left hand side. To understand this principle, the parsing of 1 + 2 expression is given
according to unambiguous grammar mentioned at the beginning of this section.

Step Symbol stack Input tokens Action

---- ------------ ------------ ------

1 1 + 2 Shift 1

2 1 + 2 Reduce factor : NUMBER

3 factor + 2 Reduce term : factor

4 term + 2 Reduce expression : term

5 expression + 2 Shift +

6 expression + 2 Shift 2

7 expression + 2 Reduce factor : NUMBER

8 expression + factor Reduce term : factor

9 expression + term Reduce expression :

expression + term

10 expression Reduce expression

11 Done.

In the project specific implementation, the Parser class is implemented in the file
parserPy.py. Each grammar rule is then defined by a separate function. The function
accepts an argument p. Under the index p[i], it contains the corresponding value
of a symbol in the given rule1. The function p_error catches the syntax errors, i.e.
any undefined rules in the grammar context. If any syntax error is caught, the output
containing the corresponding value of a symbol and the corresponding line number will
be printed to the console. [11]

4.1.2.1 Ambiguous Grammar

As mentioned above, sometimes it is very difficult to define the unambiguous grammar.
A developer would very often use such expression – expression : expression PLUS

expression instead of dividing it into other ”sub-rules”. The grammar defined in this
way is ambiguous since the parses may have two options at the same time – either shift

1the left hand side is under the index p[0]

39/75

CHAPTER 4. CONVERTER

on a stack or reduce. By default, all shift/reduce conflicts are resolved in favor of shift-
ing. This may, for example, introduce problems during parsing arithmetic expressions.
To resolve ambiguity, the Yacc module allows assigning a precedence level to individual
tokens. This is done by adding the following type of code:

1 precedence = (

2 (’left’, ’PLUS’, ’MINUS’),

3 (’left’, ’TIMES’, ’DIVIDE ’),

4 ...

5)

4.1.2.2 Building Abstract Syntax Tree

The Yacc module provides no special functions for constructing an AST. The Python
build-in library can be used in some cases. However, it turned out that this library is
not very suitable for parsing the CAPL language because it contains nodes that are not
present in CAPL, or on the other hand, it lacks nodes needed for building the AST for
the CAPL code. For the construction, the tree structure has been created by defining
Node class.

1 class Node:

2 def __init__(self ,type ,children=None ,leaf=None):

3 self.type = type

4 if children:

5 self.children = children

6 else:

7 self.children = []

8 self.leaf = leaf

9

10 def __repr__(self):

11 return "{type: %s, children: %s, leaf: %s}" % (self.type ,

self.children ,self.leaf)

The description of the AST for this project will be accompanied by displaying some
parts of the AST. The appropriate description will follow in such a manner, that a
reader can get acquainted how the AST is built and what syntax to use in order to ease
a translation to WinWrap Basic or C when creating an input file. The terminals in the
AST can be recognized by upper-case letters. Even though, it is assumed that a user
will built the AST for a CAPL code that has already been compiled in some CAPL
editor, by understanding the AST a user can easily identify errors in CAPL syntax that
would lead to a malfunction of the parser.

By understanding the AST, a user can easily identify a syntax for which the parser
does function properly.

First of all, the whole program is divided into code_fragments. Each code_fragment

represents a node, that can be of four different types.

40/75

CHAPTER 4. CONVERTER

Figure 4.2: Node Function_UD

Listing 4.1: Example of Node: Function UD

1 /* @@caplFunc:function1(int x): */ // CAPLFUNCBEGIN

2 void function1(int x) // user_function

3 {

4 ... // compound_statement

5 }

6 /*@@end */ // CAPLEND

Figure 4.3: Node CAPL_event

Figure 4.4: Node GlobalVars_decl

The terminal CAPLEND is a CAPL specific comment that appears at the end of every
section, specifically /*@@end */.

The Fig. 4.2 shows the structure of a fragment for declaring a user-specific function.
The terminal CAPLFUNCBEGIN is a CAPL specific comment which must also include the
name of a user-defined function. It is followed by a user-function declaration and a
compound statement. Example is shown in Listing 4.1.

The Fig. 4.3 shows the structure of a fragment for declaring CAPL events.
Capl_event_declaration includes both, the CAPL specific comment and declaration
of an event. There are only two differences from user-defined functions. First, the
CAPL specific comments are different in content. Second, the CAPL events do not
take any parameters. The table 4.2 shows the supported CAPL events.

Fig. 4.4 shows the structure of a fragment for declaring global variables. This
is exactly the same as declaring CAPL events with the difference in comment and the
declaration itself. The comment with declaration goes as /*@@var:*/ variables{...}.

41/75

CHAPTER 4. CONVERTER

specific comment event
preStart:PreStart: on preStart
startStart:Start: on start

stop:StopMeasurement: on stopMeasurement
busOff:BusOff: on busOff

timer:timerName: on timer timerName
msg:messageName: on message messageName

errorActive:ErrorActive: on errorActive
errorPassive:ErrorPassive: on errorPassive

warningLimit:WarningLimit: on warningLimit
errorFrameErrorFrame:ErrorFrame: on errorFrame

envVar:variableName: on envVar variableName
sysVar:variableName: on sysVar variableName

Table 4.2: Supported CAPL events

The last code fragment are comments. The node COMMENT is either an one-line or
multi-line comment like in C language.

As can be seen, compound_statement is the key part of every fragment. The com-

pound_statement is bordered with curly braces. Inside curly braces are block_items.
The block_item can be of five different types:

declaration, assignment, statement, case_statement, comment.

4.1.2.2.1 Declaration & Assignment

First of all, it is important to say that assignment is basically the same as declaration.
The only difference is that the declaration includes the type of a variable, type of an
array, type of a function, etc. The declaration is divided into two parts. First the
declaration of messages is represented separately by node Decl-MSG. This node includes
messages name and ID, e.g. message 0x001 msg. The rest of declarations is represented
by node Declaration. The structure of node Declaration is displayed in Fig. 4.5.

Figure 4.5: Node Declaration

There are two leaves, declaration_type
and declaration_list. The declara-

tion_type can be one of following types:

byte, int, word, dword, long,
float, double, timer, mstimer,
char, void.

As can be seen, declaration_list in-
cludes one more single declarations sep-
arated by a comma2.
The declaration_single can have sev-
eral forms. The structure of these forms

2e.g. x, y, z

42/75

CHAPTER 4. CONVERTER

is explained piece by piece starting from
the basic ones. Every possible structure
also contains corresponding examples.

The simplest possible declaration is
not displayed in a figure. However, the simplest possible declaration consists only
from entry. The entry may be one of the following:

• node ID – e.g. x

• node This – keyword this

• node ThisDot – e.g. this.dlc

• node Key – e.g. ’a’

The next structure of declaration, which is also not displayed, represents node Array,
and contains only array_brackets above the entry, e.g. x[], y[5][5]. Subsequently,
another structures of declarations (node Assign, node Assign_OP, node Assign_array)
already contain leaves expression. These structures represent assignments. The struc-
tures are shown in Fig. 4.6. It is apparent that the structures always contains entry

Figure 4.6: Different forms of declaration_single – assignments

followed either by equals or assign_operator sign, or by array_brackets with sub-
sequent equals or assign_operator sign. The assign_operator can be one of the
following:

+ =, − =, ∗ =, / =, % =, <<=, >>=, | =, & =,ˆ=.

Furthermore, the equals sign can be followed by a so called initializer_array in
case of an array declaration. In other cases, the equals or the assign_operator sign
is followed by an expression. The expression can be either logical_expression or
conditional_expression (node Cond_EXPR).

The initializer_array is either a string, a list of strings, or a list of numbers.
The following example shows all possible cases:

1 {"ABCDE"}

2 {"ABCDE","FGHIJ","KLMNO"}

3 { 1,2,3,4,5 }

4 { {1,2,3},

5 {4,5,6},

6 {7,8,9}

7 }

43/75

CHAPTER 4. CONVERTER

As will be further explained, the parser gradually proceeds through as follows – log-

ical_expression/conditional_expression→ binary_epression→ unary_expression.
The logical_expression is described beforehand. It may bind recursively two

expressions by either a logical AND (&&) or a logical OR (||). If they are bound
by a logical operator, they represent the node Logic_EXPR. The structure of logi-

cal_expression is following:

• binary_expression

• logical_expression operator logical_expression

• (logical_expression) operator (logical_expression)

Next, the binary_expressions may either stand for unary_expression, or may bind
recursively two expressions by either a relational operator or a bitwise operator. Sim-
ilarly as in the previous case, if they are bound together they represent the node Ex-

pression. The unary_expression can have the following forms:

• single_expression

• value_expression

• capl_function_body

The single_expression stands for a unary operation, i.e. the increment or decrement
of a variable (postfix or prefix), a variable’s complement or logical NOT. Behind the
term value_expressions may be either a variable, a variable with array brackets3, a
constant (character or number), or a so called message_signal. It is important to say
that a number can be either in decimal or hexadecimal format. The message_signal

represents the message name paired together with the signal name by a double colon,
e.g. message control::signal button. The capl_function_body represents the node
CAPL_fcn. It is simply any function’s name with or without parameters inside paren-
theses (as shown in Fig. 4.7).

To make it clear, listing 4.2 shows examples of possible expressions.

Listing 4.2: Examples of expressions

1 x + y && z << 1 // logical_expression

2 x + y, z << 1 // binary_expression

3 x++, y++, ++x, --x, ~x, !x // single_expression

4 x, arr[], 999, 0x1FF // value_expression

5 function1 (), function2(x,y) // capl_function_body

Next, the conditional_expression is described. It it does not step right down
towards the binary_expression and so forth. It has the structure shown in Fig. 4.8.
The example is following:

1 (x < y) ? z : y

3e.g. var[]

44/75

CHAPTER 4. CONVERTER

Figure 4.7: Node CAPL_fcn

Figure 4.8: Node Cond_EXPR

4.1.2.2.2 Statement & Case Statement

The statement contains the following type of statements:

capl_function, compound_statement, if_statement, while_statement,
do_while_statement, for_statement, switch_statement, jump_statement

All of these statements are equivalent to the statements in C language, except the
capl_function. Therefore, they do not have to be extensively described. However, a
short overview is presented. The capl_function has already been previously described.
It corresponds to the expression capl_function_body. It is a name of a function either
with or without parameters ended by a semicolon, e.g. function(x,y);.

The compound_statement has already been completely described as well. It may
contain declarations, assignments or other statements.

At all other control statements, control statements must be placed inside curly
braces. Otherwise, the parser will produce an error and the parsing process will crash.
Below is an example of a working and a non-working case:

1 if (speed < 100) { cruise_speed = 100; } // working

2 if (speed < 100) cruise_speed = 100; // non -working

The if_statement has two possible forms. First option is the statement without
else, the other contains an else statement. To make it clear, the structure of the
if_statement with else is shown in Fig. 4.9. That picture presents the idea how
all control statements are parsed. Similarly, while_statement and switch_statement

consist of the control keyword followed by a control statement inside parentheses and
the compound_statement. The case_statement is parsed apart from the control state-
ments since it has a different structure. As in C language, do_while_statement places
the control statement at the end terminated by the semicolon. The for_statement

must include all three parts of the statement. It is not possible to implement For loop

45/75

CHAPTER 4. CONVERTER

in a manner such as for(; number != 0 ;) { ... }. The first part, i.e. the initial-
ization of a variable both may and may not include the type of variable. However, it is
recommended to use the variable type due to easier translation to other languages.

Figure 4.9: Node IF-ELSE

4.2 Translator

After the CAPL code is parsed, it can be translated to other languages. How the
translator works for translation to WinWrap Basic is described in Section 4.2.1. The
translation to the C language would be carried out similarly. The complete translation
to the C language has not been developed, because for the creation of a full-fledged
rest-bus simulation not only translation of test scripts from one language to another
is sufficient. A simulation engine, which procures the rest-bus simulation based on an
input DBC/ARXML file, is needed. Even though, the complete translation to C has
not been developed, adding this feature to the translator part should be straightforward
because CAPL is very similar to C. Nevertheless, the concept of translating events that
react on received messages is proposed in Section 4.2.2.

4.2.1 Translation to WinWrap Basic

An AST serves as an intermediate representation of the parsed code. The converter
gradually proceeds through the created AST during the translation. If a particular tree
has any subtrees, the code is first recursively generated for each of the subtrees. The
function generate_code takes the tree/subtree as an argument. The WinWrap Basic
(WWB) code is then generated for every node based on the node’s type and looking at
node’s children and leaves. The translation process is described in Section 4.2.1.1. Since
the WWB scripting language is quite far different from the CAPL scripting language,
the complete one-to-one translation from CAPL to WWB cannot be created. More-
over, some functions, such as timers, are not currently supported even by the available
libraries in PROVEtech:TA. The main differences and the code unsupported by WWB
are mentioned in Section 3.5.3. The examples of translated code together with the build
AST are included in Section 4.5.

4.2.1.1 Translation Process

The following subsections describe how particular nodes of an AST are translated.

46/75

CHAPTER 4. CONVERTER

4.2.1.1.1 node GlobalVars decl

Many CAPL programs start with the section containing declaration of global variables.
The node GlobarVars_decl covers these global variables. The code from this section
is put inside the main method in a WWB script4. The pieces of code inside this section
can be declarations (node Declaration), declarations of messages (node Decl-MSG)

and comments (node COMMENT). The example of declaring global variables is shown in
the example 4.5.1.

4.2.1.1.2 node Declaration

The node Declaration is translated by the function generate_declaration. The
input for this function is a subtree of a particular declaration. Due to the reason that
the variable type in WWB always starts with an uppercase letter5, the function first
looks for the variable type in the tree’s leaves, and subsequently changes the first letter
to the uppercase. After that, the function looks at the tree’s children. Unless there
is a subtree of another node found, the declaration is generated. Moreover, multiple
declarations may be written in CAPL per one line. Then each of the declarations is
translated separately. For example:

1 // CAPL

2 int x, y, z;

1 ’ WWB ’

2 Dim x as Int

3 Dim y as Int

4 Dim z as Int

On the other hand, a subtree of the following node types may be found (as explained
in Section 4.1.2.2.1):

Array, Assign, Assign_Array

An array must be declared with some dimensions. Therefore the function gener-

ate_array is used in order to separate array brackets and obtain the numbers of relevant
dimensions. The function generate_array has the following input parameters:

variable name, array brackets (e.g. [10][10]), variable type

The declared array may look as follows:

1 // CAPL

2 int x[10][10];

1 ’ WWB ’

2 Dim x(10 ,10) as Int

4i.e. right after Sub Main
5WWB is not case-sensitive though, thus the types do not have to start with an uppercase letter

47/75

CHAPTER 4. CONVERTER

When the node has the type Assign, the assignment is generated after a line of the
declaration (i.e. as if no assignment would follow) has been put on the previous line.
The function generate_code is called recursively with the relevant subtree as the input
parameter. The generation of an assignment is described in Section 4.2.1.1.3.

The node Assign_Array works on the same principle. It first generates code for
the declaration of an array, then the assignment of values into array’s positions. The
assignment into the array’s positions is described in Section 4.2.1.1.4. Declarations with
an assignment can be seen in the examples 4.5.1 and 4.5.2. The example 4.5.3 contains
a simple declaration. The example 4.5.4 shows the declaration of arrays.

4.2.1.1.3 Node Assign

The function generate_assignment is called after the node Assign has been encoun-
tered. Most importantly, the leaves of the subtree belonging to this node contain either
values (i.e. number or characters) or nodes that are assigned to a variable. The node
that can be assigned may be either of the type Array, Expression or Logic_EXPR. The
node Array means assigning a value from an array to a variable. For example:

1 // CAPL

2 x = arr[i][j];

1 ’ WWB ’

2 x = arr(i,j)

If the node Expression is assigned to a variable, the translator continues again recur-
sively to the function generate_code with the relevant subtree as the input parameter.
It should be clear from Section 4.1.2.2 that a call of a function is one of the subtrees in
the node Expression. The generation of expressions is described in Section 4.2.1.1.5.
The function generation is then described in Section 4.2.1.1.6. Assignments of simple
variables is shown in examples 4.5.1 and 4.5.2. The example 4.5.3 shows the assignment
of an expression, whereas the example 4.5.5 shows the assignment of a CAPL function.

4.2.1.1.4 Node Assign Array

WinWrap Basic do not enable assigning all values into array at one step as in CAPL.
Therefore the values need to be assigned step by step. That means, one assignment per
one line of the generated code. For example:

1 // CAPL

2 int x[2][2] = { {1,10}, {99,2} }

1 ’ WWB ’

2 Dim x(2,2) as Int

3 x(0,0) = 1

4 x(0,1) = 10

5 x(1,0) = 99

6 x(1,1) = 2

An example of the node Assign_Array can be seen in the example 4.5.4.

48/75

CHAPTER 4. CONVERTER

4.2.1.1.5 Nodes Expression & Logic EXPR

During the translation of an expression, an operator is found beforehand. The operator
may be both unary or binary. The operator is the first child of the subtree belonging
to the node Expression. The other children of the subtree are then literals, variables,
or other expressions located in the particular expression. Unless one of the children is
a function, then the expression consisting of these children and the leaf is generated.
If the expression consists of a function, the function generate_function (described in
Section 4.2.1.1.6) is called in order to generate the code. Even though parsing of an
expression consisting of other expressions (in other words more than binary expression)
is possible, the translation currently works only for the binary expressions. More com-
plicated translation currently will not cause the translator to crash, but will produce
an inappropriate output. Therefore a user should keep this in mind when writing more
complicated expressions. They should be split apart on separate lines. Simple expres-
sions inside control statements are shown in the examples 4.5.2 and 4.5.3. The example
4.5.6 shows more complicated expressions.

A logical expression binds together two unary or binary expressions by a logical
operator, AND or OR. As in the case of node Expression, an operator is the leaf of
the subtree belonging to the node Logic_EXPR. An example of a logical expression is
shown in the example 4.5.6.

4.2.1.1.6 Nodes Function UD & CAPL fcn

The function generate_function is called with the relevant subtree of nodes Func-

tion_UD or CAPL_fcn as the input parameter. When any occurrence of a function is
translated from CAPL into WWB, it may or may not include a type of a function.
Naturally, a function has no type when a piece of code that calls a particular function
occurs. That is, a function in an assignment or an expression would contain no type.

On the other hand, the declaration of a function as the procedure must include its
type. The type can be found as the first child of the subtree. If a function is of the
type void, or in other words has no return type, it is generated as an according WWB
procedure called Sub. For other cases a function is generated as follows6

1 // CAPL

2 int function1(double x) { ... }

1 ’ WWB ’

2 Function Function1(x as Double) as Int

3 ...

4 End Function

The example 4.5.4 shows how the node Function_UD is translated.

The generation of node CAPL_fcn is specific. Under this type, there are certain func-
tions that have corresponding equivalents in libraries used in PROVEtech:TA. A name
of a function is retrieved from the leaf of the subtree. Then different kind of translation

6function’s first letter is made upperletter according to WWB

49/75

CHAPTER 4. CONVERTER

is carried out based on the function’s name. For illustration, few frequently used func-
tions in rest-bus simulations were chosen. Other functions can be easily implemented.
However, many functions supported by Vector CANoe (i.e. CAPL language) are not
supported by PROVEtech:TA and their translation is outside the scope of this project.
The selected functions and their description can be found below:

• CAPL syntax: getSignal(signalName)
WWB syntax: System.GetSignal signalName

description: gets the value of a signal
parameters: signalName – the name of a signal to be polled

• CAPL syntax: getFirstCANdbName(buffer, size)

WWB syntax: System.GetDatabase buffer

description: finds out the name of the first assigned database parameters: buffer
– buffer in which the database name is written, size – size of the buffer (not used
in WWB)

• CAPL syntax: ILSetSignal(signalName, value)

WWB syntax: System.SetSignal signalName

description: sets the transferred signal to the provided physical value parameters:
signalName – the name of a signal to be set, value – the physical value to which
the signal should be set

• CAPL syntax: output(messageName)
WWB syntax: Send messageName

description: outputs a message from the program block; for WWB, it must be
checked whether Channel, ID and Data were initialized parameters: messageName
– the name of a message to be sent

• CAPL syntax: write(string), ...

WWB syntax: Debug.Print " ... "

description: outputs a text to the console
parameters: string – string to be output; CAPL uses C-style output such as
"%d" for the output of numbers, WWB connects pieces of string simply by + sign7

The examples 4.5.5 and 4.5.6 contain translations of nodes CAPL_fcn.

4.2.1.1.7 Control Statements

All control statements8 except the For and Switch statements are translated in the
same manner. A control keyword is placed at the beginning of a section. The leaf

7e.g. ”hello World = ”+x
8If, If-Else, While, Do-While

50/75

CHAPTER 4. CONVERTER

of the relevant subtree contains a control expression which is then recursively gener-
ated by calling the function generate_code. The children of the subtree represent the
code inside a compound statement. This code is again generated by the function gen-

erate_code. The control statement ends with a keyword belonging to the particular
control statement, e.g. If ... End If.

The Switch is translated in a similar way as statements described above. However,
the children of the subtree contain several cases that may be selected during switching.
Due to this fact, the converter walks iteratively through the children. For every child,
the code belonging to the particular case is then generated.

Since the For statement is far different in CAPL and WWB, only the translation of
simple For loops has been implemented. The word simple means that For loop written
in CAPL should include the number till which the loop should be iterated and the size
of iteration step. The code inside the statement cannot be generated if this condition
is not satisfied. Example of the For statement may look as follows:

1 // CAPL

2 for(i = 1; i < 10; i++) { ... }

1 ’ WWB ’

2 For i = 1 to 10 Step 1

3 ...

4 Next i

Considering the jump statements, only Return is translated because WWB does not
include any other jump functionality. Other jump statements will not be translated.
The examples of control statements are shown in the examples 4.5.2 and 4.5.3.

4.2.1.1.8 node CAPL event

As described in Section 4.4.3, CAPL event triggers the code inside the compound state-
ment after a specific on event. When such an event is found, the keyword on is separated
and the converter looks for the name of the event. After the name is found, the pro-
cedure is generated as if a function has been spot in the CAPL code. The name of an
event only effects the name of the particular Sub. If one of the following is found – on

key, on message, on timer, the name of a belonging key, message or timer appears in
the name of Sub. Examples of the generated code may look as follows:

1 // CAPL

2 on Start { ... }

3 on message msg { ... }

1 ’ WWB ’

2 Sub On_Start

3 ...

4 End Sub

5 Sub On_message_msg

6 ...

7 End Sub

How the node CAPL_event is translated, is shown in the example 4.5.6.

51/75

CHAPTER 4. CONVERTER

4.2.2 Translation to C

Translation to the C language is carried out in the same manner as the translation to
WWB (described in Section 4.2.1). Due to the fact that CAPL has almost the same
syntax and semantics as C, whole translation process is not described. However, CAPL
includes a feature of reacting on a received message. This event is called on message.
When the particular message is received, the relevant procedure is started. The main
focus of this section lays in introducing a feature of translating the reaction on received
messages to the C language. The SocketCAN framework, together with the libev library
are used for this purpose. SocketCAN is the framework for CAN bus under Linux. Is
has been designed to allow socket communication similarly as possible to the TCP/IP
protocols [14]. The methods used for communication on the bus are described in Section
4.2.2.1. The libev is a high-performance event loop with many features [15]. The most
important feature for this project are I/O watchers. The concept of implementing this
library which reacts to a received message and triggers a relevant event is described in
Section 4.2.2.2.

From the programming point of view, the CAPL and SocketCAN/libev reaction
on messages has showed not to be the one-to-one equivalent. CAPL has an assigned
database with IDs and names of all messages. The on message simply waits for a par-
ticular name of message and triggers the relevant procedure. By using the SocketCAN
however, it is, first of all, checked whether the IDs match the IDs from the database.
In case an exact equivalent is needed, the database with message names would proba-
bly need to be linked to the C program. From the rest-bus simulation point of view,
PROVEtech:TA and Vector CANoe use the actual drivers by vendors’ of CAN to USB
converters to connect to the Windows operating system. The usage of SocketCAN how-
ever, seems as an interesting alternative for devices with the Embedded Linux platform.
The drawback is that the usage of SocketCAN and libev represents solution only for the
CAN bus. Commercial software tools most frequently contain possibility of creating a
rest-bus simulation even for other buses such as LIN or FlexRay.

4.2.2.1 Usage of SocketCAN

This section describes the file socketCan.c implementing the communication on the
CAN network. The whole while can be found in the attached CD, or online at github.
com/mikulleo/RestbusSim-Converter.

Likewise in implementing the TCP/IP communication, a socket needs to be opened
first for communicating over the CAN network. This is done in the function open_port.
This function takes a port name as the input parameter. The socket is opened by the
function socket. After that, the port name is copied to the interface structure by
calling strcpy, and a file descriptor is set to be non-blocking by fcntl. To determine
the interface index, the function ioctl is used. The relevant data are then assigned to
sockaddr_can, the structure for CAN. Finally, a socket is bound to the CAN interface
by calling the function bind.

The function read_port handles received frames on the network. The input pa-
rameter of this function is a file descriptor. Reading CAN frames for a bound CAN

52/75

github.com/mikulleo/RestbusSim-Converter
github.com/mikulleo/RestbusSim-Converter

CHAPTER 4. CONVERTER

socket consists of reading the structure can_frame. To read a received frame, the func-
tion read is called. On success, the number of read bytes is returned. The function
read_port returns the ID of a received frame. The idea here is to process this ID9, and
based on a recognized message further call a right handler by a libev library callback.

To write CAN frames on a socket bound to the CAN interface, the function send_frame

is used. This function takes a file descriptor and structure of a CAN frame as the in-
put parameters. The write call is located inside this function to send frames over the
network. The number of sent bytes is returned in case of success.

4.2.2.2 Usage of libev

The concept of using the libev library for creating events analogous to CAPL’s on

message events is introduced. The code is included in the file msgEvents.c, and can
be found at Attachments. This file includes a code prepared for automatic filling of
the relevant on message events. Moreover, an example of shifting to car’s reverse gear
has been created in order to demonstrate the functionality of libev. This example is
described in Section 4.2.2.2.1.

There are two watchers. First, a timer watcher is initialized by calling ev_timer_init,
and started by ev_timer_start. A relevant callback is called every time the timer ex-
pires. Another watcher is an I/O watcher. This watcher is initialized and started by
calling ev_io_init and ev_io_start. The I/O checks whether reading would not block
the process. Hence, when a file descriptor becomes readable the recvmsg_cb is called.
An ID of a received message is obtained by calling read_port. Furthermore, the switch
statement selects and triggers the procedure relevant to the received message.

This switch statement is automatically generated during the translation process
from CAPL to C. Nevertheless, function convert_hexToID is called beforehand. This
function has been created manually in order to assign correct IDs to messages used dur-
ing a simulation. When the on_message event is found in the CAPL code, the switch
statement is created with a relevant case. Nevertheless, if the switch has already been
created, only another case is added. The possible improvement of creating switch state-
ments would be to pre-process a generated AST, write down all on message events, and
then generate the switch statement. The relevant procedure for the received messages
is included in an automatically translated code from CAPL to C. Therefore, this file
must be included in the msgEvents.c file. To make it equivalent to the CAPL events,
a database should be available, so the message name could be retrieved.

4.2.2.2.1 Example – Reverse Gear

The example can be found if the file sent_rcv_libev.c. First of all, a message is
sent periodically over a CAN bus in this example. Consequently, messages are read
back while arbitrating if the reverse gear has been set successfully based of received
data. There are two watchers. First, a timer watcher triggers periodically a call-
back sentmsg_cb. This callback sends the data for setting the reverse gear by calling

9+ possibly compare it to messages’ names in a database

53/75

CHAPTER 4. CONVERTER

send_frame. The function delay is called. It ensures that an I/O watcher is started
after one second. This watcher calls a callback recvmsg_cb. This callback ensures that
the data are read every specified period of time by calling read_port. Furthermore,
the message is printed depending whether bits has been set correctly.

4.3 Graphics Conversion

The conversion of the whole graphical user interface (GUI) is a very complex problem.
Graphical objects in Vector CANoe differ from those in PROVEtech:TA. Moreover,
many created rest-bus simulations use custom objects and bitmaps. During this project,
the conversion of simple objects used for the particular rest-bus simulation created in
this project has been developed. CANoe uses the file format XVP for storing the
GUI. Every created panel is located in a separate file. PROVEtech:TA uses AOF files.
An AOF file consists of several tags inside brackets. These tags specify properties
of individual pages. The whole GUI is located in one file, but workspace pages are
separated by the tag [PageX], where X is the page number. The format XVP is an
XML-based file format. So, EXtensible Stylesheet Language Transormation (XSLT)
together with XML Path Language (XPath) can be used for the conversion. To be more
precise, lxml toolkit is used. It is the Pythonic binding for the C libraries libxml2 and
libxslt.

4.3.1 Implementation

Since several XVP files should be converted into one AOF, the GUI of created converter
enables selecting multiple input XVP files which will be converted into one AOF file.
Thus, XVP files need to be iteratively processed and converted into one single file.
XSLT contains the wrapper type ElementTree. The ElementTree enables loading of
an XML file as set of Element objects. These objects are designed to store hierarchical
data structures such as XML. After a file has been selected, the transformation is run
on XML code in order to get the ElementTree by calling the function etree.parse,
where the file path is the only input parameter.

After that, the function tree.xpath is used several times during the conversion
process. This function performs a XPath query for nodes of the ElementTree. First of
all number of objects is found by counting number of Object tags. The ID is assigned
to every object when iteratively exploring every object’s properties.

Inside the Object tag, only its type is important. The type must be found for every
object. For example:

1 <Object Type="Vector.CANalyzer.Panels.Design.CheckBoxControl , ... "

>

Obviously, the whole type property must be split in order to separate the actual type,
such as CheckBoxControl. In this project objects CheckBoxControl and ButttonCon-

trol are used. Nonetheless, the enum type in the code is prepared for the conversion of

54/75

CHAPTER 4. CONVERTER

other CAPL default controls. Afterwards, Property tags are processed. Some proper-
ties’ meaning is obvious. Those are Name, Size, and Location. The tag Text includes
the text that is displayed on the control. The very important property is SymbolCon-

figuration. This property includes several values separated by the semicolon. First
two numbers are not important for the conversion at all. After them, the values go in
following order – a database name10; a node name11; a message name; a signal name;
default value of the signal; name of a DBC file. There are two lists created:

• controls_list – stores the ID of an object, a belonging node, message, signal
and DBC file

• design_list – stores the objects’ position, size and label

These two lists are sufficient for the generation of an AOF file.
Objects of controls are prefixed by the text BOOLCONTROL=Signalschlüssel:. After

this prefix, all properties of an object are written in one line separated by the semicolon.
First, the whole signal ”path” is listed, i.e. the direction together with the name of node,
message and signal. During this project, the controls on the workspace deal only with
sent signals during the rest-bus simulation. Therefore the direction TX is set implicitly.
The example below shows a possible implementation:

1 BOOLCONTROL=Signalschl ü ssel:TX.Control.Control_Actuator.OnKey; ...

As next, the name, position and size are listed. The position and size need to be
recalculated. CANoe considers the position and size values in pixels. On the other
hand, PROVEtech:TA uses its own scale. One horizontal step in the position, as well
as one piece of the button width equals 49 pixels. One vertical step and one piece of
the button height equals 25 pixels. Due to this reason, the position and size must be
recalculated before placing it in the AOF file.

For the position, the following calculation is performed:

xAOF
.
=

xXV P

h
− L

yAOF
.
=

yXV P

v
,

where xAOF and yAOF are positions in the AOF file, xXV P and yXV P are positions in the
XVP file, dividers h and v determine how large will be the horizontal and vertical space
between individual controls, and L moves all controls to the left side. The constants h,
v and L may be largely modified for other projects.

For the size, the width of a control is determined based on the width of its label.
The height is then only converted from pixels to PROVEtech:TA scale. This project
uses the following equations:

wAOF
.
=

len(name)

5.5

hAOF
.
=

hXV P ∗ 1.5

25
,

10CANdb, i.e. includes all messages and signal used during the rest-bus simulation
11one node equals one ECU

55/75

CHAPTER 4. CONVERTER

where wAOF and hAOF are sizes in the AOF file, hXV P is the height in the XVP file,
and len(name) is the length of a label.

All the attributes after YSize in the AOF file for an object can be pre-set. These
include, for example the color of a button, a text alignment, etc. As mentioned at the
beginning of this section, the conversion of GUI is a very complex problem. The GUI
conversion for this project has been successful, however it is not very neat. Nevertheless,
it provides a user with the generated workspace for PROVEtech:TA which can be very
easily modified. It is completely up to the user which changes will take place, but the
modification will most probably include changing the button sizes or positions.

4.4 Usage

This section describes how the converter should be used. The Section 4.4.2 describes
the general usage of the program. That is, what steps should be made after the program
is started. The Section 4.4.3 describes how the CAPL code should be written in order
to eliminate errors during parsing and translation to WWB.

4.4.1 Installation

The program is written in Python 3.4. It is necessary to have several Python modules
available during a compilation. The modules can be added by using the pip installer.
These modules are:

io, string, mmap, os, tkinter, lex, yacc

The lex and yacc modules are included in Ply package12. For running the tool, tk-
interApp.py needs to be executed. After this file is executed, the GUI shows up.
Subsequently, a user navigates himself through the user interface as described in the
following section.

4.4.2 GUI

After the program is started, the window showed in Fig. 4.10a opens up. This window
is used for writing all necessary values into tags inside the rest-bus XML configuration
file for PROVEtech:RE. Without setting this XML file, the rest-bus simulation will not
be functional. The windows includes the following lines:

• P:RE config file – XML: the absolute path of the PROVEtech:RE specific XML
configuration file

• DBC/ARXML file: the absolute path of the DBC or ARXML file

• RBS file – XML: the absolute path of the so called RBS file where all messages
and signals for the rest-bus simulation are defined13

12available at: http://www.dabeaz.com/ply/ply-3.6.tar.gz
13generated by RBSConfig tool

56/75

http://www.dabeaz.com/ply/ply-3.6.tar.gz

CHAPTER 4. CONVERTER

• Port Name – CAN channel : the name of a specific CAN channel used during the
rest-bus simulation, e.g. CAN1

• Bit Rate: the bit rate for the CAN channel specified in Port Name – CAN channel

The bit rate used during this project is 250 000 kb/s because the bus is a high speed
CAN. The example of all set values is in Fig. 4.10b. When the button WRITE TO
P:RE XML is pressed, all values set in the fields mentioned above will be written to
the file cited in P:RE config file – XML.

When the button GUI & Code Conversion is pressed, the window showed in Fig.
4.11a opens up. In this window, the conversion of either GUI or the CAPL code is
triggered. There are two fields that need to be filled in (Select button may be used),
specifically:

• XVP file – GUI : the absolute path of the XVP file(s), i.e. of the CANoe GUI

• CAN file – CAPL: the absolute path of the CAPL file, i.e. the code

Three buttons at the bottom serve as the initalizators of either the GUI or the CAPL
code conversion. Whenever a particular button is pressed, the belonging action will
follow. The example of a filled in window is in Fig. 4.11b. An output generated file is
called generatedWorkspace.aof.

4.4.3 Test Language Restrictions

A user should be aware of certain properties of CAPL language that could make the
parsing and consequent translation to WWB working improperly. First of all, the CAPL
specific comments for every code section must be included. For example:

1 /*@@var: */

2 variables { ... }

3 /*@@end */

4

5 /* @@caplFunc:speedTest(float speed , float clock): */

6 float speedTest(float speed , float clock) { ... }

7 /*@@end */

8

9 /*@@msg:message1: */

10 on message message1 { ... }

11 /*@@end */

Next, even though the parsing of expressions consisting of several binary expressions
works fine, the translation to WWB has been successfully created only for single binary
expressions. Due to this reason, more complicated expressions should be split apart
into the binary expression on separate lines. Following example shows both, the right
and the wrong usages:

1 // WRONG:

2 x = y + z - 10;

57/75

CHAPTER 4. CONVERTER

1 // RIGHT:

2 x = y + z;

3 x -= 10;

The binary expressions may be bound together to a logical expression. If one of the
expressions on the side is inside parentheses, then the second one must be placed inside
the parentheses as well. Below there are two possible implementations:

1 if (x != 0 && y > 0) { ... }

2 if ((x != 0) && (y > 0)) { ... }

Since the implementation of for loops is different in CAPL from those in WWB, only
the translation of simple for loops works. Under the word simple for loop is meant, that
the initialization variable must be included, the value till which the loop will iterate,
and the iteration step are included. The for loop can be implemented as follows:

1 for(int i; i < 10; i++) { ... }

Moreover, when using a control statement, i.e. for, while, etc., the code must be
placed inside the curly braces. The implementation of control statements with no curly
braces is not supported.

Another unsupported feature include the possibility of an expression inside array
brackets, such as arr[++].

To avoid a crash during any translation process, unsupported translations do not
raise an error. However, a user should be aware of these test language restrictions, and
consequently make manual changes in a translated output file.

58/75

CHAPTER 4. CONVERTER

(a) blank

(b) filled in

Figure 4.10: P:RE XML generation window

59/75

CHAPTER 4. CONVERTER

(a) blank

(b) filled in

Figure 4.11: GUI & Code Conversion window

60/75

4.5 Examples

The example 4.5.1 shows the declaration of global variables. The message declaration
can be seen there. The example 4.5.2 shows the declaration of the user-defined function.
The processing of If statements is displayed here. The example 4.5.3 shows the same
user-defined function, however with usage of For statement. Also the processing of an
expression inside the For statement is shown. The example 4.5.4 shows the processing
or an array declaration and the assignment to arrays. The example 4.5.5 shows the
processing of the CAPL event on envVar with CAPL specific functions, and their
translation to WWB equivalent. The example 4.5.6 shows the processing of the CAPL
event on start followed by If statement containing expressions and function in the
input parameter.

61/75

C
H

A
P

T
E

R
4.

C
O

N
V

E
R

T
E

R

4.5.1 Example 1

1 /*@@var:*/

2 variables

3 {

4 char letter_a = "a";

5 int j, k = 2;

6 message 0x101 msg;

7

8 /* comment */

9 }

10 /*@@end */

1 Sub Main

2 Dim letter_a As String

3 letter_a = "a"

4 Dim j As Integer

5 Dim k As Integer

6 k = 2

7 Dim msg as New CanMsg

8 msg.Id = &H101

9 ’ /* comment */ ’

10 End Sub

generate_code(tree)

-> generate_declaration(tree.child) --- char letter_a = "a";

generate_declaration(tree.child)

-> generate_code(tree.child.child)

-> generate_assignment(tree.child.child) --- int j, k = 2;

generate_message_declaration(tree.child) --- message 0x101 msg;

Figure 4.12: AST – global variables

6
2
/7

5

C
H

A
P

T
E

R
4.

C
O

N
V

E
R

T
E

R

4.5.2 Example 2

1 /* @@caplFunc:speedTest(float speed): */

2 float speedTest(float speed)

3 {

4 float cruising_speed = 70;

5

6 if (speed >= cruising_speed) {

7 speed = cruising_speed;

8 }

9 }

10 /*@@end */

1 Function SpeedTest(speed as Decimal)

2 Dim cruising_speed As Decimal

3 cruising_speed = 70

4

5 If speed >= cruising_speed Then

6 speed = cruising_speed

7 End If

8 End Function

generate_code(tree)

-> generate_function(tree.child) --- float speedTest(float speed)

-> generate_code(tree.child.child)

-> generate_declaration(tree.child.child)

-> generate_code(tree.child.child.child)

-> generate_assignment(tree.child.child.child) --- float cruising_speed = 70;

generate_code(tree.child.child)

-> generate_code(tree.child.child.leaf) --- speed >= cruising_speed

-> generate_code(tree.child.child.child) --- speed = cruising_speed

6
3
/7

5

C
H

A
P

T
E

R
4.

C
O

N
V

E
R

T
E

R

Figure 4.13: AST – the function, If statement

4.5.3 Example 3

1 /* @@caplFunc:speedTest(float speed): */

2 float speedTest(float speed)

3 {

4 for(int i; i < 10; i++) {

5 speed = speed ++;

6 }

7

8 return speed;

9 }

10 /*@@end */

6
4
/7

5

C
H

A
P

T
E

R
4.

C
O

N
V

E
R

T
E

R

1 Function SpeedTest(speed as Decimal)

2 ’ If iteration variable not declared ---> declare by Dim! ’

3 For i = 0 To 9 Step 1

4 speed = speed + 1

5 Next i

6 Return speed

7 End Function

generate_code(tree)

-> generate_function(tree.child) --- float speedTest(float speed)

-> generate_code(tree.child.child) --- for(int i; i < 10; i++)

-> generate_code(tree.child.child.child)

-> generate_assignment(tree.child.child.child) --- speed =

-> generate_code(tree.child.child.child.leaf) --- speed = speed ++;

generate_code(tree.child.child) return speed

Figure 4.14: AST – function, For statement

6
5
/7

5

C
H

A
P

T
E

R
4.

C
O

N
V

E
R

T
E

R

4.5.4 Example 4

1 /* @@caplFunc:myFunc (): */

2 void myFunc ()

3 {

4 int sample_data [4] = {100 ,300 ,500 ,600};

5 double M[2][2];

6 M[x][x] = -3.14;

7 }

8 /*@@end */

1 Sub MyFunc ()

2 Dim sample_data (3) As Integer

3 sample_data (0) = 100

4 sample_data (1) = 300

5 sample_data (2) = 500

6 sample_data (3) = 600

7 Dim M(1,1) As Double

8 M(x,x) = -3.14

9 End Sub

generate_code(tree)

-> generate_function(tree.child) --- void myFunc ()

-> generate_code(tree.child.child)

-> generate_declaration(tree.child.child) --- int sample_data [4] = {100 ,300 ,500 ,600};

-> generate_array

generate_declaration(tree.child.child) --- double M[2][2];

-> generate_array

generate_assignment(tree.child.child) --- M[x][x] = -3.14;

-> generate_array

6
6
/7

5

C
H

A
P

T
E

R
4.

C
O

N
V

E
R

T
E

R

Figure 4.15: AST – function, arrays

4.5.5 Example 5

1 /* @@envVar:initialize:*/

2 on envVar initialize

3 {

4 ILSetSignal(Ctrl_C_Stat1_AR :: ReturnKey_Psd_UB , 1);

5 x = getSignal(Ctrl_C_Stat1_AR :: ReturnKey_Psd_UB);

6 }

7 /*@@end*/

1 Sub On_EnvVar

2 System.SetSignal("TX.CTRL_C.Ctrl_C_Stat1_AR.ReturnKey_Psd_UB", 1)

3 x = System.GetSignal("TX.CTRL_C.Ctrl_C_Stat1_AR.ReturnKey_Psd_UB")

4 End Sub

generate_code(tree) --- on envVar initialize

-> generate_function(tree.child) --- ILSetSignal(Ctrl_C_Stat1_AR :: ReturnKey_Psd_UB ,

1);

generate_assignment(tree.child)

-> generate_code(tree.child.leaf)

generate_function(tree.child.leaf) --- x = getSignal(Ctrl_C_Stat1_AR :: ReturnKey_Psd_UB);

6
7
/7

5

C
H

A
P

T
E

R
4.

C
O

N
V

E
R

T
E

R

Figure 4.16: AST – CAPL event, specific functions

4.5.6 Example 6

1 /* @@startStart:start: */

2 on start

3 {

4 if(readHandle != 0 && fileGetString(timeBuffer ,elcount(timeBuffer),readHandle) != 0)

5 {

6 setTimer(cyclicTimer ,100);

7 }

8 else

9 {

10 write("Data file cannot be opened for read access.");

11 }

12 }

13 /*@@end */

1 Sub On_start ()

6
8
/7

5

C
H

A
P

T
E

R
4.

C
O

N
V

E
R

T
E

R

2 If readHandle <> 0 AndAlso fileGetString(timeBuffer ,elcount(timeBuffer),readHandle) <>

0 Then

3 setTimer(cyclicTimer ,100)

4 Else

5 Debug.Print "Data file cannot be opened for read access."

6

7 End If

8 End Sub

generate_code(tree) on start

-> generate_code(tree.child)

-> generate_code(tree.child.leaf) --- if (... && ...)

-> generate_code(tree.child.leaf.child [0]) --- readHandle != 0

generate_code(tree.child.leaf.child [1])

-> generate_function(tree.child.leaf.child [1]) --- fileGetString(timeBuffer , ...)

!= 0

-> generate_code(tree.child.child [0]) --- setTimer(cyclicTimer ,100);

generate_code(tree.child.child [1]) --- write("Data ... ");

6
9
/7

5

C
H

A
P

T
E

R
4.

C
O

N
V

E
R

T
E

R

Figure 4.17: AST – CAPL event, logical expression

7
0
/7

5

Chapter 5

Conclusion

At the early stages, basic testing of Vector CANoe and PROVEtech:TA by MBtech
was carried out on already created rest-bus simulations in order to get familiar with
these tools. During the next step, the rest-bus simulation for the head unit has been
successfully made functional for both, CANoe and PROVEtech:TA. The rest-bus sim-
ulation has been created for both formats of configuration files, i.e. DBC and ARXML.
After having created both rest-bus simulations successfully, a tool for converting the
rest-bus simulation from CANoe to PROVEtech:TA was developed. The automated
test scripts to the C language has been created as well.

The tool for converting the rest-bus simulation from CANoe to PROVEtech:TA
has been developed successfully – it has been proved directly at the MBtech company.
It allows the conversion of testing scripts from CAPL to WinWrap Basic as well the
conversion of basic GUI. Additionally, it supports automatic configuration of several
relevant settings in PROVEtech:TA specific configuration files. Because of the fact that
WinWrap Basic together with PROVEtech:TA libraries is quite different from CAPL,
the conversion of testing scripts is not one-to-one equivalent and so the translation of
some pieces of code is not possible (e.g. complicated For loops, or timers). Nevertheless,
the conversion works sufficiently for many test cases which are described in this thesis.

When translating automated test scripts from CAPL to WWB, it is assumed that a
user works with a CAPL code that has already been compiled in a CAPL editor. The
developed tool does not serve as a compiler. If a syntax error is detected during a trans-
lation process, the parser will raise an error and the program will crash. Furthermore,
if a user uses a CAPL input file that includes unsupported syntax by the translator, the
program will finish the translation. An output file must be manually modified because
it will contain translation errors as the consequence. The enhanced functionality of
translating unsupported syntax is planned to be added in future versions.

The feature of translating a CAPL code to the C language has been proposed as
a concept. This functionality could not be verified for the head unit used during this
thesis for several reasons as already mentioned in the previous text. The main reason
was that the ECU was not available for usage outside the department at the MBtech
company, and the impossibility to use own laptop (i.e. laptop with Linux platform)
inside the department. Nonetheless, the proposed concept may be used as a basis for
further development. Nevertheless, translation of automated test scripts to C works for

71/75

CHAPTER 5. CONCLUSION

many cases.
To summarize, the head unit can be controlled from CANoe and PROVEtech:TA

by using the simulation in the same manner as there were control buttons physically
available. Furthermore, the conversion process from CANoe to PROVEtech:TA works
for all test cases required by MBtech.

The usage of open-source software tools has not shown to speed up the process of
creating particular rest-bus simulations. Due to this reason, the open-source tools were
not used even though the overview is given in the document. The open-source tools
may serve mostly for additional analyses of the configuration files.

72/75

Appendix A

Content of the Attached CD

• The thesis in .pdf format

• The source of the developed tool with a functional example

73/75

Bibliography

[1] PROVEtech:TA – Operating Instructions, 2nd ed., MBtech Group, Sindelfingen,
Germany, 2014.

[2] Vector CANoe – product information. [Online]. Available: http://www.vector.
com/pi canoe en

[3] QTronic – Test Weaver. [Online]. Available: http://www.qtronic.com/en/weaver.
html

[4] MaTeLo – model-based testing. [Online]. Available: http://www.all4tec.net/
Matelo/model-based-testing.html

[5] S. Bender, V. Pannirsilvam, R. Khoo, P. L. Hidalgo, M. Tschochner, P. Sheth,
S. Osswald, D. Gleyzes, H. W. Ng, and M. Lienkamp, “Concept of an electric
taxi for tropical megacities,” in Proceedings 3rd Conference on Future Automotive
Technology, 2014.

[6] Provetech:TA – test automation. [Online]. Available: https://www.mbtech-group.
com/eu-en/electronics solutions/tools equipment/provetechta test automation

[7] DBC File Format Documentation, 1st ed., Vector Informatik, Feb. 2007.

[8] Model Persistence Rules for XML, 2nd ed., AUTOSAR, Nov. 2011.

[9] PROVEtech:RE – Manual, 2nd ed., MBtech Group, Sindelfingen, Germany, 2014.

[10] WinWrap Basic Language, online help documentation, Polar Engineer-
ing, 2014. [Online]. Available: https://www.winwrap.com/web2/basic#!/ref/
WWB-doc0001.htm

[11] D. M. Beazley. Ply (python lex-yacc). [Online]. Available: http://www.dabeaz.
com/ply/ply.html

[12] Programming with CAPL, Vector CANtech, Novi, MI, USA, Dec. 2004.

[13] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: principles, tech-
niques, and tools, 2nd ed. Boston, MA, USA: Pearson Education, 2007.

[14] Readme file for the Controller Area Network Protocol Family (aka SocketCAN).
[Online]. Available: https://www.kernel.org/doc/Documentation/networking/can.
txt

74/75

http://www.vector.com/pi_canoe_en
http://www.vector.com/pi_canoe_en
http://www.qtronic.com/en/weaver.html
http://www.qtronic.com/en/weaver.html
http://www.all4tec.net/Matelo/model-based-testing.html
http://www.all4tec.net/Matelo/model-based-testing.html
https://www.mbtech-group.com/eu-en/electronics_solutions/tools_equipment/provetechta_test_automation
https://www.mbtech-group.com/eu-en/electronics_solutions/tools_equipment/provetechta_test_automation
https://www.winwrap.com/web2/basic#!/ref/WWB-doc0001.htm
https://www.winwrap.com/web2/basic#!/ref/WWB-doc0001.htm
http://www.dabeaz.com/ply/ply.html
http://www.dabeaz.com/ply/ply.html
https://www.kernel.org/doc/Documentation/networking/can.txt
https://www.kernel.org/doc/Documentation/networking/can.txt

BIBLIOGRAPHY

[15] libev - a high performance full-featured event loop written in C. [Online].
Available: http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod

[16] CAPL Functions, 1st ed., Vector Informatik, Stuttgart, Germany, 2012.

[17] CANoe – Manual, 7th ed., Vector Informatik, Stuttgart, Germany, 2010.

[18] O. Kulatý, “Message authentication for can bus and autosar software architecture,”
Master’s Thesis, Czech Technical University in Prague, Feb. 2015.

[19] M. Johnson, “Intermediate representation,” Stanford University, Handout, Jul.
2008.

75/75

http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod

	Introduction
	Software Tools
	Commercial Software
	Open-source Software
	PROVEtech:TA
	Workspace
	Test Manager
	Diagnostics
	Fault Simulation
	PROVEtech:RE

	Vector CANoe
	Panels
	Analysis Windows

	Rest-bus Simulation
	Definition of Rest-bus Simulation
	Description Files Formats
	DBC File
	ARXML File

	Project Setup Procedure in PROVEtech:TA
	XML – RBS Descriptor
	XML – PROVEtech Configuration File
	Setup of Workspace

	Project Setup Procedure in CANoe
	Simulation Setup
	Panel Designer

	Test Languages
	WinWrap Basic
	CAPL
	Main Differences

	Converter
	Lexer and Parser
	Lexical Analysis
	Parsing

	Translator
	Translation to WinWrap Basic
	Translation to C

	Graphics Conversion
	Implementation

	Usage
	Installation
	GUI
	Test Language Restrictions

	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Conclusion
	Appendix A
	Bibliography

